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1. Abstract 

Some important concepts will be introduced on quantum chemistry such as symmetry labels of molecular 

states by dwelling on the “particle in a box” model. The mathematical models introduced allow 

understanding orthogonality relationships, expansion of an orbital in a complete set of basis functions, 

perturbation theory of nondegenerate energy levels, and transition probabilities with some attention to 

selection rules. This project is developed by means of Mathematica and COMSOL codes in an 

experimental laboratory. 

 

2. Introduction 

In the present work we will evaluate the particle in a one-dimensional and two-dimensional box. For both 

situations we will study the addition of a potential whose effect, on the energy and wave functions, will 

analyzed by two approximation methods: 1) Linear variation method and 2) Perturbation theory time-

independent. The results obtained will be contrasted with an “exact” numerical method. This method will 

carried out through COMSOL code in finite elements. We will also make reference, succinctly, to the time-

independent perturbation theory meaning to introduce the transition dipole moment to pay attention to 

radiation-matter interaction evaluating the probabilities transitions between energy levels of particle in a 

box. With aim to simplify the algebra of formula used, we will use u.a.(atomic units). 

 

2.1    Particle in a Box without Potential 

The stationary-state wave functions and energy levels of a one-particle are found by solving the time- 

independent Schrödinger equation. The model of the particle in a box has a perfect extension to one, two 

or three dimensions. 

 

2.1.1 Particle in a One-Dimensional Box 

This is a simple system model where a particle is subjected to a potential-energy function that is infinite 

everywhere along the 𝑥 axis except for a line segment of length 𝑎, where the potential energy is zero. In 

this case, the box is centered at the origin of coordinates. 

 

 

 

  

 

 

 

 

 

 

 Figure 1. Particle in a one-dimensional box −𝒂/𝟐 ≤ 𝒙 ≤ 𝒂/𝟐. 

𝑉 𝑥  𝑉 𝑥 = 0 

𝑥 = 𝑎/2 𝑥 = −𝑎/2 𝑥 = 0 

∞ ∞ 
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It has assumed throughout this work that the particle has a mass, m, 1 u.a. The length of the box is from 

𝑥 = −𝑎/2 to 𝑥 = 𝑎/2, where 𝑎 = 1 u.a. As usual, an infinite potential is invoked on the two extremities of 

the box. Thus, the set of normalized eigenfunctions satisfying the basic axioms of quantum theory are 

𝛹𝑛 = √
2

𝑎
 𝑐𝑜𝑠

𝑛 𝜋 𝑥

𝑎
  𝑛 = 𝑜𝑑𝑑  1  

 

𝛹𝑛 = √
2

𝑎
 𝑠𝑖𝑛

𝑛 𝜋 𝑥

𝑎
   𝑛 = 𝑝𝑎𝑖𝑟  2  

 

where 𝑛 = 1,2,3… 

This means that the hamiltonian inside the box is exactly known. Besides, the only contribution to the 

Hamiltonian will, at this stage, be assumed to be the kinetic energy and is therefore given by 

�̂� = −
1

2

𝑑2

𝑑𝑥2  3  

 

being the Schrödinger equation for the system 

�̂�𝛹𝑛 𝑥 = 𝐸𝑛𝛹𝑛 𝑥   4  
 

The energy that represents the exact energy of the 𝑛th level will be 

𝐸𝑛 =
�̂�𝛹𝑛

𝛹𝑛
  5  

 

The eigenfunctions of the Schrödinger equation form a complete set of orthonormal basis functions. 

Therefore, 

< 𝛹𝑖|𝛹𝑗 > =  𝛿𝑖𝑗   {
0   𝑖 ≠ 𝑗
1   𝑖 = 𝑗

  6  

 

The Figure 2 shows the graphic representation of functions with their respective values and exact energies 

of the states. We can observe that the number of nodes (place inside the box where the wave functions 

dies) is equal to (𝑛-1) where 𝑖 is the quantum number of the state under study.  

 

 

       

  

 

 

 
Figure 2. The shapes of the first three exact eigenfunctions of the particle in a one-

dimensional box model by Mathematica. 

 

𝛹1 𝛹2 𝛹3 

𝐸1 = 4.9348 

1.41421cos 3.14159𝑥  

𝐸2 = 19.7392 

1.41421sin 6.28319𝑥  

𝐸3 = 44.4132 

1.41421cos 9.42478𝑥  
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Thus, for example, the number of nodes in the function corresponding to the third state is equal to 2. The 

energies presents in the Figure 2 correspond, in a.u., to the exact equation of the energy for a particle in a 

one-dimensional box that is 

𝐸𝑛 =
𝜋2𝑛2

2𝑎2
  7  

 

Now, we will verify the orthogonality by elemental integration techniques. However, orthogonality can be 

easily established by studying graphical plots of the functions 𝛹𝑖𝛹𝑗 

The Figure 3 shows the shapes of the orthogonality basis functions 

 

 

       

 

 

The most relevant we can see in the Figure 3 is that the shapes of the functions, in the graphic plots, are 

symmetric and present the same areas dimension. The orthogonality of the functions is graphically 

demonstrated.  

These functions satisfy the < 𝛹𝑖|𝛹𝑗 > =  𝛿𝑖𝑗  condition showed above in Eq. (6). Therefore, is 

demonstrated, at the same time, that the overlap matrix is the unit matrix 𝕊 = 1. 

If each of these functions is normalized, then set of functions 𝛹𝑖 is said to form a complete orthonormal 

set. Any function that satisfies the boundary conditions of the system can be written as a linear 

combination of this orthonormal basis set. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. The shape of the functions 𝜳𝒊𝜳𝒋. 

 

𝛹1𝛹2 𝛹1𝛹3 𝛹2𝛹3 
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2.1.2 Particle in a Two-Dimensional Box 

For the two-dimensional system and following the Eqs. (3) and (4) the Schrödinger equation satisfies 

−
ℏ2

2𝑚
(

𝜕2

𝜕𝑥2 +
𝜕2

𝜕𝑦2)𝛹𝑛 𝑥, 𝑦 = 𝐸𝑛𝛹𝑛 𝑥, 𝑦   8  

 

The position in the coordinates is −𝑎/2 ≤ 𝑥 ≤ 𝑎/2 and −𝑏/2 ≤ 𝑦 ≤ 𝑏/2 assumed a rectangular box in the 

case that 𝑎 ≠ 𝑏 and a square box if 𝑎 = 𝑏. 

 

 

 

 

 

 

 

 

 

 

 

Based on the Eq. (8) can be considered �̂�𝑥 + �̂�𝑦  (independent operators). Thus, applying the same 

methodology as in one-dimension, the functions used will be 

𝛹𝑛𝑥
 𝑥 = √

2

𝑎
cos (

𝑛𝑥𝜋 𝑥

𝑎
)    𝛹𝑛𝑥

 𝑥 = √
2

𝑎
sin (

𝑛𝑥𝜋 𝑥

𝑎
) 

𝛹𝑛𝑦
 𝑦 = √

2

𝑏
cos (

𝑛𝑦𝜋 𝑦

𝑏
)    𝛹𝑛𝑦

 𝑦 = √
2

𝑏
sin (

𝑛𝑦𝜋 𝑦

𝑏
) 

 

So, a complete set of functions used will be 

𝛹𝑛𝑥𝑛𝑦
 𝑥, 𝑦 = 𝛹𝑛𝑥

 𝑥 𝛹𝑛𝑦
 𝑦   11  

 

and the energy 

𝐸 = 𝐸𝑥 + 𝐸𝑦  12  
 

The values of the exact energy, in a 2D box, are given by  

 

𝐸𝑛𝑥𝑛𝑦
=

𝜋2

2
 
𝑛𝑥
2

𝑎2 +
𝑛𝑦
2

𝑏2  
 13  

 

𝑛 = 𝑜𝑑𝑑    (9) 𝑛 = 𝑝𝑎𝑖𝑟   (10) 

𝑏/2 

−𝑏/2 

𝑎/2 −𝑎/2 

𝑥 

𝑦 

 0,0  

Figure 4. Particle in a two-dimensional box −𝒂/𝟐 ≤ 𝒙 ≤ 𝒂/𝟐 and −𝒃/𝟐 ≤ 𝒚 ≤ 𝒃/𝟐. 
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The Figure 5 represents the functions of three states, with the values of exact energies and symmetrical 

functions (remember Eq. (11)), for a particle in a rectangular box (𝑎 ≠ 𝑏), that is to say, both dimensions of 

the box must not be equal, to avoid degeneracies [3] as would happen in a square box.  

   

     

            

 

 

Figure 5. The shape of the three exact eigenfunctions for a particle in a rectangular box. 

 

As we can see in Figure 5, for a 2D box, the nodes are represented by lines where state 12 has one node 

and state 22 has two nodes. 

Contrasting Figure 5 and 6 we can see, as 𝑎 ≠ 𝑏, the states  𝑛𝑥 = 1, 𝑛𝑦 = 2  and  𝑛𝑥 = 2, 𝑛𝑦 = 1  are not 

degenerated. Thus, the absence of degeneracy is demonstrated for a rectangular box. 

 

   

 

 

𝛹11 𝛹12 𝛹22 

𝐸11 = 8.36175 𝐸12 = 18,64260 𝐸22 = 33.44700 

1.82574cos 3.14159𝑥 cos 2,61799𝑦  1.82574cos 3.14159𝑥 sin 5.23599𝑦  1.82574sin 6.28319𝑥 sin 5.23599𝑦  

𝛹21 

𝐸21 = 23.1662 

1.82574cos 2.61799𝑦 sin 6.28319𝑥  

Figure 6. The shape of the function 𝜳𝟐𝟏 and exact energy of the corresponding state. Respect to  
𝜳𝟏𝟐 it can only observe difference in the position of the function. 
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If the particle was in a square box (𝑎 = 𝑏) the states 𝛹12 and 𝛹21 will be degenerate (𝐸12 = 𝐸21  as Figure 

7 shows 

 

                  

                  

 

 

 

As we can observe, comparing Figure 5 with Figure 6, the energy of the state 12 and 21 do not seem 

similar, meaning that there is not degeneracy [3]. So, we can conclude that, in a rectangular box, unless at 

least two of the values 𝑎 or 𝑏 are integers, would has not degeneracy
1
. 

Figure 7 shows 𝛹12 and 𝛹21 functions represented in a square box, with the intention of seeing, clearly, the 

difference between one and other states variating the box. 

 

  

                                                           
1
 Accidental degeneracies are possible in a rectangular box (𝑎 ≠ 𝑏 . Sometimes, parameters of 2D box are not equal, 

the “exact” energies of the levels could be to coincide. 

𝛹12 𝛹21 

𝐸12 = 24,674 𝐸21 = 24,674 

Figure 7. Shapes of functions 𝜳𝟏𝟐 and 𝜳𝟐𝟏 and degeneracy formed in states 12 and 21 in a 

square box. 
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2.2    Particle in a Box with Potential 

Now, we shall throughout 𝑉 ≠  0 in the system. For an arbitrary potential, the Schrödinger equation has 

not analytical solution (exact solution) and its must be solved by approximated methods such as linear 

variation theory. 

2.2.1   Linear Variations Method 

A linear variation method [1] is a variation process which allows approximating to the exact solution of a 
quantum system as a lineal combination of n linearly independent functions. The functions 𝜙 are real; 

therefore, all coefficients 𝑐𝑖  and functions 𝛹𝑖  (which are called basis functions) are real. Due to 

coefficients 𝑐𝑖 of expansion are unknown, the function 𝜙 is normalized. Thus, the variational integral is 

휀 =
< 𝜙𝑖|�̂�|𝜙𝑗 >

< 𝜙𝑖|𝜙𝑗 >
  14  

 

where 

𝜙 = 𝑐1𝛹1
° + 𝑐2𝛹2

° + ⋯+ 𝑐𝑛𝛹𝑛
° = ∑𝑐𝑖𝛹𝑖

°

𝑛

𝑖=1

  15  

 

The coefficients 𝑐𝑖 are parameters to be determined by minimizing the variational integral, and the basis 

functions 𝛹𝑖 must satisfy the boundary conditions of the problem. As a set of basis functions we will use 

the exact functions of the particle in a box.  

Then, through a little bit of algebra, we will get 

ℍ ℂ =  𝜺 𝕊 ℂ   16  
 

where ℍ is the matrix 

𝐻𝑖𝑗 = ∫𝛹𝑖
°�̂� 𝛹𝑗

° 𝑑𝜏  17  

 

and 

�̂� = −
1

2
𝛻2 + 𝑉  18  

 

 𝕊 is the overlap matrix 

𝑆𝑖𝑗 = < 𝛹𝑖
°|𝛹𝑗

° > = 𝑆𝑗𝑖  19  

 

Due to set of functions {𝛹𝑖
°} is orthonormal, 𝑆𝑖𝑗 = 𝑆𝑖𝑗 and, therefore, Eq. (16) is reduced

2
 to  

ℍ ℂ = 𝜺 ℂ   20  
 

the matrix ℍ  diagonalization, provides the coefficients of expansion (15) (eigenvectors) and the 

approximate energies (eigenvalues). 

 

 

                                                           
2 As the functions are normalized, 𝕊 is the identity matrix (𝕊 = 1 . 
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2.2.2 Nondegenerate Perturbation Theory 

I shall now study perturbation theory [2] for a particle in a one-dimensional box and two-dimensional box. 

The idea is to introduce an additional term to the exact Hamiltonian through a potential V. This term will be 

assumed to be time-independent and is identified as the perturbation �̂�′. But, the perturbation treatments 

of degenerate and nondegenerate energy levels differ. 

�̂�°  will be the hamiltonian operator of the unperturbed system and 𝛹𝑖
°  will be a complete set of 

eigenfunctions of �̂�°.  

Nondegenerate perturbation theory let 𝛹𝑖
°  be the wave function of some particular unperturbed 

nondegenerate level with energy 𝐸𝑖
°.that appoints the complete set of eigenvalues and represents the 

exact energy of the state’s levels. Therefore 

�̂�°𝛹𝑖
° = 𝐸𝑖

°𝛹𝑖
°  21  

 

so 

𝐸𝑖
° =

�̂�°𝛹𝑖
°

𝛹𝑖
°

  22  

 

The Hamiltonian of perturbed system is represented by 

�̂� = �̂�° + �̂�′  23  
 

where �̂�′ is the perturbation, commented before, and the superscript ° denotes the unpertubed system.  

Due to aim is to get the relationship of the unknown eigenfunctions and eigenvalues of the perturbed 
system with those known of the unpertubed system, it is introduced a parameter

3
 𝜆 in the hamiltonian. This 

parameter provides a gradually application, giving a continuous change from the unperturbed to the 
perturbed system, so that 

�̂� = �̂�° + 𝜆�̂�′  24  

 

where 𝛹𝑖 is the perturbed wave function into which 𝛹𝑖
° will be become when the potential or perturbation is 

applied. From Eqs. (4) and (23), the Schrödinger equation for 𝑖th perturbed state satisfying 

�̂� 𝛹𝑖 = (�̂�° + 𝜆�̂�′)𝛹𝑖 = 𝐸𝑖𝛹𝑖  25  

 

It is important that 𝛹𝑖 satisfy 

< 𝛹𝑖
°|𝛹𝑖 >= 1  26  

 

Thus, all corrections 𝛹𝑖
 𝑘 

 meet the orthogonality condition with 𝛹𝑖
° 

< 𝛹𝑖
°|𝛹𝑖

 𝑘 
> =  δ0k  27  

 

By a little bit of algebra, we will get the general term for 𝜆𝑛  

(�̂�° − 𝐸𝑖
°)𝛹𝑖

 𝑛 
+ �̂�′𝛹𝑖

 𝑛−1 
− ∑𝐸𝑖

 𝑛−𝑘 

𝑛−1

𝑘=0

𝛹𝑖
 𝑘 

= 0  28  

                                                           
3
 When 𝜆 is zero the system is unpertubed. If 𝜆 grow up, the perturbation increase and 𝜆=1 the perturbation is fully 

apply. As Eq. (25) depends on the parameter 𝜆, both the eigenfunction 𝛹𝑖 and the eigenvalue 𝐸𝑖 depend on 𝜆: 𝛹𝑖 =
𝛹𝑖 𝜆, 𝑞  and 𝐸𝑖 = 𝐸𝑖 𝜆  where 𝑞 =  𝑥, 𝑦, 𝑧  if is Cartesian coordinates system. 
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The First-Order Energy Correction 

𝐸𝑖
 𝑛 

 is the 𝒏th-order correction to the energy. By the Eq. (28), for 𝑛 = 1, we have  

(�̂�
°
−𝐸𝑖

°
)𝛹𝑖

 1 
+ �̂�

′
𝛹𝑖

° −𝐸𝑖
 1 

𝛹𝑖
° = 0  29  

 

multiplying by (𝛹𝑖
°)* and integrating all space we have  

𝐸𝑖
 1 

=< 𝛹𝑖
°|�̂�° − 𝐸𝑖

°|𝛹𝑖
 1 

> +< 𝛹𝑖
°|�̂�′|𝛹𝑖

° >  30  

 

Then 

          𝐸𝑖
 1 

= < 𝛹𝑖
°|�̂�′|𝛹𝑖

° >= ∫𝛹𝑖
°∗ �̂�′𝛹𝑖

° 𝑑𝜏              31  

  

Eq. (31)
4
 gives the first order energy correction. Thus, the energy for 𝑖th state will be 

𝐸𝑖 ≈ 𝐸𝑖
° + 𝐸𝑖

 1 
  𝜆 = 1   32  

 

The First-Order Wave-Function Correction 

The 𝑘-order perturbation correction for the wave function can be expanding in terms of the complete, 

orthonormal set of unperturbed eigenfunctions of the Hermitian operator �̂�°. For 𝑘=1: 

𝛹𝑖
 1 

= ∑𝑐𝑘𝑖
 1 

𝛹𝑘
°

𝑘

  33  

 

where 

𝑐𝑘𝑖
 1 

=
< 𝛹𝑘

° |�̂�′|𝛹𝑖
° >

𝐸𝑖
° − 𝐸𝑘

°
    𝑘 ≠ 𝑖   34  

 

Setting 𝜆 = 1 and using just the first-order wave-function correction, we have as the approximation to the 

perturbed wave function 

 

 
 35  

 

being 

�̂�𝑘𝑖
′ =< 𝛹𝑘

° |�̂�′|𝛹𝑖
° > = ∫𝛹𝑘

° �̂�′𝛹𝑖
° 𝑑𝜏  36  

 

 

 

 

                                                           
4
  As < 𝛹𝑖

°|𝛹𝑖
° >= 1 and �̂�° − 𝐸𝑖

° is hermitic, so < 𝛹𝑖
°|�̂�° − 𝐸𝑖

°|𝛹𝑖
 1 >=< (�̂�° − 𝐸𝑖

°)𝛹𝑖
°|𝛹𝑖

 1 >= 0. This result to Eq. (30) 

gives Eq. (31). 

𝛹𝑖 = 𝛹𝑖
° + 𝛹𝑖

 1 
= 𝛹𝑖

° + ∑
�̂�𝑘𝑖

′

𝐸𝑖
° − 𝐸𝑘

°
𝑘≠𝑖

𝛹𝑘
°  



Physical Chemistry 

10 
 

The Second-Order Energy Correction 

As the first-order wave-function correction is already known, it is possible to calculate the second-order 

energy correction. Through analogous procedure we used in 𝐸𝑖
 1 

, by Eq. (28), we can obtain the next 

general term for the 𝑛-th correction of the energy of the 𝑖-th state 

𝐸𝑖
 𝑛 

= < 𝛹𝑖
°|�̂�′|𝛹𝑖

 𝑛−1 
>  37  

  

Thus, for the second energy correction, when 𝑛 = 2, we get 𝐸𝑖
 2 

=< 𝛹𝑖
°|�̂�′|𝛹𝑖

 1 
> and 𝛹𝑖

 1 
 is the first 

correction obtained before: 𝛹𝑖
 1 

= 𝑐𝑘𝑖
 1 

𝛹𝑘
° =

<𝛹𝑘
° |�̂�′|𝛹𝑖

°>

𝐸𝑖
°−𝐸𝑘

° 𝛹𝑘
° . Therefore, through a laborious process, we will 

have 

  

𝐸𝑖
 2 

= ∑
|�̂�𝑘𝑖

′ |2

𝐸𝑖
° − 𝐸𝑘

°
𝑘≠𝑖

  38  

 

 

2.3   Radiation/matter interaction 

We are now ready to consider the time-dependent Schrödinger equation [5, 6]. If appropriate amounts of 

energy are supplied to molecule, it would be possible to bring about transition between any two levels. 

However, it is found experimentally that the atomic and molecular spectra contain far fewer lines than 

predicted by the resonance condition, that is, 𝛥𝐸 = ℎ𝑣. This must mean that only certain transitions are 

“allowed” or “preferred”. 

Consider the transition between the 𝑚 and 𝑛 stationary states, †
5
 described by the state functions 𝛹𝑚 and 

𝛹𝑛. Since both 𝛹𝑚 and 𝛹𝑛 are solutions of time-dependent Schrödinger equation, it follows that their linear 

combination 𝛹 must also be a solution of the same equation. We write 

𝛹 = 𝑐𝑚𝛹𝑚 𝑞, 𝑡 + 𝑐𝑛𝛹𝑛 𝑞, 𝑡   39  
 
 
where 𝑐𝑚 and 𝑐𝑛 are constants. Eq. (39), at the same time, must be rewritten as 

𝛹 = 𝑐𝑚 𝑡 𝛹𝑚 𝑞, 𝑡 + 𝑐𝑛 𝑡 𝛹𝑛 𝑞, 𝑡   40  
 
 
since transition can now occur between the 𝑚 and 𝑛 states. When the radiation field is applied, the initial 

rate of transition is given by 

𝑑𝑐𝑛 𝑡 

𝑑𝑡
=

𝑑𝑐𝑚 𝑡 

𝑖ℏ
∫𝛹𝑛

∗ 𝑞, 𝑡 𝐽𝐶′ 𝛹𝑚 𝑞, 𝑡  𝑑𝑞  41  

 
 
The hamiltonian 𝐽𝐶′ represents the electric field electric dipole moment interaction that is given by 

𝐽𝐶′ = 𝜺 · 𝝁  42  
 
 
where 𝜇𝑛𝑚, the transition dipole moment, is given by 

𝜇𝑛𝑚 = ∫𝛹𝑛
∗  𝑥 𝜇𝛹𝑚 𝑥  𝑑𝑥  43  

                                                           
5
 By stationary state it is meant that the state remains unchanged in the absence of external perturbations. 
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3. Results 

Having done all procedure of mathematical model on concepts explained above, developed by means of 

Mathematica and COMSOL, the results obtained will be shown applying atomic units (u.a.) for all quantum.  

 

Potentials Applied 

Now, if the particle of the system is subjected to a potential, we will be able to observe some variations. 

It will be use two types of potential from which we will observe changes in the system and whose 

approximations to the lowest ground state and some excited states will be carried out through linear 

variations method and the perturbation theory:  

 

 Asymmetric potential Symmetric potential 

1D 𝑐1ℯ
−𝑐2𝑥 𝑅 − √𝑅2 − 𝑥2 

2D 𝐷1ℯ
−𝐷2 𝑥+𝑐 2+𝑦  𝑅 − √𝑅2 − 𝑥2  ∀𝑦 

 

Table 1. Types of potential applied where 𝑹 =  𝑽𝟎^𝟐 + 𝒂^𝟐 𝟒⁄   𝟐 ∗ 𝑽𝟎 ⁄ . 

 

The shape of the asymmetric potentials is: 

 

 

 

Figure 8. The shape of the asymmetric potential 𝑽 𝒙 = 𝟒. 𝟓𝓮−𝟓.𝟓𝒙 in a one-dimensional box. 

 

Figure 9. The shape of the asymmetric potential 𝑽 𝒙, 𝒚 = 𝟒. 𝟏𝟓 ∗ 𝓮−𝟐.𝟓∗  𝒙+𝟎.𝟐 𝟐+𝒚  in a two-dimensional box. 

∞ ∞ 
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where the potential applied is an exponential potential, for example, 𝑐1ℯ
−𝑐2𝑥. The shape of the potential in 

the graphic plot, shows, clearly, that the potential is a falling exponential curve  −𝑥  and, for this reason, 

completely asymmetric. 

The shape of the symmetric potentials is: 

 

 

Figure 10. The shape of the symmetric potential 𝑽 𝒙 = 𝑹 − √𝑹𝟐 − 𝒙𝟐 in a one-dimensional box. 

 

 

Figure 11. The shape of the symmetric potential 𝑽 𝒙, 𝒚 = 𝑹 − √𝑹𝟐 − 𝒙𝟐  ∀𝒚  in a two-dimensional box. 

 

From graphic plots represented above, we can already observe the clear difference in respect of the 

symmetry of both potentials. 

 

 

 

 

 

 

 

 

 

 

∞ ∞ 
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3.1    Approximation by Linear Variation Method 

Now, asymmetric and symmetric potential is applied on a particle in a one and two-dimensional box, 

providing some changes in the system that will be treated to make the corresponding approximations. 

Firstly, the approximations will be realized by linear variation method chosen 12 basis functions. 

 

3.1.1   Particle in a 1D System with 𝑽 ≠ 𝟎 inside the Box 

A big exponential and symmetric potential were applied. So, the variational functions obtained and the 

probability densities are showed by Figure 12 

 

   

Figure 12. The shape of the first three 𝜳𝒊 and |𝜳𝒊|
𝟐 with the asymmetric potential  𝑽 𝒙 = 𝟒. 𝟓𝓮−𝟓.𝟓𝒙  applied in a 

one-dimensional box. 

 

   

Figure 13. The shape of the first three 𝜳𝒊 and |𝜳𝒊|
𝟐 with the symmetric potential  𝑽 𝒙 = 𝟎. 𝟓 − √𝟎. 𝟐𝟓 − 𝒙𝟐  applied 

in a one-dimensional box. 

 

Through the Figure 12 and 13, we can observe different effects in the functions, depending on the 

potential applied. In Figure 12 it is shown the tendency of the functions is go places to the right as 

consequence of the asymmetric potential applied. However, in Figure 13 the functions do not experiment 

any distortion due to the symmetric potential distributes the charge density as equal form in both parts of 

the box.  

It should be noted that if the asymmetric potential is small, we would not have a clear vision of the 

distorted functions by plots, because the effect of the potential in the functions is minimal. Now, we will do 

a numerical comparative through the values of the approximation energies obtained after the potentials. 

Thus, the energies of the system are: 
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𝑺𝒕𝒂𝒕𝒆 𝒊 𝑬𝒊
𝒔.𝒂𝒔𝒚𝒎.

 𝑬𝒊
𝒃.𝒂𝒔𝒚𝒎.

 𝑬𝒊
𝒔𝒚𝒎.

 

𝟏 5.08028 10.1026 4.96578 

𝟐 19.9168 29.4086 19.80780 

𝟑 44.5983 56.1776 44.49080 

𝟒 79.1446 91.4510 79.03790 

Table 2. The energy values for the first four states provided by 𝑬𝒊
𝒔.𝒂𝒔𝒚𝒎.

 corresponding to a small asymmetric potential 

𝑽 𝒙 = 𝟎. 𝟏𝟐𝓮−𝟑.𝟓𝒙, 𝑬𝒊
𝒃.𝒂𝒔𝒚𝒎.

 corresponding to a big asymmetric potential  𝑽 𝒙 = 𝟒. 𝟓𝓮−𝟓.𝟓𝒙 and 𝑬𝒊
𝒔𝒚𝒎.

 

corresponding to a symmetric potential  𝑽 𝒙 = 𝟎. 𝟓 − √𝟎. 𝟐𝟓 − 𝒙𝟐 . 

 

As well as the verification of the asymmetric or symmetric distribution of charge density
6
 [4] in the 

momentum space of the variational functions is showed by Table 3 

 

 𝝆𝒊
𝒔.𝒂𝒔𝒚𝒎.

 𝝆𝒊
𝒃.𝒂𝒔𝒚𝒎.

 𝝆𝒊
𝒔𝒚𝒎.

 

𝑺𝒕𝒂𝒕𝒆 𝒊 −𝒂/𝟐 ≤ 𝒙 ≤ 𝟎 𝟎 < 𝒙 ≤ 𝒂/𝟐 −𝒂/𝟐 ≤ 𝒙 ≤ 𝟎 𝟎 < 𝒙 ≤ 𝒂/𝟐 −𝒂/𝟐 ≤ 𝒙 ≤ 𝟎 𝟎 < 𝒙 ≤ 𝒂/𝟐 

𝟏 0.495039 0.504961 0.265678 0.734322 0.5 0.5 

𝟐 0.502920 0.497080 0.579364 0.420636 0.5 0.5 

𝟑 0.499902 0.500098 0.490089 0.509911 0.5 0.5 

𝟒 0.50082 0.499180 0.554533 0.445467 0.5 0.5 

Table 3. Charge density distribution of variational functions in a 1D box with the same potentials applied above where 

the simplifications in superscript of 𝝆𝒊 have the same meaning as in Table 2. 

 

From the most part of the box subject to a potential charge to the least subject to this potential (since the 

shape of the potential in Figure 8 implies such a distribution). In this case, logically, the charge density is 

displaced to the right of the box, as we can observe by the graphic plot in Figure 12. This numeric 

difference in the Table 3, provides a clear idea about the distorted or displacement that the perturbed 

functions experience subject to a perturbation. 

Judging Table 3, if we compare the distributions of charge density in small asymmetric potential case we 

can observe that the effect in the functions is almost symmetric. However, in the big asymmetric potential 

case and observing state 1, for example, we have already a clear vision of the charge density distribution 

to the right which confirms the asymmetric distribution of the functions. For another part, in the symmetric 

potential case the values of the charge density confirm that the function do not experiment any distortion 

as we have already commented above. 

 

 

 

 

 

 

                                                           
6
 Determining the probability distribution for the particle in state 𝛹𝑖. As just the probability density to find the particle 

located within the infinitesimal range: 𝜌𝑖 = |𝛹𝑖|
2. 
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3.1.2   Particle in a 2D System with 𝑽 ≠ 𝟎 inside the Box  

The functions obtained and the corresponding density probabilities for a symmetric and asymmetric 
potential applied in a rectangular box (𝑎 = 1, 𝑏 = 1.2), to avoid degeneracies, are: 

 

              

 

 

Other shapes to obtain a clear vision of distorted functions in a two-dimensional box as consequence of 
asymmetric potential applied are showed in Figure 15  

 

 

 

Figure 14. The shapes of the first four 𝜳𝒊 and |𝜳𝒊|
𝟐 with the asymmetric potential 𝑽 𝒙,𝒚 = 𝟒.𝟏𝟓 ∗ 𝓮−𝟐.𝟓∗  𝒙+𝟎.𝟐 𝟐+𝒚  applied in a two-

dimensional box. 

𝛹1 

𝛹2 

𝛹3 

𝛹4 |𝛹4|
2 

|𝛹3|
2 

|𝛹2|
2 

|𝛹1|
2 

𝛹1 

𝛹11
°  

 

 

 

𝛹2 

𝛹11
°  

 

 

 

𝛹3 

𝛹11
°  

 

 

 

𝛹4 

𝛹11
°  

 

 

 

Figure 15. The contour plot of the first four 𝜳𝒊 with the asymmetric potential 𝑽 𝒙, 𝒚 = 𝟒. 𝟏𝟓 ∗ 𝓮−𝟐.𝟓∗  𝒙+𝟎.𝟐 𝟐+𝒚  applied in a two-

dimensional box. 
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Applying the symmetric potential, the shape of functions obtained were: 

                 

 

 

Analyzing the variations in the energies of the different energetic levels of the two-dimensional system by 

Table 4 

 

𝑺𝒕𝒂𝒕𝒆 𝒊 𝑬𝒊
𝒔.𝒂𝒔𝒚𝒎.

 𝑬𝒊
𝒃.𝒂𝒔𝒚𝒎.

 𝑬𝒊
𝒔𝒚𝒎.

 

𝟏 8.50847 12.0119 8.39785 

𝟐 18.8138 23.3302 18.6787 

𝟑 23.3024 26.635 23.2469 

𝟒 33.9543 37.827 33.5277 

Table 4. The energy values for the first four states provided by 𝑬𝒊
𝒔.𝒂𝒔𝒚𝒎.

 corresponding to a small asymmetric potential 

𝑽 𝒙, 𝒚 = 𝟎. 𝟏𝟓𝓮−𝟐.𝟓  𝒙+𝟎.𝟐 𝟐+𝒚 , 𝑬𝒊
𝒃.𝒂𝒔𝒚𝒎.

 corresponding to a big asymmetric potential 𝑽 𝒙, 𝒚 = 𝟒. 𝟏𝟓 ∗

𝓮−𝟐.𝟓∗  𝒙+𝟎.𝟐 𝟐+𝒚  and 𝑬𝒊
𝒔𝒚𝒎.

 corresponding to a symmetric potential 𝑽 𝒙, 𝒚 = 𝟎. 𝟓 − √𝟎. 𝟐𝟓 − 𝒙𝟐  ∀𝒚 . 

 

And the values of charge density  

 

 𝝆𝒊
𝒔.𝒂𝒔𝒚𝒎.

 𝝆𝒊
𝒃.𝒂𝒔𝒚𝒎.

 𝝆𝒊
𝒔𝒚𝒎.

 

𝑺𝒕𝒂𝒕𝒆 𝒊 −𝒂/𝟐 ≤ 𝒙 ≤ 𝟎 𝟎 < 𝒙 ≤ 𝒂/𝟐 −𝒂/𝟐 ≤ 𝒙 ≤ 𝟎 𝟎 < 𝒙 ≤ 𝒂/𝟐 −𝒂/𝟐 ≤ 𝒙 ≤ 𝟎 𝟎 < 𝒙 ≤ 𝒂/𝟐 

𝟏 0.493674 0.506326 0.3499070 0.650093 0.5 0.5 

𝟐 0.503698 0.496302 0.5760040 0.423996 0.5 0.5 

𝟑 0.494124 0.505876 0.356809 0.643191 0.5 0.5 

𝟒 0.503433 0.496567 0.573510 0.426569 0.5 0.5 

      Table 5. Charge density distribution of variational functions in a 2D box with the potentials used in Table 4.  

Figure 16. The shapes of the first four 𝜳𝒊 and |𝜳𝒊|
𝟐 with the asymmetric potential 𝑽 𝒙, 𝒚 = 𝟎. 𝟓 − √𝟎. 𝟐𝟓 − 𝒙𝟐  ∀𝒚 . 

 applied in a two-dimensional box. 
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Through the results showed in Table 4 we can observe the great effect that big asymmetric potential 

exercises on functions and energies providing energy values very little approximated to the “exact” 

energies . However, the effect of the small asymmetric potential is less than the big potential due to the 

energies are more similar to the “exact” energies of the system. But, realizing the comparative between 

three potentials, we can say that the most approximated is when symmetric potential is applied, the same 

for a particle in a one dimensional box.. 

Table 5 shows the verification of the asymmetric and symmetric charge density distribution of the functions 

depending of the potential applied. For a small asymmetric potential the probabilities are practically similar 

in both parts of the box and symmetric potential case the probabilities are equal in two parts. The most 

clear difference resides in big asymmetric potential where the distribution, numerically and visually, it is 

demonstrated the distortion to the right of the box as consequence of the asymmetry. 

 

3.2    Approximation by Perturbation Theory Time-Independent 

In this section, the particle will be evaluated by perturbation theory time-independent, where the 

perturbation �̂�′  is chosen to be the same potentials applied for a particle studied by linear variation 

method. We will have a certain number of perturbed states for which other certain number of states will be 

used to calculate the perturbation. In this case, the number of perturbed states will be 4 and the number of 

states to calculate this perturbation will be 20. 

 

3.2.1 Particle in a 1D System with Perturbation inside the Box 

Now, chosen a big and small asymmetric and symmetric potential as perturbation �̂�′ the energies and 
probabilities density are: 
 
 

𝒊 𝑬𝒊
° 𝑬𝒊

 𝟏 
 𝑬𝒊

 𝟐 
 𝑬𝒕𝒐𝒕 

𝟏 4.9348 0.146030 -0.0005511590 5.08028 

𝟐 19.7392 0.177568 0.0000624632 19.9168 

𝟑 44.4132 0.184966 0.0000934723 44.5983 

𝟒 78.9568 0.187702 0.0000707229 79.1446 

Table 6. Values of the Exact Energy of the Unperturbed Box 𝑬𝒏
° , the First Order Perturbation Energy 𝑬𝒏

 𝟏 
, the Second 

Order Perturbation Energy 𝑬𝒏
 𝟐 

 and the Total Energy 𝑬𝒕𝒐𝒕 for the 𝒊th Level of the Particle in a 1D Box with 𝑽 𝒙 =

𝟎. 𝟏𝟐𝓮−𝟑.𝟓𝒙. 

 

𝒊 𝑬𝒊
° 𝑬𝒊

 𝟏 
 𝑬𝒊

 𝟐 
 𝑬𝒕𝒐𝒕 

𝟏 4.9348 7.21657 -3.15484 8.99654 

𝟐 19.7392 10.6971 -0.421295 30.0150 

𝟑 44.4132 11.7462 0.389597 56.5490 

𝟒 78.9568 12.1637 0.446217 91.5667 

Table 7. Values of the Exact Energy of the Unperturbed Box 𝑬𝒏
° , the First Order Perturbation Energy 𝑬𝒏

 𝟏 
, the Second 

Order Perturbation Energy 𝑬𝒏
 𝟐 

 and the Total Energy 𝑬𝒕𝒐𝒕 for the 𝒊th Level of the Particle in a 1D Box with 𝑽 𝒙 =

𝟒. 𝟓𝓮−𝟓.𝟓𝒙. 
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𝒊 𝑬𝒊
° 𝑬𝒊

 𝟏 
 𝑬𝒊

 𝟐 
 𝑬𝒕𝒐𝒕 

𝟏 4.9348 0.0361471 0.0000517133 4.9709 

𝟐 19.7392 0.0807531 -0.0000558346 19.8199 

𝟑 44.4132 0.0925738 2.31083×10
-7 

44.5058 

𝟒 78.9568 0.0976427 9.74261×10
-6 

79.0545 

Table 8. Values of the Exact Energy of the Unperturbed Box 𝑬𝒏
° , the First Order Perturbation Energy 𝑬𝒏

 𝟏 
, the Second 

Order Perturbation Energy 𝑬𝒏
 𝟐 

 and the Total Energy 𝑬𝒕𝒐𝒕 for the 𝒊th Level of the Particle in a 1D Box with 𝑽 𝒙 =

𝟎. 𝟓 − √𝟎. 𝟐𝟓 − 𝒙𝟐 . 

 

 𝝆𝒊
𝒔.𝒂𝒔𝒚𝒎.

 𝝆𝒊
𝒃.𝒂𝒔𝒚𝒎.

 𝝆𝒊
𝒔𝒚𝒎.

 

𝑺𝒕𝒂𝒕𝒆 𝒊 −𝒂/𝟐 ≤ 𝒙 ≤ 𝟎 𝟎 < 𝒙 ≤ 𝒂/𝟐 −𝒂/𝟐 ≤ 𝒙 ≤ 𝟎 𝟎 < 𝒙 ≤ 𝒂/𝟐 −𝒂/𝟐 ≤ 𝒙 ≤ 𝟎 𝟎 < 𝒙 ≤ 𝒂/𝟐 

𝟏 0.495025 0.504975 0.216085 0.783915 0.5 0.5 

𝟐 0.502941 0.497059 0.675636 0.324364 0.5 0.5 

𝟑 0.499906 0.500094 0.527671 0.472329 0.5 0.5 

𝟒 0.500823 0.499177 0.579755 0.420245 0.5 0.5 

Table 9. Charge density distribution of perturbed functions in a 1D box with the same potentials used in Table 2. 

 

Comparing Table 2 and 6 we can observe the same energy approximation for a small asymmetric 

potential. But, when the potential is big, though was the same potential applied in linear variation method, 

the energy are not the same. This fact demonstrate that the linear variation method and perturbation 

theory do not exercise the same effect in the system for a big asymmetric potentials. In the symmetric 

potential case, as it is not very big, the perturbed method provides good results (synchronized with linear 

variation method). 

By Table 9, perturbed functions, as consequence of the potential applied, undergo a displacement to the 

right for an asymmetric case. The reason that the perturbed functions are distorted to the right is due to the 

fact that exponential potential decreases with 𝑥. 

 

3.2.2 Particle in a 2D System with Perturbation inside the Box 

Applying nondegenerate perturbation theory time-independent for a rectangular box, the energies and 

probabilities density were: 

 

𝒊 𝑬𝒊
° 𝑬𝒊

 𝟏 
 𝑬𝒊

 𝟐 
 𝑬𝒕𝒐𝒕 

𝟏 8.36175 0.147369 -0.000645558 8.50847 

𝟐 18.6426 0.171208 0.0000223647 18.8138 

𝟑 23.1662 0.176495 0.0005036600 23.3024 

𝟒 33.447 0.136717 -0.0004683430 33.6059 

Table 10. Values of the Exact Energy of the Unperturbed Box 𝑬𝒏
° , the First Order Perturbation Energy 𝑬𝒏

 𝟏 
, the Second 

Order Perturbation Energy 𝑬𝒏
 𝟐 

 and the Total Energy 𝑬𝒕𝒐𝒕 for the 𝒊th Level of the Particle in a 2D Box with 𝑽 𝒙, 𝒚 =

𝟎. 𝟏𝟓 ∗ 𝓮−𝟐.𝟓∗  𝒙+𝟎.𝟐 𝟐+𝒚 .
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𝒊 𝑬𝒊
° 𝑬𝒊

 𝟏 
 𝑬𝒊

 𝟐 
 𝑬𝒕𝒐𝒕 

𝟏 8.36175 4.77210 -0.4941390 11.9448 

𝟐 18.6426 4.73674 0.0171189 23.3964 

𝟑 23.1662 4.88302 0.3855240 26.5902 

𝟒 33.447 3.78249 -0.358490 37.8642 

Table 11. Values of the Exact Energy of the Unperturbed Box 𝑬𝒏
° , the First Order Perturbation Energy 𝑬𝒏

 𝟏 
, the Second 

Order Perturbation Energy 𝑬𝒏
 𝟐 

 and the Total Energy 𝑬𝒕𝒐𝒕 for the 𝑖th Level of the Particle in a 2D Box with 𝑽 𝒙, 𝒚 =

𝟒. 𝟏𝟓 ∗ 𝓮−𝟐.𝟓∗  𝒙+𝟎.𝟐 𝟐+𝒚 . 

 

𝒊 𝑬𝒊
° 𝑬𝒊

 𝟏 
 𝑬𝒊

 𝟐 
 𝑬𝒕𝒐𝒕 

𝟏 8.36175 0.0361471 -0.0000503996 8.39784 

𝟐 18.6426 0.0361471 -0.0000503996 18.6787 

𝟑 23.1662 0.0361471 -0.0000503996 23.2469 

𝟒 33.447 0.0807532 0 33.5277 

Table 12. Values of the Exact Energy of the Unperturbed Box 𝑬𝒏
° , the First Order Perturbation Energy 𝑬𝒏

 𝟏 
, the Second 

Order Perturbation Energy 𝑬𝒏
 𝟐 

 and the Total Energy 𝑬𝒕𝒐𝒕 for the 𝒊th Level of the Particle in a 2D Box with 𝑽 𝒙, 𝒚 =

𝟎. 𝟓 − √𝟎. 𝟐𝟓 − 𝒙𝟐  ∀𝒚  . 

 

 𝝆𝒊
𝒔.𝒂𝒔𝒚𝒎.

 𝝆𝒊
𝒃.𝒂𝒔𝒚𝒎.

 𝝆𝒊
𝒔𝒚𝒎.

 

𝑺𝒕𝒂𝒕𝒆 𝒊 −𝒂/𝟐 ≤ 𝒙 ≤ 𝟎 𝟎 < 𝒙 ≤ 𝒂/𝟐 −𝒂/𝟐 ≤ 𝒙 ≤ 𝟎 𝟎 < 𝒙 ≤ 𝒂/𝟐 −𝒂/𝟐 ≤ 𝒙 ≤ 𝟎 𝟎 < 𝒙 ≤ 𝒂/𝟐 

𝟏 0.493650 0.506350 0.334844 0.665156 0.5 0.5 

𝟐 0.503734 0.496266 0.599735 0.400265 0.5 0.5 

𝟑 0.502624 0.497376 0.568570 0.431430 0.5 0.5 

𝟒 0.494112 0.505888 0.348837 0.651163 0.5 0.5 

Table 13. Verification of the asymmetric and symmetric distributions of the charge density of the first four perturbed 

states. The superscripts in 𝝆 refer to the same potentials 𝑽 𝒙, 𝒚  used in Table 4. 

 

As we can observe, in Tables 10, 11 and 12, the order is aleatory due to the perturbed functions are 

dispersed in the all range.  

Using perturbed theory and by Table 12 we have demonstrated that the corrections are, practically, equals 

between them and, the energies approximated are the same for both method applied except in big 

asymmetric potential case where the first order correction of energy is very high which thing does not 

make any sense. 
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3.3   Selection Rules of Transitions 

Now, we are going to study the possible transitions of a system from one quantum state to another. So, for 

the “exact” model of particle in a one-dimensional box the values of the integral are: 

 

𝒏 → 𝒎 |𝝁𝒏𝒎|  𝝁𝒏𝒎 𝟐/ 𝝁𝟏,𝟐 
𝟐 

1 → 2 0.377256 1 

1 → 3 0 0 

1 → 4 0.0301805 0.0064 

1 → 5 0 0 

1 → 6 0.00831503 0.000485798 

Table 14. The values of the |
𝟐𝝅

𝟑
< 𝜳𝒏

∗𝒙𝜳𝒎 > | and (
𝟐𝝅

𝟑
< 𝜳𝒏

∗𝒙𝜳𝒎 > 𝟐/ 
𝟐𝝅

𝟑
< 𝜳𝟏

∗𝒙𝜳𝟐 > 𝟐  when the transition go 

from 𝒏 = 𝟏 to 𝒎 = 𝟐, 𝟑, 𝟒, 𝟓, 𝟔. 

 

As we can observe the integral is zero if the function 𝛹𝑛
∗ 𝑥 𝑥𝛹𝑚 𝑥  is odd and nonzero if the function is 

even. When 𝛹𝑛 𝑥  and 𝛹𝑚 𝑥  have the same parity, dipole radiation cannot occur, in which case, we are in 

a forbidden transition. This provides the selection rules where the parity of the state must be change so 

there is electric dipole radiation. Table 14 shows that the biggest 𝜇𝑛𝑚 value is for transition 1 → 2 due to 

from fundamental state to excited state we have the greatest energy transition. This is the reason to do a 

division of the transition dipole moment between of 1 → 2 transition’s dipole moment.  

So, the selection rules establish the useful results: 

 
𝛹𝑜𝑑𝑑 → 𝛹𝑒𝑣𝑒𝑛 

 
𝛹𝑜𝑑𝑑 → 𝛹𝑜𝑑𝑑 

𝑎𝑙𝑙𝑜𝑤𝑒𝑑 

𝑓𝑜𝑟𝑏𝑖𝑑𝑑𝑒𝑛 
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3.4   Comparative Results between approximated Methods and COMSOL 

With the intention to compare the approximate results obtained by linear variation method and perturbation 

theory, we require a pattern with which compare. For this reason we have used a numerical integration 

method based on the finite elements theory. This method is implemented in the COMSOL, and as we can 

use an excellent discretization, due to the small dimensionality of the problem, it makes these calculations 

provide quasi-exact results. Thus, the energies obtained in a 1D and 2D box, applying big and small 

asymmetric potential, through COMSOL were: 

 

𝑺𝒕𝒂𝒕𝒆 𝑬  𝑳𝒊𝒏𝒆𝒂𝒓 𝑽𝒂𝒓𝒊𝒂𝒕𝒊𝒐𝒏 𝑴.   𝑬  𝑷𝒆𝒓𝒕𝒖𝒓𝒃𝒂𝒕𝒊𝒐𝒏 𝑻.   𝑪𝑶𝑴𝑺𝑶𝑳 

1 10.1026 8.99654 10.102552 

2 29.4086 30.015 29.408563 

3 56.1776 56.549 56.177549 

4 91.451 91.5667 91.450811 

5 136.085 136.112 136.084322 

Table 15. The energy values of particle in a One-dimensional box by Linear Variation Method, Nondegenerate 

Perturbation Theory and COMSOL using 𝑽 𝒙 = 𝟒. 𝟓𝓮−𝟓.𝟓𝒙. 

 

𝑺𝒕𝒂𝒕𝒆 𝑬  𝑳𝒊𝒏𝒆𝒂𝒓 𝑽𝒂𝒓𝒊𝒂𝒕𝒊𝒐𝒏 𝑴.   𝑬  𝑷𝒆𝒓𝒕𝒖𝒓𝒃𝒂𝒕𝒊𝒐𝒏 𝑻.   𝑪𝑶𝑴𝑺𝑶𝑳 

1 5.08028 5.08028 5.080283 

2 19.9168 19.9168 19.916837 

3 44.5983 44.5983 44.598279 

4 79.1446 79.1446 79.144608 

5 123.559 123.559 123.559103 

Table 16. The energy values of particle in a One-dimensional box by Linear Variation Method, Nondegenerate 

Perturbation Theory and COMSOL using 𝑽 𝒙 = 𝟎. 𝟏𝟐𝓮−𝟑.𝟓𝒙. 

 

𝑺𝒕𝒂𝒕𝒆 𝑬  𝑳𝒊𝒏𝒆𝒂𝒓 𝑽𝒂𝒓𝒊𝒂𝒕𝒊𝒐𝒏 𝑴.   𝑬  𝑷𝒆𝒓𝒕𝒖𝒓𝒃𝒂𝒕𝒊𝒐𝒏 𝑻.   𝑪𝑶𝑴𝑺𝑶𝑳 

1 12.0119 11.9448 12.011446 

2 23.3302 23.3964 23.323711 

3 26.6350 26.5902 26.632627 

4 37.8270 37.8642 37.815004 

5 41.0245 41.0459 40.7339 

Table 17. The energy values of particle in a Two-dimensional box by Linear Variation Method, Nondegenerate 

Perturbation Theory and COMSOL using 𝑽 𝒙, 𝒚 = 𝟒. 𝟏𝟓 ∗ 𝓮−𝟐.𝟓∗  𝒙+𝟎.𝟐 𝟐+𝒚 . 

 

𝑺𝒕𝒂𝒕𝒆 𝑬  𝑳𝒊𝒏𝒆𝒂𝒓 𝑽𝒂𝒓𝒊𝒂𝒕𝒊𝒐𝒏 𝑴.   𝑬  𝑷𝒆𝒓𝒕𝒖𝒓𝒃𝒂𝒕𝒊𝒐𝒏 𝑻.   𝑪𝑶𝑴𝑺𝑶𝑳 

1 8.50847 8.50847 8.508472 

2 18.8138 18.8138 18.813789 

3 23.3024 23.3024 23.3024 

4 33.6059 33.6059 33.605828 

5 35.9543 35.9543 35.953937 

Table 18. The energy values of particle in a Two-dimensional box by Linear Variation Method, Nondegenerate 

Perturbation Theory and COMSOL using 𝑽 𝒙, 𝒚 = 𝟎. 𝟏𝟓 ∗ 𝓮−𝟐.𝟓∗  𝒙+𝟎.𝟐 𝟐+𝒚 . 
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As we can observe COMSOL provides quasi-successful results with a wider range of decimals. Between 

results obtained by linear variation method and perturbation theory the most approximated to the 

COMSOL’s energies are those provided by linear variation method. This indicates that linear variation 

method works very well for a big potentials and perturbation theory is not a good method because it works 

bad in a systems subject to a big potential, except in cases of small asymmetric potential where both 

methods actuate from the same way due to the perturbation theory works well for a systems subject to 

perturbations which involve small potentials and changes. 
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4. Discussion 

The Schrödinger equation for real systems becomes difficult to handle, and analytical solutions are only 

available for very simple systems, which we described as fundamental systems in this module. Numerical 

approaches can deal with more complex problems and are necessary to deal with real systems. 

Using linear combination of solutions of the fundamental systems to build something similar to the real 

system. Strictly speaking, linear combinations must be solutions of the same differential equation to 

provide an accurate result. Thus, applying the two mathematical techniques, perturbation and variation 

theory, that provided a good approximation along with an estimate of their accuracy, we have observed, 

through the results obtained, that both approximation method for an equal potentials provides similarly 

results about the energies approximated. 

Comparing two methods we have verified that for a small asymmetric or symmetric potential the difference 

in the effect the differences exerted by one and the other is insignificant. However, when we apply a big 

asymmetric potential we can observe a much more evident difference between the energies where 

perturbation theory seems to be a more optimal method than linear variations for providing an energy more 

approximate to the "exact" one but this is due to that the perturbation theory is not a variational method 

and in the face of a very big perturbation it can give energies both above and below the “exact” one 

generating an seism. Therefore, we can conclude by saying that linear variation method is a better 

mathematical technique for the approximation to “exact” model than perturbation theory time-independent 

due to linear variation method is better for combining system of comparable weighting and the modification 

is applied, directly, in the wave function. Nevertheless, perturbation theory is for small changes to a known 

system where the Hamiltonian is modified, that is to say, perturbation theory works well when the 

perturbation �̂�′ is smaller than �̂�°. Is for this reason that when we applied a big potential, though was the 

same, the result about the energies are different. Despite, the latter is the best for that. 

In addition to this, we also did a comparative between the both method with a more exact numerical 

method implemented in COMSOL package. Where it is observed that the numerical method applied by 

COMSOL provided a greater and better approximation of the energies due to it allows doing a 

discretization stage. This discretization involucres new approximation to the resolution of the numerical 

process by finite elements method that allows realizing an analysis much more precise of the system.  

Regarding the electronic transitions, we also demonstrate the selection rules in the parity transitions. 

Where from fundamental state to the first excited state it is obtained the great value of transition 

momentum, that is to say, it is the highest intensity transition. 

In conclusion, we can say that quantum chemistry covers abstract and complex concepts which are very 

difficult to understand. That is the reason why it is convenient to apply the sentence by a great thinker:  

“I hear and I forget, I see and I remember, I do and I understand” – Confucius 
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5. Annexes 

1. Nondegenerate perturbation theory time-independent for an asymmetric potential applied in a 

one-dimensional box. 

 

2. Linear variation method for an asymmetric potential applied in a one-dimensional box. 

 

3. Nondegenerate perturbation theory time-independent for a symmetric potential applied in a 

one-dimensional box. 

 

4. Linear variation method for a symmetric potential applied in a one-dimensional box. 

 

5. Selection Rules of Transitions. 

 

6. Impr. Pant. of COMSOL for a big potential applied in a one-dimensional box and rectangular 

box. 

 

9. Nondegenerate perturbation theory time-independent for an asymmetric potential applied in a 

two-dimensional box. 

 

11. Linear variation method for an asymmetric potential applied in a two-dimensional box. 

 

13. Nondegenerate perturbation theory time-independent for a symmetric potential applied in a 

two-dimensional box. 

 

14. Linear variation method for a symmetric potential applied in a two-dimensional box.





 

 
 

  



 

 
 

 



H* 1. Nondegenerate Perturbation Theory Time-Independent applied

for a Big Asymmetric Potential applied in a One-dimensional Box *L

ClearAll@"Global`*"D;

H* The length of the box *L
a = 1.0;

H* 'ne' is nth-state perturbed and 'lon' is the number

of states used to calculate the perturbation of each state *L
ne = 5;

lon = 20;

H* Big potential *L
pot@x_D := 4.5 *Exp@-5.5 *x �aD;
H* Small potential *L
H* pot@x_D:=0.12*Exp@-3.5*x�aD; *L

H* Introducing the general equations of the system *L
fx@nx_D :=

If@OddQ@nxD � True, Sqrt@2 �aD *Cos@nx *Pi *x �aD, Sqrt@2 �aD *Sin@nx *Pi *x �aDD;
ham@fi_D := -H1 �2.0L *D@fi, 8x, 2<D;
E0@ii_D := ham@fx@iiDD �fx@iiD �� Chop;

E1@ii_D := NIntegrate@fx@iiD * pot@xD *fx@iiD, 8x, -a �2, a �2<D �� Chop;

H* The first and second energies corrections *L
For@i = 1, i £ ne, i++,

E2@iD = 0;

For@j = 1, j £ lon, j++,

If@E0@jD ¹ E0@iD,
as = NIntegrate@fx@jD * pot@xD *fx@iD, 8x, -a �2, a �2<D �� Chop;

as1 = E0@iD - E0@jD;
E2@iD = E2@iD + as^2 �as1D;
D;

Print@"nx=", i, " E0@", i, "D=", E0@iD, " E1@", i, "D = ",

E1@iD, " E2@", i, "D=", E2@iD, " E@", i, "D=", E1@iD + E2@iD + E0@iDD
D;

nx=1 E0@1D=4.9348 E1@1D = 7.21657 E2@1D=-3.15484 E@1D=8.99654

nx=2 E0@2D=19.7392 E1@2D = 10.6971 E2@2D=-0.421295 E@2D=30.015

nx=3 E0@3D=44.4132 E1@3D = 11.7462 E2@3D=0.389597 E@3D=56.549

nx=4 E0@4D=78.9568 E1@4D = 12.1637 E2@4D=0.446217 E@4D=91.5667

nx=5 E0@5D=123.37 E1@5D = 12.3672 E2@5D=0.37511 E@5D=136.112



H* Obtaining the First-Order Wave-Functions Corrections *L
hij@i_, j_D := NIntegrate@fx@iD * pot@xD *fx@jD, 8x, -a �2, a �2<D �� Chop;

c@kk_, ii_D := hij@kk, iiD � HE0@kkD - E0@iiDL;
For@k = 1, k £ ne, k++,

li = k - 1; ls = k + 1;

fk = fx@kD + Sum@c@k, iD *fx@iD, 8i, 1, li<D + Sum@c@k, iD *fx@iD, 8i, ls, lon<D;
cte = 1 � NIntegrate@fk^2, 8x, -a �2, 0, a �2<D;
fun@kD = Sqrt@cteD *fk �� Expand �� Chop;

D;

H* Verifying non orthogonality of the perturbed functions *L
solap = Table@0, 8i, ne<, 8j, ne<D;
For@i = 1, i £ ne, i++,

For@j = i, j £ ne, j++,

solap@@i, jDD = NIntegrate@fun@iD *fun@jD, 8x, -a �2, 0, a �2<, AccuracyGoal ® 8D �� Chop;

If@j ¹ i, solap@@j, iDD = solap@@i, jDDD;
D;

D;
MatrixForm@solapD
1. -0.0254106 0.116032 -0.0465786 -0.0180353

-0.0254106 1. 0.0479004 0.0581195 0.0262925

0.116032 0.0479004 1. -0.036533 0.0358754

-0.0465786 0.0581195 -0.036533 1. 0.025688

-0.0180353 0.0262925 0.0358754 0.025688 1.

H* Veryfing the asymmetric distributions

of charge density in the perturbed functions *L
For@i = 1, i £ ne, i++,

Print@"For fun@", i, "D: Ρ between -a�2 and 0 = ", NIntegrate@fun@iD^2, 8x, -a �2, 0<D,
" and Ρ between 0 and a�2 = ", NIntegrate@fun@iD^2, 8x, 0, a �2<DD;
D;

H* The shape of the probabilities of the perturbed functions *L
Plot@8pot@xD *0.05, fun@1D^2, fun@2D^2, fun@3D^2<, 8x, -a �2, a �2<,
PlotRange ® All, PlotStyle ® Thickness@0.0045D, Axes ® 8True, False<,
AxesStyle ® Directive@Black, Thickness@0.003DD, GridLines ® 88-a �2, a �2<, 8<<,
GridLinesStyle ® Directive@Black, Thickness@0.003DD, Filling -> Axis, AspectRatio ® 0.5D

2   Box1D_Perturb_Pot_NO_Symmetric.nb



For fun@1D: Ρ between -a�2 and 0 = 0.216085 and Ρ between 0 and a�2 = 0.783915

For fun@2D: Ρ between -a�2 and 0 = 0.675636 and Ρ between 0 and a�2 = 0.324364

For fun@3D: Ρ between -a�2 and 0 = 0.527671 and Ρ between 0 and a�2 = 0.472329

For fun@4D: Ρ between -a�2 and 0 = 0.579755 and Ρ between 0 and a�2 = 0.420245

For fun@5D: Ρ between -a�2 and 0 = 0.515578 and Ρ between 0 and a�2 = 0.484422

-0.4 -0.2 0.0 0.2 0.4

H* The shape of the perturbed functions with big asymmetric potential applied *L

Plot@8pot@xD *0.05, fun@1D, fun@2D, fun@3D<, 8x, -a �2, a �2<,
PlotRange ® All, PlotStyle ® Thickness@0.0045D, Axes ® 8True, False<,
AxesStyle ® Directive@Black, Thickness@0.003DD, GridLines ® 88-a �2, a �2<, 8<<,
GridLinesStyle ® Directive@Black, Thickness@0.003DD, Filling -> Axis, AspectRatio ® 0.5D

-0.4 -0.2 0.0 0.2 0.4
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H* 2. Linear Variation Method for

an Asymmetric Potential applied in a One-dimensional Box *L

ClearAll@"Global`*"D;

H* Introducing dates and wavefunction equation *L
nf = 12;

a = 1.0;

fi@nx_D :=

If@OddQ@nxD � True, Sqrt@2 �aD *Cos@nx *Pi *x �aD, Sqrt@2 �aD *Sin@nx *Pi *x �aDD;

H* Defining the big asymmetric potential applied *L
pot@x_D := 4.5 *Exp@-5.5 *x �aD;
H* Defining the big asymmetric potential applied *L
H* pot@x_D:=0.12*Exp@-3.5*x�aD; *L

H* Defining the hamiltonian operator *L
ham@fi_D := H-1 �2.0L *D@fi, 8x, 2<D + pot@xD *fi;

H* Building the matrix *L
mat = Table@0, 8i, nf<, 8j, nf<D;
For@i = 1, i £ nf, i++,

For@j = i, j £ nf, j++,

mat@@i, jDD = NIntegrate@fi@iD *ham@fi@jDD, 8x, -a �2, 0, a �2<, AccuracyGoal ® 10D;
If@j ¹ i, mat@@j, iDD = mat@@i, jDDD;

D;
D;

H* Matrix diagonalization *L
ene = Eigenvalues@matD �� Chop;

vec = Eigenvectors@matD �� Chop;

H* Ordering of energies an vectors from lowest to highest *L
For@i = 1, i £ nf - 1, i++,

For@j = i + 1, j £ nf, j++,

ei = ene@@iDD; ej = ene@@jDD;
veci = vec@@iDD; vecj = vec@@jDD;
If@ej < ei, ene@@iDD = ej; ene@@jDD = ei; vec@@iDD = vecj; vec@@jDD = veciD;

D;
D;

H* Graphic plot of big asymmetric potential applied *L
Plot@pot@xD, 8x, -a �2, a �2<, PlotRange ® All,

PlotStyle ® Thickness@0.0045D, Axes ® 8True, False<,
AxesStyle ® Directive@Black, Thickness@0.003DD, GridLines ® 88-a �2, a �2<, 8<<,
GridLinesStyle ® Directive@Black, Thickness@0.003DD, Filling -> Axis, AspectRatio ® 0.5D

ene



-0.4 -0.2 0.0 0.2 0.4

810.1026, 29.4086, 56.1776, 91.451, 136.085,

190.43, 254.598, 328.622, 412.516, 506.293, 610.021, 724.353<

H* Building a column vector with basis functions *L
fbasis = Table@0, 8i, nf<D;
For@i = 1, i £ nf, i++,

fbasis@@iDD = fi@iD;
D;

H* Obtaining the variational functions *L funV = vec.fbasis;

Plot@8funV@@1DD, funV@@2DD, funV@@3DD, pot@xD *0.05<, 8x, -a �2, a �2<,
PlotRange ® All, PlotStyle ® Thickness@0.0045D, Axes ® 8True, False<,
AxesStyle ® Directive@Black, Thickness@0.003DD, GridLines ® 88-a �2, a �2<, 8<<,
GridLinesStyle ® Directive@Black, Thickness@0.003DD, Filling -> Axis, AspectRatio ® 0.5D

-0.4 -0.2 0.0 0.2 0.4

H* Verify the asymmetric distribution of charge density of the

variational functions as consequence big asymmetric potential applied *L
For@i = 1, i £ 6, i++,

Print@"For funV@", i,

"D: Ρ between -a�2 and 0 = ", NIntegrate@funV@@iDD^2, 8x, -a �2, 0<D,
" and Ρ between 0 and a�2 = ", NIntegrate@funV@@iDD^2, 8x, 0, a �2<DD;
D;

Plot@80.05 * pot@xD, funV@@1DD^2, funV@@2DD^2, funV@@3DD^2<, 8x, -a �2, a �2<,
PlotRange ® All, PlotStyle ® Thickness@0.0045D, Axes ® 8True, False<,
AxesStyle ® Directive@Black, Thickness@0.003DD, GridLines ® 88-a �2, a �2<, 8<<,
GridLinesStyle ® Directive@Black, Thickness@0.003DD, Filling -> Axis, AspectRatio ® 0.5D

2   Box1D_Variational_Pot_NO_Symmetric.nb



For funV@1D: Ρ between -a�2 and 0 = 0.265678 and Ρ between 0 and a�2 = 0.734322

For funV@2D: Ρ between -a�2 and 0 = 0.579364 and Ρ between 0 and a�2 = 0.420636

For funV@3D: Ρ between -a�2 and 0 = 0.490089 and Ρ between 0 and a�2 = 0.509911

For funV@4D: Ρ between -a�2 and 0 = 0.554533 and Ρ between 0 and a�2 = 0.445467

For funV@5D: Ρ between -a�2 and 0 = 0.500901 and Ρ between 0 and a�2 = 0.499099

For funV@6D: Ρ between -a�2 and 0 = 0.529013 and Ρ between 0 and a�2 = 0.470987

-0.4 -0.2 0.0 0.2 0.4

H* Verify the orthonormality of variational functions *L
overlap = Table@0, 8i, nf<, 8j, nf<D;
For@i = 1, i £ nf, i++,

For@j = i, j £ nf, j++,

overlap@@i, jDD =

NIntegrate@funV@@iDD *funV@@jDD, 8x, -a �2, 0, a �2<, AccuracyGoal ® 8D �� Chop;

If@j ¹ i, overlap@@j, i DD = overlap@@i, jDDD;
D;

D;
Print@"Overlap Mat variational fun = ", MatrixForm@overlapD �� ChopD

Overlap Mat variational fun =

1. 0. ´10-10 0. ´10-10 0. ´10-9 0. ´10-9 0. ´10-9 0. ´10-9

0. ´10-10 1. 0. ´10-9 0. ´10-9 0. ´10-9 0. ´10-9 0. ´10-9

0. ´10-10 0. ´10-9 1. 0. ´10-9 0. ´10-9 0. ´10-9 0. ´10-9

0. ´10-9 0. ´10-9 0. ´10-9 1. 0. ´10-9 0. ´10-9 0. ´10-10

0. ´10-9 0. ´10-9 0. ´10-9 0. ´10-9 1. 0. ´10-10 0. ´10-9

0. ´10-9 0. ´10-9 0. ´10-9 0. ´10-9 0. ´10-10 1. 0. ´10-9

0. ´10-9 0. ´10-9 0. ´10-9 0. ´10-10 0. ´10-9 0. ´10-9 1.

0. ´10-9 0. ´10-9 0. ´10-10 0. ´10-9 0. ´10-9 0. ´10-9 0. ´10-9

0. ´10-9 0. ´10-10 0. ´10-9 0. ´10-9 0. ´10-9 0. ´10-9 0. ´10-9

0. ´10-10 0. ´10-9 0. ´10-9 0. ´10-9 0. ´10-9 0. ´10-9 0. ´10-9

0. ´10-9 0. ´10-9 0. ´10-9 0. ´10-9 0. ´10-9 0. ´10-9 0. ´10-9

0. ´10-9 0. ´10-9 0. ´10-9 0. ´10-9 0. ´10-9 0. ´10-9 0. ´10-9
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H* 3. Nondegenerate Perturbation Theory Time-

Independent for a Symmetric Potential applied in a One-dimensional Box *L

ClearAll@"Global`*"D;

H* The length of the box *L
a = 1.0;

H* ne is nth-state perturbed and lon is the number

of states used to calculate the perturbation of each state *L
ne = 5;

lon = 20;

H* Vmin is the minimum value V0 so R will be greater than a�2 *L
V0 = Input@"Introduce un valor de V0 menor que a�2"D;

H* For a symmetric pontential regarding the centre of the box *L
R = HV0^2 + a^2 �4L � H2 * V0L;
pot@x_D := R - Sqrt@R^2 - x^2D;

H* Introducing the general equations of the system *L
fx@nx_D :=

If@OddQ@nxD � True, Sqrt@2 �aD *Cos@nx *Pi *x �aD, Sqrt@2 �aD *Sin@nx *Pi *x �aDD;
ham@fi_D := -H1 �2.0L *D@fi, 8x, 2<D;
E0@ii_D := ham@fx@iiDD �fx@iiD �� Chop;

E1@ii_D := NIntegrate@fx@iiD * pot@xD *fx@iiD, 8x, -a �2, a �2<D �� Chop;

H* The first and second correction energies *L
For@i = 1, i £ ne, i++,

E2@iD = 0;

For@j = 1, j £ lon, j++,

If@E0@jD ¹ E0@iD,
as = NIntegrate@fx@jD * pot@xD *fx@iD, 8x, -a �2, a �2<D �� Chop;

as1 = E0@iD - E0@jD;
E2@iD = E2@iD + as^2 �as1D;
D;

Print@"nx=", i, " E0@", i, "D=", E0@iD, " E1@", i, "D = ",

E1@iD, " E2@", i, "D=", E2@iD, " E@", i, "D=", E1@iD + E2@iD + E0@iDD
D;

nx=1 E0@1D=4.9348 E1@1D = 0.0361471 E2@1D=-0.0000517133 E@1D=4.9709

nx=2 E0@2D=19.7392 E1@2D = 0.0807531 E2@2D=-0.0000558346 E@2D=19.8199

nx=3 E0@3D=44.4132 E1@3D = 0.0925738 E2@3D=2.31083 ´10-7 E@3D=44.5058

nx=4 E0@4D=78.9568 E1@4D = 0.0976427 E2@4D=9.74261 ´10-6 E@4D=79.0545

nx=5 E0@5D=123.37 E1@5D = 0.10035 E2@5D=0.0000103024 E@5D=123.47



H* Obtaining the First-Order Wave-Functions Corrections *L
hij@i_, j_D := NIntegrate@fx@iD * pot@xD *fx@jD, 8x, -a �2, a �2<D �� Chop;

c@kk_, ii_D := hij@kk, iiD � HE0@kkD - E0@iiDL;
For@k = 1, k £ ne, k++,

li = k - 1; ls = k + 1;

fk = fx@kD + Sum@c@k, iD *fx@iD, 8i, 1, li<D + Sum@c@k, iD *fx@iD, 8i, ls, lon<D;
cte = 1 � NIntegrate@fk^2, 8x, -a �2, 0, a �2<D;
fun@kD = Sqrt@cteD *fk �� Expand �� Chop;

D;

H* Verifying non orthogonality of the perturbed functions *L
overlap = Table@0, 8i, ne<, 8j, ne<D;
For@i = 1, i £ ne, i++,

For@j = i, j £ ne, j++,

overlap@@i, jDD =

NIntegrate@fun@iD *fun@jD, 8x, -a �2, 0, a �2<, AccuracyGoal ® 8D �� Chop;

If@j ¹ i, overlap@@j, iDD = overlap@@i, jDDD;
D;

D;
MatrixForm@overlapD

1. 0. ´10-9
-8.00765 ´10-8 0. ´10-10

-8.67477 ´10-7

0. ´10-9 1. 0. ´10-10
-7.22136 ´10-8 0. ´10-9

-8.00765 ´10-8 0. ´10-10 1. 0. ´10-9
-1.70396 ´10-7

0. ´10-10
-7.22136 ´10-8 0. ´10-9 1. 0. ´10-9

-8.67477 ´10-7 0. ´10-9
-1.70396 ´10-7 0. ´10-9 1.

H* The shape of the probabilities of the perturbed

functions and the symmetric distribution of charge density *L
For@i = 1, i £ ne, i++,

Print@"For fun@", i, "D: Ρ between -a�2 and 0 = ", NIntegrate@fun@iD^2, 8x, -a �2, 0<D,
" and Ρ between 0 and a�2 = ", NIntegrate@fun@iD^2, 8x, 0, a �2<DD;
D;

Plot@8pot@xD, fun@1D^2, fun@2D^2, fun@3D^2<, 8x, -a �2, a �2<,
PlotRange ® All, PlotStyle ® Thickness@0.0045D, Axes ® 8True, False<,
AxesStyle ® Directive@Black, Thickness@0.003DD, GridLines ® 88-a �2, a �2<, 8<<,
GridLinesStyle ® Directive@Black, Thickness@0.003DD, Filling -> Axis, AspectRatio ® 0.5D
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For fun@1D: Ρ between -a�2 and 0 = 0.5 and Ρ between 0 and a�2 = 0.5

For fun@2D: Ρ between -a�2 and 0 = 0.5 and Ρ between 0 and a�2 = 0.5

For fun@3D: Ρ between -a�2 and 0 = 0.5 and Ρ between 0 and a�2 = 0.5

For fun@4D: Ρ between -a�2 and 0 = 0.5 and Ρ between 0 and a�2 = 0.5

For fun@5D: Ρ between -a�2 and 0 = 0.5 and Ρ between 0 and a�2 = 0.5

-0.4 -0.2 0.0 0.2 0.4

H* The shape of the perturbed functions with a symmetric potential applied *L

Plot@8pot@xD, fun@1D, fun@2D, fun@3D<, 8x, -a �2, a �2<,
PlotRange ® All, PlotStyle ® Thickness@0.0045D, Axes ® 8True, False<,
AxesStyle ® Directive@Black, Thickness@0.003DD, GridLines ® 88-a �2, a �2<, 8<<,
GridLinesStyle ® Directive@Black, Thickness@0.003DD, Filling -> Axis, AspectRatio ® 0.5D

-0.4 -0.2 0.0 0.2 0.4
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H* 4. Linear Variation Method for

a Symmetric Potential applied in a One-dimensional Box *L

ClearAll@"Global`*"D;

H* Introducing dates and wavefunction equation *L
nf = 12;

a = 1.0;

fi@nx_D :=

If@OddQ@nxD � True, Sqrt@2 �aD *Cos@nx *Pi *x �aD, Sqrt@2 �aD *Sin@nx *Pi *x �aDD;

H* Vmin is the minimum value of V0 so R will be greater than a�2 *L
V0 = Input@"Introduce un valor de V0 menor que a�2"D;

H* For a symmetric potential regarding to the centre of the box *L
R = HV0^2 + a^2 �4L � H2 * V0L;
pot@x_D := R - Sqrt@R^2 - x^2D;

H* Defining the hamiltonian operator *L
ham@fi_D := H-1 �2.0L *D@fi, 8x, 2<D + pot@xD *fi;

H* Building the matrix *L
mat = Table@0, 8i, nf<, 8j, nf<D;
For@i = 1, i £ nf, i++,

For@j = i, j £ nf, j++,

mat@@i, jDD = NIntegrate@fi@iD *ham@fi@jDD, 8x, -a �2, 0, a �2<, AccuracyGoal ® 10D;
If@j ¹ i, mat@@j, iDD = mat@@i, jDDD;

D;
D;

H* Matrix diagonalization *L
ene = Eigenvalues@matD �� Chop;

vec = Eigenvectors@matD �� Chop;

H* Ordering of energies an vectors from lowest to highest *L
For@i = 1, i £ nf - 1, i++,

For@j = i + 1, j £ nf, j++,

ei = ene@@iDD; ej = ene@@jDD;
veci = vec@@iDD; vecj = vec@@jDD;
If@ej < ei, ene@@iDD = ej; ene@@jDD = ei; vec@@iDD = vecj; vec@@jDD = veciD;

D;
D;

H* The graphic plot of the symmetric potential applied *L
Plot@pot@xD, 8x, -a �2, a �2<, PlotRange ® All,

PlotStyle ® Thickness@0.0045D, Axes ® 8True, False<,
AxesStyle ® Directive@Black, Thickness@0.003DD, GridLines ® 88-a �2, a �2<, 8<<,
GridLinesStyle ® Directive@Black, Thickness@0.003DD, Filling -> Axis, AspectRatio ® 0.5D

ene



-0.4 -0.2 0.0 0.2 0.4

84.9709, 19.8199, 44.5058, 79.0545, 123.47,

177.755, 241.908, 315.931, 399.823, 493.585, 597.216, 710.717<

H* Building a column vector with basis functions *L
fbasis = Table@0, 8i, nf<D;
For@i = 1, i £ nf, i++,

fbasis@@iDD = fi@iD;
D;

H* Obtaining the variational functions *L funV = vec.fbasis;

Plot@8funV@@1DD, funV@@2DD, funV@@3DD, pot@xD<, 8x, -a �2, a �2<,
PlotRange ® All, PlotStyle ® Thickness@0.0045D, Axes ® 8True, False<,
AxesStyle ® Directive@Black, Thickness@0.003DD, GridLines ® 88-a �2, a �2<, 8<<,
GridLinesStyle ® Directive@Black, Thickness@0.003DD, Filling -> Axis, AspectRatio ® 0.5D

-0.4 -0.2 0.0 0.2 0.4

H* Verify the symmetric distribution of charge density of the

variational functions as consequence symmetric potential applied *L
For@i = 1, i £ 6, i++,

Print@"For funV@", i,

"D: Ρ between -a�2 and 0 = ", NIntegrate@funV@@iDD^2, 8x, -a �2, 0<D,
" and Ρ between 0 and a�2 = ", NIntegrate@funV@@iDD^2, 8x, 0, a �2<DD;
D;

Plot@8pot@xD, funV@@1DD^2, funV@@2DD^2, funV@@3DD^2<, 8x, -a �2, a �2<,
PlotRange ® All, PlotStyle ® Thickness@0.0045D, Axes ® 8True, False<,
AxesStyle ® Directive@Black, Thickness@0.003DD, GridLines ® 88-a �2, a �2<, 8<<,
GridLinesStyle ® Directive@Black, Thickness@0.003DD, Filling -> Axis, AspectRatio ® 0.5D
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For funV@1D: Ρ between -a�2 and 0 = 0.5 and Ρ between 0 and a�2 = 0.5

For funV@2D: Ρ between -a�2 and 0 = 0.5 and Ρ between 0 and a�2 = 0.5

For funV@3D: Ρ between -a�2 and 0 = 0.5 and Ρ between 0 and a�2 = 0.5

For funV@4D: Ρ between -a�2 and 0 = 0.5 and Ρ between 0 and a�2 = 0.5

For funV@5D: Ρ between -a�2 and 0 = 0.5 and Ρ between 0 and a�2 = 0.5

For funV@6D: Ρ between -a�2 and 0 = 0.5 and Ρ between 0 and a�2 = 0.5

-0.4 -0.2 0.0 0.2 0.4

H* Verify the orthonormality of variational functions *L
overlap = Table@0, 8i, nf<, 8j, nf<D;
For@i = 1, i £ nf, i++,

For@j = i, j £ nf, j++,

overlap@@i, jDD =

NIntegrate@funV@@iDD *funV@@jDD, 8x, -a �2, 0, a �2<, AccuracyGoal ® 8D �� Chop;

If@j ¹ i, overlap@@j, i DD = overlap@@i, jDDD;
D;

D;
Print@"Overlap Mat variational fun = ", MatrixForm@overlapDD

Overlap Mat variational fun =

1. 0. ´10-9 0. ´10-9 0. ´10-10 0. ´10-9 0. ´10-9 0. ´10-9

0. ´10-9 1. 0. ´10-10 0. ´10-9 0. ´10-9 0. ´10-10 0. ´10-9

0. ´10-9 0. ´10-10 1. 0. ´10-9 0. ´10-10 0. ´10-9 0. ´10-10

0. ´10-10 0. ´10-9 0. ´10-9 1. 0. ´10-9 0. ´10-10 0. ´10-10

0. ´10-9 0. ´10-9 0. ´10-10 0. ´10-9 1. 0. ´10-10 0. ´10-9

0. ´10-9 0. ´10-10 0. ´10-9 0. ´10-10 0. ´10-10 1. 0. ´10-9

0. ´10-9 0. ´10-9 0. ´10-10 0. ´10-10 0. ´10-9 0. ´10-9 1.

0. ´10-9 0. ´10-10 0. ´10-10 0. ´10-9 0. ´10-9 0. ´10-9 0. ´10-9

0. ´10-10 0. ´10-10 0. ´10-9 0. ´10-9 0. ´10-9 0. ´10-9 0

0. ´10-9 0. ´10-9 0. ´10-9 0. ´10-9 0. ´10-9 0 0. ´10-9

0. ´10-9 0. ´10-9 0. ´10-9 0. ´10-9 0 0. ´10-9 0. ´10-9

0. ´10-9 0. ´10-9 0. ´10-9 0 0. ´10-9 0. ´10-9 0. ´10-9
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H* 5. Selection Rules of Transitions *L
ClearAll@"Global`*"D;
H* To hartree from joules *L
a = 1;

fi@nx_D :=

If@OddQ@nxD � True, Sqrt@2 �aD *Cos@nx *Pi *x �aD, Sqrt@2 �aD *Sin@nx *Pi *x �aDD;
n = 10;

ini = 1;

filas = Sum@n - i, 8i, 1, ini<D;
tabla = Table@0, 8i, filas<, 8j, 4<D;
m12 = H2 *Pi �3L *Integrate@fi@1D *x *fi@2D, 8x, -a �2, a �2<D �� N �� Chop;

contador = 1;

For@i = 1, i £ ini, i++,

For@f = i + 1, f £ n, f += 1,

as1 = H2 *Pi �3L *Integrate@fi@iD *x *fi@fD, 8x, -a �2, a �2<D �� N �� Chop;

as2 = Has1 �m12L^2;
tabla@@contador, 1DD = i;

tabla@@contador, 2DD = f;

tabla@@contador, 3DD = Abs@as1D;
tabla@@contador, 4DD = as2;

contador = contador + 1;

D;
D;

H* Integral values of <fi@iD*x*fi@fD> *L
TableFormAtabla,
TableHeadings ® 9None, 9"Est i", "Est f", "ÈΜnmÈ", "Μnm

2�Μ1,2
2"==, TableAlignments ® LeftE

Est i Est f ÈΜnmÈ Μnm
2�Μ1,2

2

1 2 0.377256 1.

1 3 0 0.

1 4 0.0301805 0.0064

1 5 0 0.

1 6 0.00831503 0.000485798

1 7 0 0.

1 8 0.00342182 0.0000822702

1 9 0 0.

1 10 0.00173212 0.0000210807
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H∗ 9. Nondegenerate Perturbation Theory Time −Independent applied

for an Asymmetric Potential applied in a Two −dimensional Box ∗L

ClearAll @"Global` ∗" D;

H∗ Rectangular box a ≠ b, to avoid accidental degeneracies ∗L
a = 1.0;

b = 1.2;

nn = 3;

H∗ Creating a list of complete set of functions ∗L
lista = 8<;

funlis = 8<;

H∗ Introducing functions of the system ∗L
For @i = 1, i ≤ nn, i ++,

For @j = 1, j ≤ nn, j ++,

lista = AppendTo @lista, 8i, j <D;

D;

D;

lon = Length @lista D;

fx @nx_ D : =

If @OddQ@nxD � True, Sqrt @2 ê aD ∗ Cos@nx ∗ Pi ∗ x ê aD, Sqrt @2 ê aD ∗ Sin @nx ∗ Pi ∗ x ê aDD;

fy @ny_ D : = If @OddQ@nyD � True, Sqrt @2 ê bD ∗ Cos@ny ∗ Pi ∗ y ê bD,

Sqrt @2 ê bD ∗ Sin @ny ∗ Pi ∗ y ê bDD;

fxy @nx_, ny_ D : = fx @nxD ∗ fy @nyD;

For @i = 1, i ≤ lon, i ++,

funlis = AppendTo @funlis, fxy @lista @@i, 1 DD, lista @@i, 2 DDDD;

D;

H∗ Introducing the big asymmetric potential ∗L
pot @x_, y_ D : = 4.15 ∗ Exp@−2.5 ∗ HHx + 0.2 L^2 + yLD;

H∗ Introducing the small asymmetric potential ∗L
H∗ pot @x_,y_ D: =0.15 ∗Exp@−2.5 ∗HHx+0.2 L^2+yLD; ∗L

H∗ The first and second energies corrections ∗L
ham@fxy_ D : = −H1 ê 2.0 L ∗ HD@fxy, 8x, 2 <D + D@fxy, 8y, 2 <DL;

E0@ii_ D : = ham@funlis @@ii DDD ê funlis @@ii DD êê FullSimplify êê Chop;

E1@ii_ D : = NIntegrate @Expand @funlis @@ii DD ∗ pot @x, y D ∗ funlis @@ii DDD,

8x, −a ê 2, 0, a ê 2<, 8y, −b ê 2, 0, b ê 2<, Method → "LocalAdaptive",

AccuracyGoal → 6, PrecisionGoal → 6D êê Chop;

tabla = Table @0, 8i, lon <, 8j, 6 <D;

For @i = 1, i ≤ lon, i ++,

E2@i D = 0;

For @j = 1, j ≤ lon, j ++,

If @E0@j D ≠ E0@i D,

as =

NIntegrate @funlis @@j DD ∗ pot @x, y D ∗ funlis @@i DD, 8x, −a ê 2, 0, a ê 2<, 8y, −b ê 2, 0,

b ê 2<, Method → "LocalAdaptive", AccuracyGoal → 6, PrecisionGoal → 6D êê Chop;

as1 = E0@i D − E0@j D;

E2@i D = E2@i D + as^2 ê as1 D;

D;

Etot @i D = E1@i D + E2@i D + E0@i D;



tabla @@i DD = 8lista @@i, 1 DD, lista @@i, 2 DD, E0 @i D, E1 @i D, E2 @i D, Etot @i D<;

D;

H∗ Output with the first and second energy corrections

and the total energy values of the perturbed functions ∗L
TableForm Atabla, TableAlignments → Left,

TableHeadings → 9None, 9"nx", "ny", "E H0L", "E H1L", "E H2L", "E" ==E

nx ny EH0L EH1L EH2L E

1 1 8.36175 4.07721 −0.494139 11.9448

1 2 18.6426 4.73674 0.0171189 23.3964

1 3 35.7773 4.88302 0.385524 41.0459

2 1 23.1662 3.78249 −0.35849 26.5902

2 2 33.447 4.39435 0.0228341 37.8642

2 3 50.5817 4.53005 0.321246 55.433

3 1 47.8402 3.74184 −0.360941 51.2211

3 2 58.121 4.34712 0.128402 62.5965

3 3 75.2557 4.48136 0.338445 80.0755

H∗ Graphic plot of the pontentual applied ∗L
Plot3D @pot @x, y D, 8x, −a ê 2, a ê 2<, 8y, −b ê 2, b ê 2<,

PlotRange → All, PlotStyle → Thickness @0.0045 D, Axes → 8False, False <,

AxesStyle → Directive @Black, Thickness @0.003 DD, Filling −> Axis, AspectRatio → 0.5 D
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H∗ Obtaining the First −Order Wave −

Functions Corrections to first perturbation order ∗L
nf = 5;

hij @i_, j_ D : = NIntegrate @funlis @@i DD ∗ pot @x, y D ∗ funlis @@j DD, 8x, −a ê 2, 0, a ê 2<,

8y, −b ê 2, 0, b ê 2<, AccuracyGoal → 4, PrecisionGoal → 6D êê Chop;

EE0@ii_ D : = ham@funlis @@ii DDD ê funlis @@ii DD êê FullSimplify êê Chop;

c@kk_, ii_ D : = hij @kk, ii D ê HEE0@kk D − EE0@ii DL;

For @k = 1, k ≤ nf, k ++,

li = k − 1; ls = k + 1;

fk = funlis @@kDD + Sum@c@k, i D ∗ funlis @@i DD, 8i, 1, li <D +

Sum@c@k, i D ∗ funlis @@i DD, 8i, ls, lon <D; cte =

1 ê NIntegrate @fk^2, 8x, −a ê 2, −a ê 4, 0, a ê 4, a ê 2<, 8y, −b ê 2, −b ê 4, 0, b ê 4, b ê 2<,

Method → "LocalAdaptive", AccuracyGoal → 6, PrecisionGoal → 6D;

fun @kD = Sqrt @cte D ∗ fk êê Expand êê Chop;

D;

H∗ Verifying non orthogonality of the perturbed functions ∗L
solap = Table @0, 8i, nf <, 8j, nf <D;

For @i = 1, i ≤ nf, i ++,

For @j = i, j ≤ nf, j ++,

solap @@i, j DD = NIntegrate @fun @i D ∗ fun @j D,

8x, −a ê 2, −a ê 4, 0, a ê 4, a ê 2<, 8y, −b ê 2, −b ê 4, 0, b ê 4, b ê 2<,

Method → "LocalAdaptive", AccuracyGoal → 6, PrecisionGoal → 5D êê Chop;

If @j ≠ i, solap @@j, i DD = solap @@i, j DDD;

D;

D;

MatrixForm @solap D

1. −0.00722722 0.0305527 0.0125515 −0.0142267

−0.00722722 1. −0.00348536 0.0193342 −0.0126473

0.0305527 −0.00348536 1. −0.0187825 −0.014968

0.0125515 0.0193342 −0.0187825 1. −0.00926794

−0.0142267 −0.0126473 −0.014968 −0.00926794 1.

For @i = 1, i ≤ lon − 1, i ++,

For @j = i + 1, j ≤ lon, j ++,

eni = Etot @i D; enj = Etot @j D; funi = fun @i D;

funj = fun @j D; lisi = lista @@i DD; lisj = lista @@j DD;

If @enj < eni, Etot @i D = enj; Etot @j D = eni; fun @i D = funj;

fun @j D = funi; lista @@i DD = lisj; lista @@j DD = lisi D;

D;

D;

For @i = 1, i ≤ nf, i ++,

Print @"nx =", lista @@i, 1 DD, " ny =", lista @@i, 2 DD,

" E@", lista @@i, 1 DD, ",", lista @@i, 2 DD, " D=", Etot @i DD;

D;

nx=1 ny=1 E@1,1D=11.9448

nx=1 ny=2 E@1,2D=23.3964

nx=2 ny=1 E@2,1D=26.5902

nx=2 ny=2 E@2,2D=37.8642

nx=1 ny=3 E@1,3D=41.0459
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H∗ Veryfying the asymmetric distributions

of charge density in the perturbed functions ∗L
For @i = 1, i ≤ nf, i ++,

Print @"Para fun ", lista @@i DD, ": ρ entre −aê2 y 0 = ",

NIntegrate @fun @i D^2, 8x, −a ê 2, a ê 2<, 8y, −b ê 2, 0 <D, " y ρ entre 0 y a ê2 = ",

NIntegrate @fun @i D^2, 8x, −a ê 2, a ê 2<, 8y, 0, b ê 2<DD;

D;

Para fun 81, 1<: ρ entre −aê2 y 0 = 0.334844 y ρ entre 0 y aê2 = 0.665156

Para fun 81, 2<: ρ entre −aê2 y 0 = 0.599735 y ρ entre 0 y aê2 = 0.400265

Para fun 82, 1<: ρ entre −aê2 y 0 = 0.348837 y ρ entre 0 y aê2 = 0.651163

Para fun 82, 2<: ρ entre −aê2 y 0 = 0.585107 y ρ entre 0 y aê2 = 0.414893

Para fun 81, 3<: ρ entre −aê2 y 0 = 0.56857 y ρ entre 0 y aê2 = 0.43143

H∗ Shape of the probabilities ∗L
Plot3D @81.0 ∗ pot @x, y D, Etot @1D + fun @1D,

Etot @2D + fun @2D, Etot @3D + fun @3D, Etot @4D + fun @4D<, 8x, −a ê 2, a ê 2<,

8y, −b ê 2, b ê 2<, PlotRange → All, BoxRatios → 81, 1, 4 <, Axes → False D

H∗ Other shapes of perturbed functions ∗L
For @i = 1, i ≤ nf, i ++,

Print @"Energia estado ", i, " = ", Etot @i DD Print @ContourPlot @fun @i D, 8x, −a ê 2, a ê 2<,

8y, −b ê 2, b ê 2<, AspectRatio → b ê a, BoundaryStyle → Directive @Red, Thick DDD
D;
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Energia estado 1 = 11.9448

Energia estado 2 = 23.3964

Energia estado 3 = 26.5902
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H∗ 11. Linear Variation Method for

an Asymmetric Potential applied in a Two −dimensional Box ∗L

ClearAll @"Global` ∗" D;

H∗ Dimensions of rectangular box and number of functions ∗L

a = 1.0;

b = 1.2;

nn = 3;

H∗ Creating a list of complete set of functions ∗L

lisfun = 8<;

H∗ Introducing the big asymmetric potential and

the corresponding wave functions for a two −dimensional box ∗L

pot @x_, y_ D : = 4.15 ∗ Exp@−2.5 ∗ HHx + 0.2 L^2 + yLD;

H∗ Introducing the small asymmetric potential and

the corresponding wave functions for a two −dimensional box ∗L

H∗ pot @x_,y_ D: =0.15 ∗Exp@−2.5 ∗HHx+0.2 L^2+yLD; ∗L

fx @nx_ D : =

If @OddQ@nxD � True, Sqrt @2 ê aD ∗ Cos@nx ∗ Pi ∗ x ê aD, Sqrt @2 ê aD ∗ Sin @nx ∗ Pi ∗ x ê aDD;

fy @ny_ D : = If @OddQ@nyD � True, Sqrt @2 ê bD ∗ Cos@ny ∗ Pi ∗ y ê bD,

Sqrt @2 ê bD ∗ Sin @ny ∗ Pi ∗ y ê bDD;

fxy @nx_, ny_ D : = fx @nxD ∗ fy @nyD;

ham@fun_ D : = −H1 ê 2.0 L ∗ HD@fun, 8x, 2 <D + D@fun, 8y, 2 <DL + pot @x, y D ∗ fun;

For @i = 1, i ≤ nn, i ++,

For @j = 1, j ≤ nn, j ++,

lisfun = AppendTo @lisfun, fxy @i, j DD;

D;

D;

H∗ Hamiltonian matrix ∗L

lon = Length @lisfun D;

mat = Table @0, 8i, lon <, 8j, lon <D;

For @i = 1, i ≤ lon, i ++,

For @j = i, j ≤ lon, j ++,

mat@@i, j DD = Integrate @

lisfun @@i DD ∗ ham@lisfun @@j DDD, 8x, −a ê 2, a ê 2<, 8y, −b ê 2, b ê 2<D êê Chop;

mat@@j, i DD = mat@@i, j DD;

D;

D;

H∗ Matrix diagonalization ∗L

ene = Eigenvalues @matD;

vec = Eigenvectors @matD;

For @i = 1, i ≤ lon − 1, i ++,

For @j = i + 1, j ≤ lon, j ++,

enei = ene@@i DD; enej = ene@@j DD;

veci = vec @@i DD; vecj = vec @@j DD;

If @enej < enei,

ene@@i DD = enej; ene @@j DD = enei;

vec @@i DD = vecj; vec @@j DD = veci;

D;

D;

D



D;

Print @" " D;

Print @"Potencial fondo caja" D;

H∗ Graphic plot of big asymmetric potential applied ∗L

Plot3D @pot @x, y D, 8x, −a ê 2, a ê 2<, 8y, −b ê 2, b ê 2<,

PlotRange → All, PlotStyle → Thickness @0.0045 D, Axes → 8True, False <,

AxesStyle → Directive @Black, Thickness @0.003 DD, Filling −> Axis, AspectRatio → 0.5 D

Print @" " D;

fun = vec.lisfun;

For @i = 1, i ≤ lon, i ++,

Print @"Energia estado ", i, " = ", ene @@i DDD

H∗Print @Plot3D @fun @@i DD, 8x, −aê2,a ê2<, 8y, −bê2,b ê2<DD;Print @ContourPlot @

fun @@i DD, 8x, −aê2,a ê2<, 8y, −bê2,b ê2<,BoundaryStyle →Directive @Red,Thick DDD;

Print @" " D; ∗L

D;

Potencial fondo caja

Energia estado 1 = 12.0119

Energia estado 2 = 23.3302

Energia estado 3 = 26.635

Energia estado 4 = 37.827

Energia estado 5 = 41.0245

Energia estado 6 = 51.2586

Energia estado 7 = 55.4439

Energia estado 8 = 62.5483

Energia estado 9 = 80.0881
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H∗ Verify the orthogonality of the first nf functions ∗L

nf = 5;

solap = Table @0, 8i, nf <, 8j, nf <D;

For @i = 1, i ≤ nf, i ++,

For @j = i, j ≤ nf, j ++,

solap @@i, j DD = NIntegrate @fun @@i DD ∗ fun @@j DD,

8x, −a ê 2, −a ê 4, 0, a ê 4, a ê 2<, 8y, −b ê 2, −b ê 4, 0, b ê 4, b ê 2<,

Method → "LocalAdaptive", AccuracyGoal → 6, PrecisionGoal → 5D êê Chop;

If @j ≠ i, solap @@j, i DD = solap @@i, j DDD;

D;

D;

MatrixForm @solap D

1. 0 0 0 0

0 1. 0 0 0

0 0 1. 0 0

0 0 0 1. 0

0 0 0 0 1.

H∗ Verify the big asymmetric distribution of charge density of the

variational functions as consequence big asymmetric poten tial applied ∗L

For @i = 1, i ≤ nf, i ++,

Print @"Para funcion ", i, ": ρ entre −aê2 y 0 = ",

NIntegrate @fun @@i DD^2, 8x, −a ê 2, a ê 2<, 8y, −b ê 2, 0 <D, " y ρ entre 0 y a ê2 = ",

NIntegrate @fun @@i DD^2, 8x, −a ê 2, a ê 2<, 8y, 0, b ê 2<DD;

D;

Para funcion 1: ρ entre −aê2 y 0 = 0.349907 y ρ entre 0 y aê2 = 0.650093

Para funcion 2: ρ entre −aê2 y 0 = 0.576004 y ρ entre 0 y aê2 = 0.423996

Para funcion 3: ρ entre −aê2 y 0 = 0.356809 y ρ entre 0 y aê2 = 0.643191

Para funcion 4: ρ entre −aê2 y 0 = 0.57351 y ρ entre 0 y aê2 = 0.42649

Para funcion 5: ρ entre −aê2 y 0 = 0.573431 y ρ entre 0 y aê2 = 0.426569
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H∗ Graphic plots of the variational functions ∗L

Plot3D @8ene@@1DD + fun @@1DD, ene @@2DD + fun @@2DD,

ene@@3DD + fun @@3DD, ene @@4DD + fun @@4DD<, 8x, −a ê 2, a ê 2<,

8y, −b ê 2, b ê 2<, PlotRange → All, BoxRatios → 82, 2, 4 <, Axes → False D

H∗ Graphic plots of the distorted variational functions

with the corresponding energy values of the states ∗L

For @i = 1, i ≤ nf, i ++,

Print @"Energia estado ", i, " = ", ene @@i DDD Print @ContourPlot @fun @@i DD,

8x, −a ê 2, a ê 2<, 8y, −b ê 2, b ê 2<, BoundaryStyle → Directive @Red, Thick DDD

D;
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Energia estado 1 = 12.0119

Energia estado 2 = 23.3302

Energia estado 3 = 26.635
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In[1]:=

H∗ 13. Nondegenerate Perturbation Theory Time

−Independent applied for a Symmetric Potential applied in a T wo−dimensional Box ∗L

ClearAll @"Global` ∗" D;

H∗ Rectangular box a ≠ b, to avoid accidental degeneracies ∗L
a = 1.0;

b = 1.2;

nn = 3;

H∗ Creating a list of complete set of functions ∗L
lista = 8<;

funlis = 8<;

H∗ Introducing functions of the system ∗L
For @i = 1, i ≤ nn, i ++,

For @j = 1, j ≤ nn, j ++,

lista = AppendTo @lista, 8i, j <D;

D;

D;

lon = Length @lista D;

fx @nx_ D : =

If @OddQ@nxD � True, Sqrt @2 ê aD ∗ Cos@nx ∗ Pi ∗ x ê aD, Sqrt @2 ê aD ∗ Sin @nx ∗ Pi ∗ x ê aDD;

fy @ny_ D : = If @OddQ@nyD � True, Sqrt @2 ê bD ∗ Cos@ny ∗ Pi ∗ y ê bD,

Sqrt @2 ê bD ∗ Sin @ny ∗ Pi ∗ y ê bDD;

fxy @nx_, ny_ D : = fx @nxD ∗ fy @nyD;

For @i = 1, i ≤ lon, i ++,

funlis = AppendTo @funlis, fxy @lista @@i, 1 DD, lista @@i, 2 DDDD;

D;

H∗ Vmin is the minimum value V0 so R will be greater than a ê2 ∗L
V0 = Input @"Introduce un valor de V0 menor que a ê2" D;

H∗ For a symmetric pontential regarding the centre of the box ∗L
R = HV0^2 + a^2 ê 4L ê H2 ∗ V0L;

pot @x_, y_ D : = R− Sqrt @R^2 − x^2 D;

H∗ Introducing the general equations of the system ∗L
ham@fxy_ D : = −H1 ê 2.0 L ∗ HD@fxy, 8x, 2 <D + D@fxy, 8y, 2 <DL;

E0@ii_ D : = ham@funlis @@ii DDD ê funlis @@ii DD êê FullSimplify êê Chop;

E1@ii_ D : = NIntegrate @Expand @funlis @@ii DD ∗ pot @x, y D ∗ funlis @@ii DDD,

8x, −a ê 2, 0, a ê 2<, 8y, −b ê 2, 0, b ê 2<, Method → "LocalAdaptive",

AccuracyGoal → 6, PrecisionGoal → 6D êê Chop;

tabla = Table @0, 8i, lon <, 8j, 6 <D;

H∗ The first and second correction energies ∗L
For @i = 1, i ≤ lon, i ++,

E2@i D = 0;

For @j = 1, j ≤ lon, j ++,

If @E0@j D ≠ E0@i D,

as =

NIntegrate @funlis @@j DD ∗ pot @x, y D ∗ funlis @@i DD, 8x, −a ê 2, 0, a ê 2<, 8y, −b ê 2, 0,

b ê 2<, Method → "LocalAdaptive", AccuracyGoal → 6, PrecisionGoal → 6D êê Chop;

as1 = E0@i D − E0@j D;

E2@i D = E2@i D + as^2 ê as1 D;

D



D;

Etot @i D = E1@i D + E2@i D + E0@i D;

tabla @@i DD = 8lista @@i, 1 DD, lista @@i, 2 DD, E0 @i D, E1 @i D, Chop @E2@i DD, Etot @i D<;

D;

TableForm Atabla, TableAlignments → Left,

TableHeadings → 9None, 9"nx", "ny", "E H0L", "E H1L", "E H2L", "E" ==E

Out[21]//TableForm=

nx ny E H0L EH1L EH2L E

1 1 8.36175 0.0361471 −0.0000503998 8.39784

1 2 18.6426 0.0361471 −0.0000503999 18.6787

1 3 35.7773 0.0361471 −0.0000503998 35.8134

2 1 23.1662 0.0807532 0 23.2469

2 2 33.447 0.0807533 0 33.5277

2 3 50.5817 0.0807532 0 50.6625

3 1 47.8402 0.092574 0.0000503998 47.9328

3 2 58.121 0.0925738 0.0000503999 58.2136

3 3 75.2557 0.0925738 0.0000503998 75.3484

In[22]:= Print @" " D;

Print @"Perturbación = ", pot @x, y DD;

H∗ Shape of the symmetric potential ∗L
Plot3D @pot @x, y D, 8x, −a ê 2, a ê 2<, 8y, −b ê 2, b ê 2<, PlotRange → All D

Perturbación = 0.5 − 0.25 − x2

Out[24]=
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In[25]:= H∗ Obtaining the First −Order Wave −

Functions Corrections to first perturbation order ∗L
nf = lon;

hij @i_, j_ D : = NIntegrate @funlis @@i DD ∗ pot @x, y D ∗ funlis @@j DD, 8x, −a ê 2, 0, a ê 2<,

8y, −b ê 2, 0, b ê 2<, AccuracyGoal → 4, PrecisionGoal → 6D êê Chop;

EE0@ii_ D : = ham@funlis @@ii DDD ê funlis @@ii DD êê FullSimplify êê Chop;

c@kk_, ii_ D : = hij @kk, ii D ê HEE0@kk D − EE0@ii DL;

For @k = 1, k ≤ nf, k ++,

li = k − 1; ls = k + 1;

fk = funlis @@kDD + Sum@c@k, i D ∗ funlis @@i DD, 8i, 1, li <D +

Sum@c@k, i D ∗ funlis @@i DD, 8i, ls, lon <D; cte =

1 ê NIntegrate @fk^2, 8x, −a ê 2, −a ê 4, 0, a ê 4, a ê 2<, 8y, −b ê 2, −b ê 4, 0, b ê 4, b ê 2<,

Method → "LocalAdaptive", AccuracyGoal → 6, PrecisionGoal → 6D;

fun @kD = Sqrt @cte D ∗ fk êê Expand êê Chop;

D;

H∗ Verifying orthogonality of the perturbed functions ∗L
solap = Table @0, 8i, lon <, 8j, lon <D;

For @i = 1, i ≤ nf, i ++,

For @j = i, j ≤ nf, j ++,

solap @@i, j DD = NIntegrate @fun @i D ∗ fun @j D,

8x, −a ê 2, −a ê 4, 0, a ê 4, a ê 2<, 8y, −b ê 2, −b ê 4, 0, b ê 4, b ê 2<,

Method → "LocalAdaptive", AccuracyGoal → 6, PrecisionGoal → 5D êê Chop;

If @j ≠ i, solap @@j, i DD = solap @@i, j DDD;

D;

D;

MatrixForm @solap D

Out[32]//MatrixForm=

1. 0 0 0 0 0 0 0 0

0 1. 0 0 0 0 0 0 0

0 0 1. 0 0 0 0 0 0

0 0 0 1. 0 0 0 0 0

0 0 0 0 1. 0 0 0 0

0 0 0 0 0 1. 0 0 0

0 0 0 0 0 0 1. 0 0

0 0 0 0 0 0 0 1. 0

0 0 0 0 0 0 0 0 1.

In[33]:= For @i = 1, i ≤ lon − 1, i ++,

For @j = i + 1, j ≤ lon, j ++,

eni = Etot @i D; enj = Etot @j D; funi = fun @i D;

funj = fun @j D; lisi = lista @@i DD; lisj = lista @@j DD;

If @enj < eni, Etot @i D = enj; Etot @j D = eni; fun @i D = funj;

fun @j D = funi; lista @@i DD = lisj; lista @@j DD = lisi D;

D;

D;

For @i = 1, i ≤ nf, i ++,

Print @"nx =", lista @@i, 1 DD, " ny =", lista @@i, 2 DD,

" E@", lista @@i, 1 DD, ",", lista @@i, 2 DD, " D=", Etot @i DD;

D;
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nx=1 ny =1 E@1,1 D=8.39784

nx=1 ny =2 E@1,2 D=18.6787

nx=2 ny =1 E@2,1 D=23.2469

nx=2 ny =2 E@2,2 D=33.5277

nx=1 ny =3 E@1,3 D=35.8134

nx=3 ny =1 E@3,1 D=47.9328

nx=2 ny =3 E@2,3 D=50.6625

nx=3 ny =2 E@3,2 D=58.2136

nx=3 ny =3 E@3,3 D=75.3484

In[35]:=

H∗ The shape of the probabilities of the perturbed

functions and the symmetric distribution of charge density ∗L
For @i = 1, i ≤ nf, i ++,

Print @"Para fun ", lista @@i DD, ": ρ entre −aê2 y 0 = ",

NIntegrate @fun @i D^2, 8x, −a ê 2, 0 <, 8y, −b ê 2, b ê 2<D, " y ρ entre 0 y a ê2 = ",

NIntegrate @fun @i D^2, 8x, 0, a ê 2<, 8y, −b ê 2, b ê 2<DD;

D;

Para fun 81, 1 <: ρ entre −aê2 y 0 = 0.5 y ρ entre 0 y a ê2 = 0.5

Para fun 81, 2 <: ρ entre −aê2 y 0 = 0.5 y ρ entre 0 y a ê2 = 0.5

Para fun 82, 1 <: ρ entre −aê2 y 0 = 0.5 y ρ entre 0 y a ê2 = 0.5

Para fun 82, 2 <: ρ entre −aê2 y 0 = 0.5 y ρ entre 0 y a ê2 = 0.5

Para fun 81, 3 <: ρ entre −aê2 y 0 = 0.5 y ρ entre 0 y a ê2 = 0.5

Para fun 83, 1 <: ρ entre −aê2 y 0 = 0.5 y ρ entre 0 y a ê2 = 0.5

Para fun 82, 3 <: ρ entre −aê2 y 0 = 0.5 y ρ entre 0 y a ê2 = 0.5

Para fun 83, 2 <: ρ entre −aê2 y 0 = 0.5 y ρ entre 0 y a ê2 = 0.5

Para fun 83, 3 <: ρ entre −aê2 y 0 = 0.5 y ρ entre 0 y a ê2 = 0.5
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In[36]:= Plot3D @83 ∗ fun @1D, Etot @2D + fun @2D, Etot @3D + fun @3D, Etot @4D + fun @4D<,

8x, −a ê 2, a ê 2<, 8y, −b ê 2, b ê 2<, BoxRatios → 82, 2, 5 <, Axes → False D

Out[36]=

In[37]:= H∗ Other shapes of perturbed functions ∗L
For @i = 1, i ≤ nf, i ++,

Print @"Energia estado ", i, " = ", Etot @i DD
Print @ContourPlot @fun @i D, 8x, −a ê 2, a ê 2<, 8y, −b ê 2, b ê 2<,

AspectRatio → b ê a, BoundaryStyle → Directive @Red, Thick DDD
D;
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Energia estado 1 = 8.39784

Energia estado 2 = 18.6787

Energia estado 3 = 23.2469
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H∗ 14. Linear Variation Method for

a Symmetric Potential applied in a Two −dimensional Box ∗L

ClearAll @"Global` ∗" D;

H∗ Dimensions of rectangular box and number of functions ∗L

a = 1.0;

b = 1.2;

nn = 3;

H∗ Creating a list of complete set of functions ∗L

lisfun = 8<;

H∗ Vmin is the minimum value of V0 so R will be greater than a ê2 ∗L

V0 = Input @"Introduce un valor de V0 menor que a ê2" D;

H∗ For a symmetric potential regarding to the centre of the box ∗L

R = HV0^2 + a^2 ê 4L ê H2 ∗ V0L;

pot @x_, y_ D : = R− Sqrt @R^2 − x^2 D;

H∗ Introducing the corresponding wave functions for a two

−dimensional box and the hamiltonian operator ∗L

fx @nx_ D : = If @OddQ@nxD � True, Sqrt @2 ê aD ∗ Cos@nx ∗ Pi ∗ x ê aD,

Sqrt @2 ê aD ∗ Sin @nx ∗ Pi ∗ x ê aDD;

fy @ny_ D : = If @OddQ@nyD � True, Sqrt @2 ê bD ∗ Cos@ny ∗ Pi ∗ y ê bD,

Sqrt @2 ê bD ∗ Sin @ny ∗ Pi ∗ y ê bDD;

fxy @nx_, ny_ D : = fx @nxD ∗ fy @nyD;

ham@fun_ D : = −H1 ê 2.0 L ∗ HD@fun, 8x, 2 <D + D@fun, 8y, 2 <DL + pot @x, y D ∗ fun;

For @i = 1, i ≤ nn, i ++,

For @j = 1, j ≤ nn, j ++,

lisfun = AppendTo @lisfun, fxy @i, j DD;

D;

D;

H∗ Hamiltonian matrix ∗L

lon = Length @lisfun D;

mat = Table @0, 8i, lon <, 8j, lon <D;

For @i = 1, i ≤ lon, i ++,

For @j = i, j ≤ lon, j ++,

mat@@i, j DD = NIntegrate @lisfun @@i DD ∗ ham@lisfun @@j DDD, 8x, −a ê 2, a ê 2<, 8y, −b ê 2,

b ê 2<, Method → "LocalAdaptive", AccuracyGoal → 6, PrecisionGoal → 6D êê Chop;

mat@@j, i DD = mat@@i, j DD;

D;

D;

H∗ Matrix diagonalization ∗L

ene = Eigenvalues @matD;

vec = Eigenvectors @matD;

For @i = 1, i ≤ lon − 1, i ++,

For @j = i + 1, j ≤ lon, j ++,



enei = ene@@i DD; enej = ene@@j DD;

veci = vec @@i DD; vecj = vec @@j DD;

If @enej < enei,

ene@@i DD = enej; ene @@j DD = enei;

vec @@i DD = vecj; vec @@j DD = veci;

D;

D;

D;

Print @" " D;

Print @"Potencial fondo caja" D;

H∗ Graphic plot of symmetric potential applied ∗L

Plot3D @pot @x, y D, 8x, −a ê 2, a ê 2<, 8y, −b ê 2, b ê 2<, PlotRange → All D

Print @" " D;

fun = vec.lisfun;

For @i = 1, i ≤ lon, i ++,

Print @"Energia estado ", i, " = ", ene @@i DDD

D;

Potencial fondo caja

Energia estado 1 = 8.39674

Energia estado 2 = 18.6776

Energia estado 3 = 23.2442

Energia estado 4 = 33.5251

Energia estado 5 = 35.8123

Energia estado 6 = 47.9294

Energia estado 7 = 50.6598

Energia estado 8 = 58.2102

Energia estado 9 = 75.345
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H∗ Verify the orthogonality of the first nf functions ∗L

nf = 5;

solap = Table @0, 8i, nf <, 8j, nf <D;

For @i = 1, i ≤ nf, i ++,

For @j = i, j ≤ nf, j ++,

solap @@i, j DD = NIntegrate @fun @@i DD ∗ fun @@j DD,

8x, −a ê 2, −a ê 4, 0, a ê 4, a ê 2<, 8y, −b ê 2, −b ê 4, 0, b ê 4, b ê 2<,

Method → "LocalAdaptive", AccuracyGoal → 6, PrecisionGoal → 5D êê Chop;

If @j ≠ i, solap @@j, i DD = solap @@i, j DDD;

D;

D;

MatrixForm @solap D

1. 0 0 0 0

0 1. 0 0 0

0 0 1. 0 0

0 0 0 1. 0

0 0 0 0 1.

H∗ Verify the symmetric distribution of charge density of the

variational functions as consequence symmetric potential applied ∗L

For @i = 1, i ≤ nf, i ++,

Print @"Para funcion ", i, ": ρ entre −aê2 y 0 = ",

NIntegrate @fun @@i DD^2, 8x, −a ê 2, a ê 2<, 8y, −b ê 2, 0 <D, " y ρ entre 0 y a ê2 = ",

NIntegrate @fun @@i DD^2, 8x, −a ê 2, a ê 2<, 8y, 0, b ê 2<DD;

D;

Para funcion 1: ρ entre −aê2 y 0 = 0.5 y ρ entre 0 y aê2 = 0.5

Para funcion 2: ρ entre −aê2 y 0 = 0.5 y ρ entre 0 y aê2 = 0.5

Para funcion 3: ρ entre −aê2 y 0 = 0.5 y ρ entre 0 y aê2 = 0.5

Para funcion 4: ρ entre −aê2 y 0 = 0.5 y ρ entre 0 y aê2 = 0.5

Para funcion 5: ρ entre −aê2 y 0 = 0.5 y ρ entre 0 y aê2 = 0.5
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H∗ Graphic plots of the variational functions without any dist orsion ∗L

Plot3D @8ene@@1DD + fun @@1DD, ene @@2DD + fun @@2DD, ene @@3DD + fun @@3DD, ene @@4DD + fun @@4DD<,

8x, −a ê 2, a ê 2<, 8y, −b ê 2, b ê 2<, PlotRange → All, BoxRatios → 82, 2, 4 <, Axes → False D

H∗ Graphic plots of the variational functions

with the corresponding energy values of the states ∗L

For @i = 1, i ≤ nf, i ++,

Print @"Energia estado ", i, " = ", ene @@i DDD Print @ContourPlot @fun @@i DD,

8x, −a ê 2, a ê 2<, 8y, −b ê 2, b ê 2<, BoundaryStyle → Directive @Red, Thick DDD

D;
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Energia estado 1 = 8.39674

Energia estado 2 = 18.6776

Energia estado 3 = 23.2442

Box_Rectang_Variational_Pot_Symmetric.nb   5
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