
DISJOINTNESS PRESERVING MAPS BETWEEN VECTOR-VALUED GROUP

ALGEBRAS

MALIHEH HOSSEINI AND JUAN J. FONT

Abstract. Let G be a locally compact abelian group and B be a commutative Banach algebra.

Let L1(G,B) be the Banach algebra of B-valued Bochner integrable functions on G. In this paper

we provide a complete description of continuous disjointness preserving maps on L1(G,B)-algebras

based on a scarcely used tool: the vector-valued Fourier transform. We also present necessary and

sufficient conditions for these operators to be compact.

1. Introduction

Linear maps between Banach algebras, Banach lattices, or Banach spaces preserving certain

properties have been of a considerable interest for many years. The most classical question concerns

isometries, although more recently, maps that preserve spectrum, spectral radius, commutativity,

normal elements, self-adjoint elements, nilpotents, idempotents, linear rank, disjointness of cozeroes,

or other properties have been intensely investigated.

Among them, maps that preserve the disjointness of cozeroes defined between spaces of scalar-

valued continuous functions on locally compact and compact spaces, as a generalization of the

concept of homomorphism, have a long history in functional analysis in the context of rings, algebras,

or vector lattices under several names such as Lamperti operators, separating maps, disjointness

preserving operators, etc. (see, for example, [1, 2, 3, 4, 5, 7, 8, 13, 16]). In recent years, certain

attention has been given to such maps when defined on spaces of vector-valued continuous functions

(see, e.g., [10, 14]). However, we do not know much about disjointness preserving maps on vector-

valued settings in comparison with scalar-valued contexts and something similar can be said with

regard to (algebra) homomorphisms between vector-valued group algebras.

In this paper we focus on the study of disjointness preserving maps defined between vector-valued

group algebras. Banach algebras of vector-valued functions date back to the early moments of the

theory of Banach algebras and play a natural role in functional analysis. Among them, spaces of
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vector-valued continuous functions and vector-valued group algebras are perhaps the most studied

ones. Homomorphisms of algebras ([11]) and multipliers ([22]) on group algebras of vector-valued

functions are examples of disjointness preserving maps. Here we provide a weighted composition

representation of continuous disjointness preserving maps on vector-valued group algebras and a

characterization of compact disjointness preserving maps on the same context. Let us recall that the

study of continuous disjointness preserving maps on vector-valued function spaces and the compact-

ness dates back to [15], where Jamison and Rajagopalan described continuous disjointness preserving

maps on the Banach space C(X,E) of all continuous functions from a compact space X into a Ba-

nach space E, and gave criteria of compactness for these maps. Shortly after, in [6], the results of

[15] were extended to C0(X,E) for locally compact X. It is worth mentioning that our results are

based on the vector-valued Fourier transform, a scarcely used tool in the literature, which acts as

a ”vector-valued Gelfand transform”. This technique contrasts with the one used in most previous

papers dealing with algebras of vector-valued functions which are based on the scalar-valued Gelfand

transform (see e.g., [14] and the references therein).

2. Preliminaries

Let G be a locally compact abelian group with the Haar measure m and B be a commutative

Banach algebra.

Let L1(G,B) be the Bochner algebra of G, i.e., the commutative Banach algebra of integrable

functions from G to B endowed with the convolution product

(f ∗ g)(t) =

∫
G

f(t− s) · g(s)dm(s)

for all f, g ∈ L1(G,B), t ∈ G, and the norm

||f ||1 =

∫
G

||f(t)||dm(t)

for all f ∈ L1(G,B). We shall write L1(G) if B is chosen as the complex numbers. Next we provide

the main properties of L1(G,B) and L1(G), which can be found, basically, in [17, Section 4.13] and

[20, Chapter 2].

Let Ĝ be the dual group of G. Given f ∈ L1(G,B), its vector-valued Fourier transform is defined

as

f̂(γ) :=

∫
G

f(t) · γ(−t)dm(t)

for a given γ ∈ Ĝ.

Let A(Ĝ, B) be the vector-valued Fourier algebra associated to L1(G,B), that is,

A(Ĝ, B) := {f̂ : f ∈ L1(G,B)}.
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Let us recall that C0(Ĝ, B) is the Banach space of all continuousB-valued functions on Ĝ vanishing

at infinity. It is known that A(Ĝ, B) ⊂ C0(Ĝ, B) separates the points of Ĝ, and that ||f̂ ||∞ ≤ ||f ||1,

that is, the Fourier transform, considered as a map from L1(G,B) into C0(Ĝ, B), is a continuous

linear injection. Besides,

(1) f = 0 if and only if f̂ ≡ 0 (Uniqueness Principle).

(2) If f ∈ L1(G,B) (or L1(G)) and g ∈ L1(G,B), then f ∗ g ∈ L1(G,B) and f̂ ∗ g = f̂ ĝ.

Let f, g ∈ L1(G) and b1, b2 ∈ B. Let us recall that the tensor product of f and b1 is defined as

(f ⊗ b1)(γ) := f(γ)b1 for all γ ∈ G. Here we present some properties of the tensor product:

(1) f ⊗ b1 ∈ L1(G,B) and ||f ⊗ b1||1 = ||f ||1||b1||.

(2) f̂ ⊗ b1(γ) = (f̂ b1)(γ) = f̂(γ)b1.

(3) (f ⊗ b1) ∗ (g ⊗ b2) = (f ∗ g)⊗ b1b2.

A classical result of Grothendieck asserts that L1(G,B) is isometrically isomorphic to the projec-

tive tensor product L1(G)⊗̂B of L1(G) and B. Namely, we can identify

L1(G,B) =

{ ∞∑
i=1

fi ⊗ bi : fi ∈ L1(G), bi ∈ B,
∞∑
i=1

‖fi‖1‖bi‖ <∞

}
.

3. Disjointness preserving maps on vector-valued group algebras

For i = 1, 2, let Gi be locally compact abelian groups and Bi be commutative Banach algebras.

Definition 3.1. Let T : L1(G1, B1) −→ L1(G2, B2) be a linear mapping. It is said that T is zero

product preserving if Tf ∗ Tg = 0 whenever f ∗ g = 0 for every f, g ∈ L1(G1, B1).

Associated to a zero product preserving mapping T we can define a mapping T̂ : A(Ĝ1, B1) −→

A(Ĝ2, B2) defined as T̂ f̂ := T̂ f for all f ∈ L1(G1, B1). It is apparent, due to the Uniqueness

Principle, that T̂ is zero product preserving if and only if so is T .

Definition 3.2. Let T : L1(G1, B1) −→ L1(G2, B2) be a linear mapping. It is said that T is

separating or disjointness preserving if coz(f̂) ∩ coz(ĝ) = ∅ yields coz(T̂ f̂) ∩ coz(T̂ ĝ) = ∅ for every

f, g ∈ L1(G1, B1). If T is a separating bijection whose inverse is also separating, then it is said to

be biseparating.

Unless otherwise specified, in the sequel T : L1(G1, B1) −→ L1(G2, B2) will stand for a disjoint-

ness preserving map.

It is apparent that, unlike the scalar case, in this vector valued setting, preserving zero products

and preserving disjointness of cozeros are different concepts. However if we, for instance, assume

that B1 and B2 are integral domains (i.e., they have no divisors of zero), then both concepts agree.
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Definition 3.3. Let Ĝ20 := {ξ ∈ Ĝ2 : T̂ f̂(ξ) 6= 0 for some f ∈ L1(G1, B1)}. A point γ ∈ Ĝ1 ∪ {∞}

is said to be a support point for ξ ∈ Ĝ20 if for any neighborhood U of γ, there is f ∈ L1(G1, B1)

with coz(f̂) ⊂ U and T̂ f̂(ξ) 6= 0.

Let us remark that if T is onto, then Ĝ20 = Ĝ2.

Lemma 3.4. Given ξ ∈ Ĝ20, there exists a unique support point for ξ in Ĝ1 ∪ {∞}.

Proof. Suppose, contrary to what we claim, that there is no support point for a certain ξ ∈ Ĝ20,

that is, for every γ ∈ Ĝ1 ∪ {∞}, there exists a neighborhood U such that if f ∈ L1(G1, B1) and

coz(f̂) ⊂ U , then T̂ f̂(ξ) = 0. Since such neighborhoods form a cover of the compact Ĝ1 ∪ {∞},

there exists a finite subcover, say {U1, ..., Un}. By [9, Lemma 1], we can find {f1, ..., fn} ⊂ L1(G1)

such that coz(f̂i) ⊂ Ui for i = 1, ..., n and
∑n
i=1 f̂i = 1. Hence, given any f ∈ L1(G1, B1), we have

f̂ =
∑n
i=1 f̂ f̂i and T̂ (f̂if̂)(ξ) = 0 for i = 1, ..., n. Therefore, T̂ f̂(ξ) = 0 for all f ∈ L1(G1, B1), which

contradicts the fact that ξ ∈ Ĝ20.

Let us suppose that γ1 and γ2 are two distinct support points for ξ ∈ Ĝ20. Let V1 and V2 be

disjoint neighborhoods of γ1 and γ2, respectively. Then there exists f1, g1 ∈ L1(G1, B1) such that

coz(f̂1) ⊂ V1 and coz(f̂2) ⊂ V2, with T̂ f̂1(ξ) 6= 0 and T̂ f̂2(ξ) 6= 0, which contradicts the disjointness

preserving property of T̂ . �

Lemma 3.4 enables us to define a map h : Ĝ20 −→ Ĝ1 ∪ {∞} which sends any ξ ∈ Ĝ20 to its

support point.

Proposition 3.5. The map h : Ĝ20 −→ Ĝ1 ∪ {∞} is continuous.

Proof. Let (ξd) be a net in Ĝ20 converging to some ξ0 ∈ Ĝ20. Let (h(ξd′)) be a subnet of (h(ξd))

which converges to some γ0 in the compact space Ĝ1∪{∞}. Suppose, contrary to what we claim, that

h(ξ0) 6= γ0. Let U and V be disjoint neighborhoods of h(ξ0) and γ0, respectively. Then there exists

f ∈ L1(G1, B1) such that T̂ f̂(ξ0) 6= 0 and coz(f̂) ⊂ U . On the other hand, as T̂ f̂ is a continuous

function, there must exist an index d0 such T̂ f̂(ξd0) 6= 0 and h(ξd0) ∈ V . Let g ∈ L1(G1, B1)

such that T̂ ĝ(ξd0) 6= 0 and coz(ĝ) ⊂ V . Consequently, coz(f̂) ∩ coz(ĝ) = ∅, but T̂ f̂(ξd0) 6= 0 and

T̂ ĝ(ξd0) 6= 0, which contradicts the disjointness preserving property of T̂ . �

Proposition 3.6. Let U be an open subset of Ĝ1 ∪ {∞} and let f ∈ L1(G1, B1). If f̂ |U ≡ 0, then

T̂ f̂ |h−1(U) ≡ 0.

Proof. Assume that f̂ vanishes on an open subset U of Ĝ1∪{∞}. If we take ξ ∈ h−1(U), then there

exists f ′ ∈ L1(G1, B1) with coz(f̂ ′) ⊂ U and T̂ f̂ ′(ξ) 6= 0. Since coz(f̂) ∩ coz(f̂ ′) = ∅, we infer that

T̂ f̂(ξ) = 0. �
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The following example, adapted from [10], shows that, in the vector-valued setting, unlike in the

complex-valued case ([9]), the automatic continuity of T cannot be obtained from its disjointness

preserving property, even if T is a biseparating bijection.

Example 3.7. Let G be a trivial group consisting only of an identity element and let c0 be the

Banach algebra of all sequences which converge to zero. Then it is apparent that A(Ĝ, c0) = C(Ĝ, c0).

Let en := (0, ..., 0, 1, 0, ...) ∈ c0 and define a linear functional φ on c0 such that φ(en) = n, and a

linear bijection Φ : c0 −→ c0 defined as Φ(α1, α2, ...) := (α1 + φ(α1, α2, ...), α2, ...). It is apparent

that both are unbounded. Hence, if ξ stands for the only element in Ĝ, then we can define an

unbounded biseparating bijection T̂ : C(Ĝ, c0) −→ C(Ĝ, c0) as T̂ f̂(ξ) = Φ[f̂(ξ)] for all f̂ ∈ C(Ĝ, c0).

Proposition 3.8. Assume that the disjointness preserving map T is continuous and ξ0 ∈ Ĝ20. Then

h(ξ0) ∈ Ĝ1 and T̂ f̂(ξ0) = 0 for all f ∈ L1(G1, B1) with f̂(h(ξ0)) = 0.

Proof. Assume, contrary to what we claim, that h(ξ0) = ∞. We first show that T̂ (f̂0b)(ξ0) = 0 for

any f0 ⊗ b ∈ L1(G1)⊗B1. By [12, 33.13], we know that L1(G1) is Tauberian, that is, the set {f ∈

L1(G1) : f̂ has compact support} is a dense ideal in L1(G1). Hence, given any f0⊗ b ∈ L1(G1, B1),

there exists a sequence of functions (fn) ⊂ L1(G1) whose Fourier transforms have compact support

such that (fn ⊗ b) converges to f0 ⊗ b. For every n ∈ N, we know that f̂nb vanishes on a certain

neighborhood of ∞. Hence, by Proposition 3.6, we have T̂ (f̂nb)(ξ0) = 0 for every n ∈ N. Meantime,

from the continuity of T we get

‖T̂ (f̂nb)− T̂ (f̂0b)‖∞ ≤ ‖T (fn ⊗ b)− T (f0 ⊗ b)‖1 −→ 0,

which shows that T̂ (f̂0b)(ξ0) = lim
n→∞

T̂ (f̂nb)(ξ0) = 0. Now for arbitrary f ∈ L1(G1, B1), as mentioned

in Section 2, we have f =
∑∞
i=1 gi⊗ bi, where gi ∈ L1(G1), bi ∈ B1 and

∑∞
i=1 ‖gi‖1‖bi‖ <∞. Thus,

similarly, from the continuity of T we conclude that T̂ f̂(ξ0) =
∑∞
i=1 T̂ (ĝibi)(ξ0) = 0. Therefore we

have T̂ f̂(ξ0) = 0 for all f ∈ L1(G1, B1), which is a contradiction showing that h(ξ0) 6=∞.

Now we prove that T̂ f̂(ξ0) = 0 for any f ∈ L1(G1, B1) with f̂(h(ξ0)) = 0. As above, it is enough

to consider the functions of the form f1 ⊗ b1 in the algebraic tensor product L1(G1)⊗B1. Assume,

contrary to what we claim, that there exists f0 ⊗ b ∈ L1(G1, B1) such that (f̂0b)(h(ξ0)) = 0 and

T̂ (f̂0b)(ξ0) 6= 0. From [20, Theorem 2.6.3], we can find, for each n ∈ N, a function kn in L1(G1) such

that

(1) k̂n ≡ 1 on a neighborhood Vn of h(ξ0),

(2) ||k̂nf̂0||∞ ≤ ||kn ∗ f0||1 < 1/n2.

Next we can define g0 :=
∑∞
n=1((kn ∗ f0) ⊗ b). Since ||(kn ∗ f0) ⊗ b||1 < ||b||/n2 for every n ∈ N,

we infer that g0 belongs to the Banach algebra L1(G1, B1). Furthermore, since k̂nf̂0b ≡ f̂0b on
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Vn, which is a neighborhood of h(ξ0), by Proposition 3.6 and the additivity of T̂ , we deduce that

T̂ (k̂nf̂0b)(ξ0) = T̂ (f̂0b)(ξ0). As a consequence, from the continuity of T it follows that

||T̂ ĝ0(ξ0)|| =

∥∥∥∥∥T̂
( ∞∑
n=1

k̂nf̂0b

)
(ξ0)

∥∥∥∥∥ =

∥∥∥∥∥
∞∑
n=1

T̂ (f̂0b)(ξ0)

∥∥∥∥∥ =∞,

which is a contradiction.

�

Definition 3.9. Given ξ ∈ Ĝ20, let wξ : B1 −→ B2 be defined as wξ(b) := T̂ (êb)(ξ) where e ∈ L1(G1)

and ê ≡ 1 on a certain neighborhood of h(ξ). Furthermore, for any ξ ∈ Ĝ2 \ Ĝ20, we define wξ ≡ 0.

We remark that by [20, Theorem 2.6.2], we can always find such function e and by Proposition

3.6, we infer that the definition of wξ does not depend on the choice of such e. So we can define the

function w by w(ξ) = wξ, and we will see in the next result that wξ belongs to the space L(B1, B2)

of continuous linear operators of B1 into B2 with the strong operator topology.

Meantime, we extend h from Ĝ20 to Ĝ2, which we keep denoting by h, by assigning to ξ, for each

ξ ∈ Ĝ2 \ Ĝ20, an arbitrary point in Ĝ1.

Theorem 3.10. Let T : L1(G1, B1) −→ L1(G2, B2) be a continuous disjointness preserving map.

Then, there exist maps h : Ĝ2 −→ Ĝ1 and w : Ĝ2 −→ L(B1, B2) such that for any ξ ∈ Ĝ2 and any

f ∈ L1(G1, B1), we have

T̂ f̂(ξ) = wξ[f̂(h(ξ))].

Moreover, w and h are continuous on Ĝ20.

Proof. Let h and w be defined as above. We claim that, for each ξ ∈ Ĝ20, the linear map wξ is

continuous, indeed, wξ ∈ L(B1, B2). To this end, let e ∈ L1(G) such that ê(h(ξ)) = 1 and ||e||1 < 2

(see [20, Theorem 2.6.3]). Then, if b ∈ B1, we have ||wξ(b)|| = ||wξ[(êb)(h(ξ))]|| = ||T̂ (êb)(ξ)|| ≤

||T̂ (êb)||∞ ≤ ||T (e ⊗ b)||1 ≤ ||T ||||e ⊗ b||1 ≤ 2||T ||||b|| thanks to the boundedness of T . Hence,

||wξ|| ≤ 2||T || for every ξ ∈ Ĝ20.

We now obtain the representation of T̂ . Assume first that ξ ∈ Ĝ20. Choose e ∈ L1(G) such

that ê ≡ 1 on a certain neighborhood of h(ξ) and let f ∈ L1(G1). Since ((f̂ − f̂(h(ξ))ê)b)(h(ξ)) =

(f̂ b − f̂(h(ξ))êb)(h(ξ)) = 0, we deduce, by Proposition 3.8, that T̂ ((f̂ − f̂(h(ξ))ê)b)(ξ) = 0. Hence

T̂ (f̂ b)(ξ) = T̂ (f̂(h(ξ))êb)(ξ) = wξ[(f̂ b)(h(ξ))].

Given f ∈ L1(G1, B1), we know, as mentioned in Section 2, that f =
∑∞
i=1 fi ⊗ bi, where each

fi ∈ L1(G1), each bi ∈ B1 and
∑∞
i=1 ‖fi‖1‖bi‖ <∞. Hence, for any ξ ∈ Ĝ20, from the continuity of
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T , wξ and the Fourier transform and also the above argument, we have

T̂ f̂(ξ) = T̂

( ∞∑
i=1

f̂ibi

)
(ξ) =

∞∑
i=1

T̂ (f̂ibi)(ξ)

=

∞∑
i=1

wξ[(f̂ibi)(h(ξ))] = wξ

[ ∞∑
i=1

(f̂ibi)(h(ξ))

]
= wξ[f̂(h(ξ))].

If we assume that ξ ∈ Ĝ2 \ Ĝ20, then it is clear that T̂ f̂(ξ) = 0 = wξ[f̂(h(ξ))].

Finally, to show the continuity of w, let (ξα) be a net in Ĝ20 converging to ξ0 ∈ Ĝ20. Choose

e ∈ L1(G1) such that ê ≡ 1 on a neighborhood V of h(ξ0), by [20, Theorem 2.6.2]. Since h is

continuous on Ĝ20 by Proposition 3.5, we can assume, without loss of generality, that for each α,

h(ξα) ∈ V . Hence, for each b ∈ B1, from the continuity of T̂ (êb) it follows that

wξα(b) = T̂ (êb)(ξα) −→ T̂ (êb)(ξ0) = wξ0(b),

which shows that wξα −→ wξ0 is continuous strongly. Hence w is continuous on Ĝ20. �

It is worth mentioning that if G2 is discrete, or equivalently, Ĝ2 is compact, then w is continuous

on Ĝ2. Indeed, in this case we have wξ(b) = T̂ (b)(ξ) for all ξ ∈ Ĝ2 and b ∈ B1, which easily yields

the continuity of w on Ĝ2.

As a corollary of the above theorem, we show that continuous disjointness preserving maps T :

L1(G1, B1) −→ B2 can be written as the composition of a linear map and an algebra homomorphism.

Corollary 3.11. Let T : L1(G1, B1) −→ B2 be a continuous disjointness preserving map. Then

T = W ◦ H, where W : B1 −→ B2 is a linear map and H : L1(G1, B1) −→ B1 is an algebra

homomorphism.

Proof. We assume, without loss of generality, that T 6= 0. We can identify B2 with L1({g}, B2) for

a certain singleton {g}. By Theorem 3.10, we know that T̂ f̂ = wg(f̂(h(g))) for any f ∈ L1(G1, B1).

Let us define a homomorphism H : L1(G1, B1) −→ B1 as follows: H(f) = f̂(h(g))). It is clear that

ker(H) ⊆ ker(T ).

Take an element b1 in the range of H, that is, there exists f1 ∈ L1(G1, B1) such that H(f1) = b1.

Define w1(b1) := T (f1), which is well defined and linear since ker(H) ⊆ ker(T ). Hence w1 is a linear

map defined from the range of H into B2 such that T = w1 ◦H. Such w1 can be extended to a linear

map W which coincides with w1 on the range of H, vanishes on its complement and T = W ◦H.

�
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Theorem 3.12. Let T : L1(G1, B1) −→ L1(G2, B2) be a continuous biseparating map. Then, there

exist a homeomorphism h : Ĝ2 −→ Ĝ1 and a continuous function w : Ĝ2 −→ L(B1, B2) such that

for any ξ ∈ Ĝ2 and any f ∈ L1(G1, B1), we have

T̂ f̂(ξ) = wξ[f̂(h(ξ))].

Moreover, for each ξ ∈ Ĝ2, wξ is a bijective homeomorphism and especially, B1 and B2 are isomor-

phic as vector spaces.

Proof. Since T is onto, then it is clear that Ĝ20 = Ĝ2. Furthermore, by Theorem 3.10, there exist

continuous maps h : Ĝ2 −→ Ĝ1 and w : Ĝ2 −→ L(B1, B2) such that T̂ f̂(ξ) = wξ[f̂(h(ξ))] for all

ξ ∈ Ĝ2 and f ∈ L1(G1, B1).

From the Open Mapping theorem we deduce that T−1 is continuous. Then for the continuous

disjointness preserving map T−1, there exist two continuous maps h′ : Ĝ1 −→ Ĝ2 and w′ : Ĝ1 −→

L(B2, B1) defined similarly as h and w for T such that T̂−1ĝ(ζ) = w′ζ [ĝ(h′(ζ))] for all ζ ∈ Ĝ1 and

g ∈ L1(G2, B2), by Theorem 3.10.

We claim that h−1 = h′. To see this, we first show that for each ξ ∈ Ĝ2, h′(h(ξ)) = ξ. Suppose,

on the contrary, that ξ ∈ Ĝ2 and h′(h(ξ)) 6= ξ. Since A(Ĝ2, B2) separates the points of Ĝ2, there

is g ∈ L1(G2, B2) such that ĝ(h′(h(ξ))) = 0 and ĝ(ξ) 6= 0. From the representation of T̂−1 it

follows that T̂−1ĝ(h(ξ)) = 0. Then ĝ(ξ) = 0 by the representation of T̂ , a contradiction which yields

h′(h(ξ)) = ξ. Similarly, h(h′(ζ)) = ζ for all ζ ∈ Ĝ1. Therefore, h−1 = h′ which shows that h is a

homeomorphism.

We next prove that, for each ξ ∈ Ĝ2, wξ is bijective. For this purpose, let b ∈ B2 \ {0}, and

choose g ∈ L1(G2, B2) such that ĝ(ξ) = b. Then we have

b = T̂ (T̂−1ĝ)(ξ) = wξ[(T̂
−1ĝ)(h(ξ))]

= wξ[w
′
h(ξ)(ĝ(ξ))] = wξ(w

′
h(ξ)(b)),

and consequently, b = wξ(w
′
h(ξ)(b)). Thus wξ ◦ w′h(ξ) is the identity operator on B2. Similarly, one

can see that w′h(ξ)◦wξ is the identity operator on B1. Therefore, wξ is a bijective map and so B1 and

B2 are isomorphic as vector spaces. Moreover, by the Open Mapping theorem, w−1ξ is continuous,

i.e., wξ is a homeomorphism. �

4. Compact disjointness preserving maps on vector-valued group algebras

First let us state, adapted to our context, a vector-valued version of the Arzela-Ascoli theorem

([21, Theorem 2.1]):

Theorem 4.1. A subset H of C0(Ĝ, B) is relatively compact (or precompact) if and only if
8



(1) H is equicontinuous, that is, for every ξ1 ∈ Ĝ and every net {ξα} in Ĝ converging to ξ1,

lim
α

sup
f∈H
{||f(ξα)− f(ξ1)||} = 0.

(2) H(ξ) := {f(ξ) : f ∈ H} is precompact in B for every ξ ∈ Ĝ.

(3) For every ε > 0, there exists a compact subset K of Ĝ such that ||f(ξ)|| < ε for all f ∈ H

and all ξ ∈ Ĝ \K.

We will say that T is compact if T̂ transforms bounded sets into relatively compact ones. Let wξ,

Ĝ20, h and w be defined as in the previous results. Then we can obtain the following characterization

of compact continuous disjointness preserving maps:

Theorem 4.2. Let T : L1(G1, B1) −→ L1(G2, B2) be a continuous disjointness preserving map.

Then T is compact if and only if

(1) wξ is compact for every ξ ∈ Ĝ20.

(2) h is locally constant on Ĝ20.

(3) For every ε > 0, there exists a compact subset K of Ĝ2 such that ||wξ(f̂(h(ξ)))|| < ε for

all f ∈ L1(G1, B1) with ||f ||1 ≤ 1 and all ξ ∈ Ĝ2 \ K. Equivalently, the map ξ −→ ‖wξ‖

vanishes at infinity.

(4) The map w : Ĝ2 −→ L(B1, B2) is continuous when L(B1, B2) is equipped with the operator

norm topology.

Proof. For the necessity, assume that T is compact. Fix ξ ∈ Ĝ20 and let {bn} be a sequence in

{b ∈ B1 : ||b|| ≤ 1}. Let f ∈ L1(G1) such that f̂ ≡ 1 on a certain neighborhood of h(ξ) with

||f ||1 < 2 ([20, Theorem 2.6.3]), and define fn := f ⊗ bn. It is apparent that {f̂n} is a bounded

sequence. Since T is compact, {T̂ (f̂n)} is relatively compact. Hence by Theorems 3.10 and 4.1, we

deduce that {T̂ (f̂n)(ξ)} = {wξ(f̂n(h(ξ)))} = {wξ(bn)} is relatively compact.

Assume, contrary to what we claim, that there exists ξ0 ∈ Ĝ20 such that h is not constant on

any open neighborhood U of ξ0. If we direct a neighborhood base at ξ0 by inclusion, there exists a

net {h(ξU )} in Ĝ20 converging to ξ0 and such that h(ξU ) 6= h(ξ0) for all U . By [20, Theorem 2.6.3]

we can find, for each U , fU ∈ L1(G1) with ||fU ||1 < 2, f̂U (h(ξ0)) = 1 and f̂U (h(ξU )) = 0. Choose

b ∈ B1 such that wξ0(b) 6= 0 and let A = {fU ⊗ b}U . It is clear that Â is bounded and, hence, T̂ (Â)

is relatively compact. Consequently, by Theorem 4.1, T̂ (Â) is equicontinuous, but, for each U , we

have

||T̂ (f̂Ub)(ξU )− T̂ (f̂Ub)(ξ0)|| = ||wξ0(b)|| > 0,

a contradiction.
9



Let B = {f ∈ L1(G1, B1) : ||f ||1 ≤ 1}. Since B is bounded and the Fourier transform is

continuous, B̂ is also bounded. Now from the compactness of T̂ , we infer that T̂ (B̂) is relatively

compact in C0(Ĝ2, B2). By Theorem 4.1, we know that for every ε > 0, there exists a compact

subset K of Ĝ2 such that ||T̂ f̂(ξ)|| = ||wξ(f̂(h(ξ)))|| < ε for all f ∈ B and ξ ∈ Ĝ2 \K.

Now if ξ ∈ Ĝ2 \K and b ∈ B1 with ‖b‖ = 1, then by considering f = g ⊗ b, where g is a function

in L1(G1) with ‖g‖1 ≤ 2 and ĝ(h(ξ)) = 1 ([20, Theorem 2.6.3]), from the previous paragraph it

follows that

‖wξ(b)‖ = ‖wξ(ĝ(h(ξ))b)‖ = ‖T̂ ĝ(ξ)‖ < 2ε,

and consequently, ‖wξ‖ ≤ 2ε. Hence the map ξ −→ ‖wξ‖ vanishes at infinity.

Next, we apply arguments similar to those in [15, Theorem 2] to show that condition (4) is valid.

Contrary to what we claim, we assume that w is not continuous at ξ0 ∈ Ĝ2. Hence there exists ε > 0

such that for each compact neighborhood V of ξ0 in Ĝ2, we can find ξV ∈ V with ‖wξV −wξ0‖ ≥ ε.

Consequently, there is a net {eV }V in B1 with ‖eV ‖ = 1 and ‖wξV (eV )−wξ0(eV )‖ ≥ ε. Furthermore

for each compact neighborhood V of ξ0 in Ĝ2, we can choose gV ∈ L1(G1, B1) such that ĝV (h(ξV )) =

ĝV (h(ξ0)) = eV and ‖gV ‖1 ≤ 2 ([20, Theorem 2.6.3]). Then from the representation of T̂ , it follows

that

T̂ (ĝV )(ξV ) = wξV (eV ) and T̂ (ĝV )(ξ0) = wξ0(eV ).

Since T is compact, there is a subnet of {ĝV }V , which we keep denoting by {ĝV }V , and a function

f in L1(G2, B2) such that ‖T̂ (ĝV )− f̂‖∞ −→ 0. Hence we have

‖T̂ (ĝV )(ξV )− T̂ (ĝV )(ξ0)‖ ≤ ‖T̂ (ĝV )(ξV )− f̂(ξV )‖+ ‖f̂(ξV )− f̂(ξ0)‖+ ‖f̂(ξ0)− T̂ (ĝV )(ξ0)‖

≤ ‖T̂ (ĝV )− f̂‖∞ + ‖f̂(ξV )− f̂(ξ0)‖+ ‖f̂(ξ0)− T̂ (ĝV )(ξ0)‖ −→ 0,

while

‖T̂ (ĝV )(ξV )− T̂ (ĝV )(ξ0)‖ = ‖wξV (eV )− wξ0(eV )‖ ≥ ε,

which is a contradiction. Therefore w is continuous.

In order to prove the sufficiency, we must show that T̂ (B̂) is relatively compact in C0(Ĝ2, B2) by

checking the conditions (1)-(3) in Theorem 4.1. Fix ξ0 ∈ Ĝ20. Since the set {f̂(h(ξ0)) : f ∈ B} is

bounded in B1 and wξ0 is compact, we infer that {wξ0(f̂(h(ξ0))) : f ∈ B} is relatively compact in

B2, which is to say that {T̂ f̂(ξ0) : f ∈ B} is relatively compact in B2.

Fix ξ1 ∈ Ĝ20. Let {ξα} be a net in Ĝ2 converging to ξ1. Since Ĝ20 is an open subset of Ĝ2, then

we can assume, without loss of generality, that for each α, ξα ∈ Ĝ20. Let U be a neighborhood of ξ1

where h is constant. Hence, from a certain α0, h(ξα) = h(ξ1) and, for all f ∈ B, we have

||T̂ f̂(ξα)− T̂ f̂(ξ1)|| = ||wξα(f̂(h(ξα)))− wξ1(f̂(h(ξ1)))|| ≤ ||wξα − wξ1 ||
10



for all α > α0. It is, therefore, apparent, due to the continuity of w, that

lim
α

sup
f∈B
{||T̂ f̂(ξα)− T̂ f̂(ξ1)||} = 0,

which yields the equicontinuity of T̂ (B̂) in ξ1, which is arbitrary in Ĝ20.

Now assume that ξ1 ∈ Ĝ2 \ Ĝ20. If {ξα} is a net in Ĝ2 converging to ξ1, then for each f ∈ B, we

have

||T̂ f̂(ξα)− T̂ f̂(ξ1)|| = ||wξα(f̂(h(ξα)))|| ≤ ||wξα ||

for all α. Again from condition (4) it follows that limα supf∈B{||T̂ f̂(ξα)||} = 0.

Finally, it is clear that condition (3) yields condition (3) in Theorem 4.1. As a consequence, T̂ (B̂)

is relatively compact in C0(Ĝ2, B2) and we are done. �

Remark 4.3. It is known that when Ĝ is assumed to be compact, condition (3) in Theorem 4.1

is redundant (see e.g., [19, Theorem 47.1]). However, this is not the case in our (locally compact)

context as the following example shows. Let us consider the following family of Fejer kernels in

L1(R):

H =

{
fn(t) = n

(
sin(nπt)

nπt

)2

: n = 1, 2, ...

}
.

It is known (see e.g., [18, p.139]) that the family, Ĥ, of Fourier transforms of the functions in H

turn out to be the following functions in C0(R):

f̂n(ξ) = 1− |ξ|
n

for |ξ| < n and 0 otherwise. It can be easily checked both that Ĥ satisfies only conditions (1) and (2)

in Theorem 4.1 and contains no convergent subsequence, which is to say that it cannot be relatively

compact.
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