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ABSTRACT 8 

The capabilities of dynamic headspace entrainment followed by thermal desorption in 9 

combination with gas chromatography (GC) coupled to single quadrupole mass spectrometry 10 

(MS) have been tested for the determination of volatile components of olive oil. This 11 

technique has shown a great potential for olive oil quality classification by using an 12 

untargeted approach. The data processing strategy consisted of three different steps: 13 

component detection from GC-MS data using novel data treatment software PARADISe, a 14 

multivariate analysis using EZ-Info, and the creation of the statistical models. The great 15 

amount of compounds determined enabled not only the development of a quality 16 

classification method as a complementary tool to the official established method “PANEL 17 

TEST” but also a correlation between these compounds and different types of defect. 18 

Classification method was finally validated using blind samples. An accuracy of 85 % in oil 19 

classification was obtained, with 100% of extra virgin samples correctly classified. 20 
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1. INTRODUCTION 25 

Olive oil quality is a matter of concern for consumers and producers. It establishes the 26 

differences between the products with poor attributes and the products with outstanding 27 

features, as well as it contributes to set oil prizes. For this reason and to avoid fraud, many 28 

times linked to this specific product (Jabeur, Zribi, & Bouaziz, 2016; Kalogiouri, Aalizadeh, 29 

& Thomaidis, 2017; Kalogiouri, Alygizakis, Aalizadeh, & Thomaidis, 2016; Portarena, 30 

Gavrichkova, Lauteri, & Brugnoli, 2014), guarantee of the genuine quality is a critical step 31 



 
 

 

especially from an economical point of view. Thus, the total characterization of olive oil is 32 

an important aim where analytical chemists can be of great support. 33 

Apart from physicochemical parameters that can determine the quality (as the acidity and 34 

turbidity of a sample), olive oil classification, as established by Spanish legislation 35 

(COI/T.20/Doc. No 15/Rev. 9 2017 ) and European Legislation (EEC No 2568/91), is 36 

performed by testers who establish if an olive oil must be labelled as extra virgin, virgin or 37 

lampante (not recommended for consumption). This strategy is known as “PANEL TEST”, 38 

which classifies the oils according to two main properties: defects (negative factors) and 39 

positive attributes (positive factors). The major defects are rancid, fusty/muddy sediment, 40 

musty/humid/earthy, acetone, burnt/heated, frozen/wet wood and winey/vinegary, while the 41 

positive attributes can be fruity (specifying green attribute), bitter and spicy. An extra virgin 42 

oil must have positive attributes and no defects, while the presence and amount of defects 43 

determines if an olive oil must be classified as Virgin or Lampante. According to the 44 

literature (Kalua et al., 2007; Luna, Morales, & Aparicio, 2006), and based on our previous 45 

work (Sales et al., 2017), the organic compounds responsible of these flavours are 46 

predominantly volatiles. This includes esters, ketones, aldehydes, alcohols, terpenes, phenols 47 

and their derivatives, with different concentrations and odour thresholds. To this extent, 48 

qualitative and quantitative analysis of volatile organic compounds (VOCs) has been an 49 

important issue of scientific interest for the organoleptic characterization of olive oil. 50 

Although PANEL TESTs are quite well trained in distinguishing these differences with an 51 

impressive precision, such methodology is rather expensive and remarkably time-consuming. 52 

In this scenario, a more objective methodology, based on instrumental responses, could be 53 

presented as cheaper and faster alternative approach to PANEL TESTs and could also be 54 



useful as a complementary tool to prevent fraud due to sample adulteration by means of 55 

quality mislabeling. 56 

Dynamic headspace with sorbent trapping (DHS) together with gas chromatography (GC) 57 

coupled to mass spectrometry (MS) in full scan mode is a well-known technique that has 58 

been used in our laboratory for the determination of VOCs in different food commodities 59 

(Beltran et al., 2006; Fredes et al., 2016), including olive oils (Sales et al., 2017), at low to 60 

trace levels. It allows to greatly concentrate most of the volatile compounds present in the 61 

sample with a good efficiency and significantly low cost. When coupled to thermal 62 

desorption, results improve considerably. This volatile-focused extraction technique makes 63 

use of no solvents, which helps to cut analysis costs and time while it enhances the sensitivity 64 

due to its high pre-concentration factor. Additionally, MS-spectra obtained when applying 65 

this sampling technique has been demonstrated to be cleaner than those obtained by 66 

traditional sampling methods, as the lack of solvents reduces column bleeding and 67 

overloading issues. (Marquez, Serratosa, Merida, Zea, & Moyano, 2014).  68 

Other automatable alternatives to this approach rely on headspace (HS) coupled to MS or 69 

GC-MS, with high detection limits and no pre-concentration factor (Arrebola, González-70 

Rodríguez, Garrido Frenich, Marín-Juan, & Martínez Vidal, 2005; Garrido-Delgado, 71 

Mercader-Trejo, Arce, & Valcárcel, 2011) or headspace-solid phase micro-extraction (HS-72 

SPME) coupled to GC-MS, which has shown good performance in extraction of volatiles 73 

and has even been used for the determination of defect related compounds in olive oils 74 

(Benelli et al., 2015; Dierkes, Bongartz, Guth, & Hayen, 2012; Zhu, Wang, & Shoemaker, 75 

2016). Most studies carried out on oil characterization are based on a targeted approach which 76 

can produce biased classification models that could lead to important misclassification of the 77 



 
 

 

samples if the compounds responsible for a specific type of defect have not been considered 78 

in advance. Alternatively to target analyses for the determination of the chemical fingerprint 79 

of food samples, in the last years and together with the advance of data treatment technology, 80 

novel non-targeted methodologies have started to gain importance. Despite its great potential, 81 

only few application are found in olive oil analysis field (Gerhardt, Birkenmeier, Sanders, 82 

Rohn, & Weller, 2017; Gil-Solsona et al., 2016; Sales et al., 2017).  83 

Metabolomics, defined as "the unbiased, global screening approach to classify samples based 84 

on metabolite patterns or fingerprints that change in response to disease, environmental or 85 

genetic perturbations with the ultimate goal to identify discriminating metabolites" 86 

(Cevallos-Cevallos, Reyes-De-Corcuera, Etxeberria, Danyluk, & Rodrick, 2009), has already 87 

demonstrated great capabilities to solve this problem. Application of a non-target approach 88 

based on analytical techniques to determine chemical fingerprint in food leads to a new field 89 

known as foodomics (Herrero, García-Cañas, Simo, & Cifuentes, 2010). Data processing 90 

together with data acquisition has to be carefully optimized through the use of specialized 91 

software to automatically obtain valuable markers (chromatographic peaks and masses) from 92 

raw data. As no compounds are selected in advance, chromatography must be robust and has 93 

to pursue the best peak resolution possible. Also, data acquisition has to be performed in full-94 

scan in order to obtain the maximum information possible (Cevallos-Cevallos et al., 2009; 95 

Garcia & Barbas, 2011). After data acquisition, automatic deconvolution of spectra is needed, 96 

to deep scan relevant signals through the whole chromatogram (Meyer, Peters, & Maurer, 97 

2010).  98 

In literature, foodomics studies make use of different software to get this information, such 99 

as XCMS package of R (Díaz, Pozo, Sancho, & Hernández, 2014), MetAlign (Tikunov et 100 



al., 2005) or MzMine 2.0 (Kind, Tolstikov, Fiehn, & Weiss, 2007). These software detect the 101 

relevant m/z values at a specific time and automatically integrate the signal (area or total 102 

intensity), in a procedure known as peak picking. Normally, it leads to different features 103 

detected in the same samples depending on their specifications and use (Li et al., 2018; 104 

Myers, Sumner, Li, Barnes, & Du, 2017). Recently, PARADISe (Johnsen, Skou, Khakimov, 105 

& Bro, 2017), which makes use of the algorithm PARAFAC2 ((Elcoroaristizabal, Bro, 106 

García, & Alonso, 2015; Johnsen et al., 2017; Lenhardt, Bro, Zeković, Dramićanin, & 107 

Dramićanin, 2015), has emerged as a really promising tool for GC-MS data treatment. This 108 

specific software presents a major difference compared with the others, which is the detection 109 

of compounds instead of singular ions. This reduces the data matrix and makes the statistical 110 

analyses easier and faster. 111 

The aim of this work has been the development of a quality classification model for olive oil 112 

by the application of a novel untargeted methodology.  For this purpose, the potential of GC-113 

MS with DHS-TD has been exploited together with the use of the recently developed 114 

PARADISe software for peak deconvolution purposes. As an additional aim, the correlation 115 

of detected compounds with the major defects reported by the PANEL test has been explored. 116 

 117 

2. MATERIALS AND METHODS 118 

2.1. Chemicals and reagents 119 

Internal standard toluene-d8 (tol-d8) ≥ 99% was purchased from Sigma Aldrich (Germany).  120 

Tenax®TA glass desorption tubes 60/80 mesh, O.D. 6.00 mm x 4 mm I.D. x  L 60 mm, used 121 

as traps were purchased from Gerstel (Mülheim an der Ruhr, Germany). 122 



 
 

 

External standards of volatile compounds used for signal deviation correction (Z-3-hexenal, 123 

hexanal, E,E-2,4-hexadienal, 6-methyl-5-hepten-2-one, 6-methyl-5-hepten-2-ol, E,E-2,4-124 

heptadienal, R-limonene, 2-isobutylthiazole, guaiacol, E-2-octenal, linalool, 2-125 

phenylethanol, methyl salicylate, α-terpineol, β-cyclocitral, Z-citral, E-citral, E,E-2,4-126 

decadienal, diphenyl ether, geranylacetone, β-ionone, phenylacetaldehyde, benzaldehyde) 127 

were supplied by Supelco (Sigma–Aldrich and Fluka; Barcelona, Spain) as pure compounds 128 

(92–99.5%). 129 

 130 

2.2. Olive oil samples 131 

A total of 108 olive oil samples were provided by the Spanish Olive Oil Interprofessional 132 

Organization (INTERPRO, Spain), the Olive Oil Agency of the Ministry of Agriculture and 133 

Fisheries, Food and Environment (AAO, MAPAMA) and the official control services from 134 

the Council of Agriculture and Fisheries of Andalucia. 135 

Oil samples were obtained from several Spanish cultivar regions during the 2015 campaign. 136 

They were fully quality characterized by the official participating laboratories (Agricultural 137 

Laboratory from MAPAMA, Cordoba and Atarfe) using the official COI method 138 

(COI/T.20/Doc. No 15/Rev. 9 2017) by the corresponding panels accredited under EU 139 

REGULATION 2017/625. 87 samples were used for the training set of the models (18 extra 140 

virgin, 48 virgin and 19 lampante), and 21 were analyzed as blind samples (the quality was 141 

unknown during analysis and classification) and were used for validation of the created 142 

models. Samples were stored in freezer at −22 °C until their use. They were characterized by 143 

means of pH measurements and physicochemical and organoleptic properties (including 144 



defects, positive attributes and quality classification). Each sample was analyzed once, due 145 

to limited sample volume and due to the fact that, after desorption, the sample has to be re-146 

extracted in case of a replicate is needed.  147 

 148 

2.3. Sample treatment 149 

Olive oil samples were allowed to defrost at room temperature before analysis. Then, they 150 

were aliquoted in 4 different 10 mL vials. One aliquot was immediately used to perform the 151 

extraction and the remaining ones were stored at 4 ºC.  152 

3 g of oil were weighed on a precision balance directly into a 150 mL Erlenmeyer flask. The 153 

general procedure was based on previous works (Fredes et al., 2016; Sales et al., 2017), but 154 

improving the trapping and desorption steps. The trap consisted of a Tenax® TA TDU tube 155 

(ID 4mm, 60mm length) previously conditioned by applying a desorption step (300 ºC during 156 

8 minutes with a flow of high purity helium of 55 mL/min acting as carrier gas flowing 157 

backflush). Prior to application of the extraction procedure, the trap was spiked with 10 µL 158 

of a 50 ng/µL of toluene-d8 solution to correct extraction deviations.  159 

For the extraction step, the sample was maintained at 40°C (by immersion of the flask in a 160 

water bath) with magnetic agitation at 300 rpm and the headspace was purged with a flow of 161 

100 mL/min of pure N2 for 1 hour into a Tenax tube trap. Figure S1 shows the experimental 162 

set up used. After the extraction the traps were directly transferred to the GC/MS autosampler 163 

to automatically carry out the thermal desorption on the TDU. In each sample extraction 164 

batch, 6 samples (when possible, 2 extra virgin, 2 virgin and 2 lampante oils) were processed 165 

simultaneously. 166 

In order to avoid bias in the methodology, samples were analyzed in batches of 18 tubes, 167 



 
 

 

randomly distributed. To ensure stability of the system and correct instrument deviation, 168 

replicate thermal desorptions of traps spiked with 10µL of a mixture of 50 ng/µL of standards 169 

corresponding to volatile compounds present in vegetable matrices (and specific for tomato 170 

(Serrano, Beltrán, & Hernández, 2009)) were performed. These VOCs were used as they 171 

were already available in the laboratory and are coincident in many different vegetable 172 

matrices, including olive oil (Uriarte, Goicoechea, & Guillen, 2011). They are also used in 173 

volatile metabolomics studies (Gómez-Cortés, Brenna, & Sacks, 2012). These desorptions 174 

were planned at the beginning and at the end of each sequence batch, as well as every 6 175 

samples. 176 

 177 

2.4. GC-MS 178 

The chromatographic analysis were performed using an Agilent 6890A gas chromatograph, 179 

equipped with a Gerstel MPS2 autosampler (Gerstel, Maryland, USA), coupled to a single 180 

quadrupole mass spectrometer, Agilent 5973N MSD (Agilent Technologies, California, 181 

USA), operating in EI mode. The GC separation was performed using a fused silica 182 

Supelcowax 10 capillary column with a length of 30m x 0.25mm ID and a film thickness of 183 

0.25 µm (Sigma Aldrich, Germany). The oven program was set as follows: 40ºC (3 min); 184 

5.00 ºC/min to 160ºC (1.00 min); 40.00 ºC/min to 260ºC (1.50 min). The injection system 185 

consisted of two units; the thermal desorption unit (TDU) and the programmable temperature 186 

vaporizing (PTV) – cooled injection system (CIS4) (Gerstel, Maryland, USA). The TDU 187 

parameters were set as follows; sample removal mode, splitless at an initial temperature of 188 

40ºC (1 min equilibrium time); 60 ºC/min to 260ºC (4 min), transfer line temp 260ºC. The 189 



CIS4 PTV was equipped with a Tenax® TA packed liner, CIS4 temperature program: 40ºC 190 

(1 min equilibrium time); 12 ºC/s to 260ºC (4 min). A summary of the different temperature 191 

programs is graphically displayed in Figure S2. 192 

 193 

2.5. Data processing  194 

GC-MS data were converted to netCDF format using the Chemstation® (Agilent 195 

Technologies, California, USA,-Version G1701CA) export to .AIA function. Data mining 196 

was carried out using PARADISe. After importing the netCDF data to the PARADISe 197 

software, the regions of interest (ROIs), which are the time intervals where software applies 198 

the deconvolution, were selected manually along the full chromatogram. A total of 118 199 

intervals were selected, paying attention to peak shape (when visible in the TIC) and leaving 200 

no empty spaces between intervals. Modelling options were set to a maximum of 8 201 

compounds per interval and 50000 maximum iterations per interval. After the modelling step, 202 

models created for each interval were carefully optimized attending to: model fitting over 203 

95%, model consistency over 95%, background removal, and avoiding model overfitting (in 204 

this order). Data matrix obtained after applying PARADISe consisted in an .xls file which 205 

could be opened with Microsoft Excel for future data transformations. The areas provided by 206 

PARADISe were divided by the area of tol-d8 to correct the differences between extraction 207 

batches and TDU tubes. The relative areas were corrected with the nearest external standard 208 

and then scaled applying mean-centering. Statistical analyses were performed using the 209 

EzInfo software (U-Metrics, Waters Corporation, Wilmslow, UK, Version 2.0.0.0). 210 

 211 

3. RESULTS AND DISCUSSION 212 



 
 

 

3.1. Extraction procedure optimization 213 

Considering our previous experiences (Beltran et al., 2006; Fredes et al., 2016; Sales et al., 214 

2017), efforts were devoted to optimize and apply static headspace-stir bar sorptive 215 

extraction-thermal desorption (SHS-SBSE-TD) and dynamic headspace entrainment 216 

followed by thermal desorption (DHS-TD. Though SPME has been extensively used for the 217 

analysis of olive oils (Arrebola et al., 2005; Benelli et al., 2015; Gómez-Cortés et al., 2012; 218 

Oliver-Pozo, Aparicio-Ruiz, Romero, & García-González, 2015; Uriarte et al., 2011; Zhu et 219 

al., 2016), it was discarded as no possibility for SPME automatically coupled to GC-MS was 220 

available at our laboratory. 221 

The first step was to compare the performance of the two considered extraction methods in 222 

order to select only one of them for further development, Accordingly, a selected extra virgin 223 

olive oil sample was extracted by triplicate by HS-SBSE-TD and DHS-TD under the same 224 

conditions. Additionally, an aliquot of the same oil sample, spiked with the above mentioned 225 

mixture of VOCs (see experimental section), was extracted (n=3 for each method) with the 226 

same two methodologies. The analysis was performed in full-scan mode and then integrating 227 

the areas for the specified ions. Results obtained unequivocally demonstrated the higher 228 

performance of DHS-TD. On one hand, N2 current (dynamic process) and the larger surface 229 

area of Tenax® TA tubes, enhanced the extraction from 4 to 10 times for most of components 230 

and up to 103 times for the most volatile compounds when compared to Twister (SBSE) 231 

extraction. Furthermore, to test the reliability of the DHS-TD extraction procedure, 15 232 

replicates of an extra virgin olive oil spiked with the IS mixture were extracted. This test 233 

gave RSD values below 15 % for most of the compounds, and permitted the detection of all 234 

the spiked compounds, together with a huge amount of additional VOCs present in the olive 235 



oil sample. As an example, boxplots for a number of selected spiked compounds is shown in 236 

Figure S3. The plots show no outliers for the selected compounds, highlighting the 237 

repeatability of the methodology. 238 

 239 

3.3. Data analysis optimization 240 

Many different deconvolution software can be used for the automatic detection of 241 

chromatographic peaks in non-targeted approaches. There is plenty of literature regarding 242 

the use of xcms package of R (Fernández-Varela, Tomasi, & Christensen, 2015; Gil-Solsona 243 

et al., 2016) and MzMine (Hung, Lee, Yang, & Lee, 2014; Sales et al., 2017). More recently 244 

PARADISe, integrating the algorithm PARAFAC2, has emerged as an efficient alternative 245 

(Elcoroaristizabal et al., 2015; Khakimov et al., 2016; Lenhardt et al., 2015; Vegge et al., 246 

2016). From our previous knowledge on the application of these deconvolution tools to GC-247 

MS data, and specifically related to the analyses of VOCs in olive oil, PARADISe has been 248 

recently revealed as a potential tool in this field. It provides more robust integrations while 249 

removing a huge amount of interferent and ghost peaks. Additionally, it gives an additional 250 

benefit due to its easiness of use and peak visualization. PARAFAC2 algorithm (Harshman, 251 

1972) performs peak deconvolution attending to the intensity and the spectra of the signals, 252 

so it is extremely powerful when resolving co-eluting peaks, even with unit mass resolution 253 

MS.  254 

During the optimization of PARADISe models for peak deconvolution, 118 individual 255 

intervals were obtained from the entire chromatogram, cropping the last 3 minutes to avoid 256 

ghost peaks from column bleeding at elevated temperatures. This step reduced data 257 

complexity and weight before the model validation. PARADISe model validation was 258 



 
 

 

performed as previously described elsewhere (Khakimov et al., 2016), testing the model 259 

fitting for each interval with one to eight components. Each model was carefully evaluated 260 

to find the optimal number of components, looking for a good model fitting (over 95%), noise 261 

removal and low residuals, with a core consistency over 95%. Also model overfitting was 262 

avoided while obtaining well resolved peaks. As an example, the capabilities of PARADISe 263 

for compound detection and noise reduction are displayed in Figure 1. In Figure 1(A), the 264 

total ion chromatogram shows a very complex interval, with three presumable compounds. 265 

The residuals in this case were up to 106. After selecting 5 different components (Figure 266 

1(B)), residuals were lowered by two orders of magnitude, and the algorithm detected four 267 

different signals and noise (the red component). The model fit increases from a 60% for one 268 

component to 100% with the selected compounds. At the same time, consistency is kept 269 

higher than 95%, ensuring the goodness of the selected model. Among the components 270 

selected, the green component was identified by using NIST08 as 3-(methylthio)-Propanal, 271 

and confirmed with the injection of its standard. Figure S4 highlights the potential of 272 

PARADISe for spectra deconvolution, as it is able to distinguish the signals coming from 273 

two different co-eluting components and column bleeding. This capability results in a higher 274 

number of components detected (green and blue in Figure 1B) with cleaner spectra, which 275 

results in better tentative identifications when using NIST. With the final selected model for 276 

each interval, all the samples were processed. Data exported from PARADISe lead to a .xls 277 

file containing a total of 230 different compounds, a number significantly lower than those 278 

obtained by other peak picking software commonly used, often close to ten thousand different 279 

features (Li et al., 2018). This step is determining to reduce the data matrix, which simplifies 280 

the statistical analysis. All these compounds were processed by dividing each compound peak 281 



area by the area of the internal standard (tol-D8) in each sample to correct instrument 282 

deviation. Then they were corrected by nearest external standard and finally mean centered 283 

to enhance the difference between groups. The whole dataset was divided in two groups, one 284 

for method training, containing 87 samples (20 lampante, 48 virgen and 19 extra) and a 285 

smaller subset of 21 blind samples for model validation. Figure 2 shows the evolution of the 286 

different principal component analyses (PCA) applied depending on different data 287 

corrections applied. As it can be appreciated, the use of surrogate tol-D8 for data correction 288 

helps to minimize deviation in groups when compared to the raw data. Furthermore, the use 289 

of the response of the nearest external standard for data correction enhances the differences 290 

between groups, and consequently, was selected for further method development.  291 

 292 

3.4. Classification Model Validation 293 

At this point, the development of a quality classification model of olive oils by DHS-TD was 294 

studied. Subsequently, after aforementioned data transformations and having checked the 295 

PCA for goodness of data, a partial least squares discriminant analysis (PLS-DA) was 296 

constructed according to the quality of each group (extra virgin, virgin and lampante groups 297 

(see Figure 3). The PLS-DA showed a clear distinction between lampante and extra samples, 298 

while the virgin samples, with both positive attributes and defects, were in the middle. In 299 

order to verify the accuracy of the model, it was validated with the analysis of blind samples, 300 

i.e with a priori unknown quality. Figure S5 shows a confusion matrix presenting the results 301 

for the training and the validation set of samples classified by PLS-DA. One of the greatest 302 

outputs was the capability of the developed methodology to correctly classify 100% of extra 303 

virgin olive oil samples. Another output was the great differentiation achieved between extra 304 

and lampante samples which avoided any misclassification between these two extreme 305 



 
 

 

groups. Finally, in order to determine the compounds responsible for extra and lampante 306 

qualities, two different orthogonal partial least squares-discriminant analysis (O-PLSDA) 307 

models were created. Firstly, the flawless extra virgin samples were faced to the virgin and 308 

lampante ones; and secondly, lampante samples were faced to the rest. From them, two S-309 

PLOT graphs were obtained and inspected for endpoints. Table 1 lists the main compounds 310 

responsible of the positive attributes of extra samples and also those found as responsible of 311 

the lampante quality. 312 

 313 

3.5. Defect-related compounds identification 314 

As a final step, PARADISe automatically compares deconvoluted spectra with NIST library 315 

(in this case NIST08 (NIST, Maryland, USA)), giving the best fitted candidate for each peak. 316 

In order to add more confidence to identification, retention index for each compound was 317 

calculated using a C7-C30 alkane mixture which was injected along with the rest of the 318 

sequence. 319 

Although all the deconvoluted features were used in the creation of the statistical model, only 320 

the compounds with a match over 850 and a RI match  20 (Chemspider) were considered 321 

as tentatively identified compounds. Compounds given as completely identified were 322 

confirmed by the injection of its corresponding standard. 323 

In a previous work (Sales et al., 2017), it was demonstrated that the distinction between 324 

flawless extra samples and samples with a specific defect was larger than the difference 325 

between the three quality classes. Continuing with that work, our efforts were devoted 326 

towards the complete identification of the compounds responsible of each kind of defect or 327 

negative attribute. To that extent, a PLS-DA was constructed according to the main defect of 328 



each sample (or the absence of it). Figure 4 shows the results for the PLS-DA grouping the 329 

samples by quality and colored by: considering the predominant (main) defect (A), defect 330 

intensity (B) and main fruitiness intensity (C). From the first PLS-DA, distinguishing by the 331 

type of defect, several O-PLSDAs were performed facing samples with one defect against 332 

the flawless extra, one defect at a time. The next step was to obtain the corresponding S-333 

PLOT graph for each case and to inspect them looking for endpoints, especially in the part 334 

of the defect, to see which compounds were highly related to each negative attribute. 335 

Applying this methodology to each defect, a group of compounds were considered as 336 

responsible of the bad quality of virgin/lampante olive oils, which are summarized in Table 337 

2. The results show the great potential of this technique for the identification of defect-related 338 

compounds, as well as for the discrimination of samples according to their defect. These 339 

results correlate well with previous works in the field of defect identification using targeted 340 

approaches. Especially interesting are E-2-decenal and Heptenal, with odour thresholds in 341 

the low ppb level, which have been reported by many authors in different olive oils to be 342 

related with distinct major defects (Morales, Luna, & Aparicio, 2005; Zhu et al., 2016). Our 343 

approach, additionally, shows that their presence has stronger impact than other compounds 344 

when labelling an olive oil with rancid or fusty defects and frozen, respectively, and that their 345 

presence correlates normally with the label virgin rather than lampante. In a similar way, 346 

octanal, which in our results is indicative of fusty defect, and octane, with a stronger presence 347 

in defected oils (Table S1) are also reported as present in defected oils in previous literature 348 

(Morales et al., 2005; Oliver-Pozo et al., 2015). As complementary information, an overview 349 

of the signals (relative areas) for all the detected and unequivocally identified compounds in 350 

olive oils and their relation to quality and defects are also shown in Tables S1 and S2. Data 351 

shown in these tables allow to highlight the potential of the combination of DHS-TD together 352 



 
 

 

with PARADISe for the detection of high number of relevant compounds in untargeted 353 

analysis. Apart from this, the use of this state-of-the art workflow for the determination of 354 

VOCs using EI source together with NIST library matching, allowed to tentatively identify 355 

several compounds detected in a previous work with the novel atmospheric pressure chemical 356 

ionization source (APCI) (Sales et al., 2017). Also, RI from the previous used non-polar 357 

column in GC-APCI-QTOF MS system, and RI from the polar Suplecowax 10 used in this 358 

work were compared and compounds were tentatively correlated when considering 359 

molecular ion and the molecular fragments found by both methodologies. Table S3 360 

summarizes the results. Special attention must be paid to 4-ethyl phenol and 5-ethyl- 2(5H)-361 

Furanone, which have been detected by both methodologies and have been found to be 362 

responsible of fusty defect and extra quality, respectively. It is also notable that rancid and 363 

brine defects are poorly characterized by volatiles, as only one compound has been linked to 364 

each defect. 365 

   366 

4. CONCLUSIONS 367 

A methodology coupling an advanced sample treatment technique for VOCs analyses, with 368 

a promising powerful deconvolution software for non-targeted analyses, has been developed 369 

for the quality classification of Spanish olive oils. This classification has been faced from an 370 

untargeted point of view, a novel contribution in a field where normally target approaches 371 

are applied. Also, this approach has allowed determining a wide number of compounds 372 

related to main defects found in olive oils. 373 

The high pre concentration factor obtained by DHS-TD has allowed the detection of a huge 374 



number of volatile compounds in olive oil at trace levels. PARADISe has demonstrated huge 375 

capabilities for robust peak detection. Thanks to its special algorithm (PARAFAC2), 376 

extremely clean mass spectra has been provided. This has been very useful for tentative 377 

identification of unknown compounds when matching their spectra with NIST libraries and 378 

also for resolving coeluting peaks.  379 

The developed methodology has permitted to obtain an enhanced quality classification 380 

model, with a 100% discrimination of extra samples, and an overall 86% accuracy for the 381 

three different classes, which reveals it as a very important complement to the PANEL TEST. 382 

As a final remark, the method has allowed also to putatively identify and completely identify 383 

(when standards were available) the main compounds responsible of each type of 384 

organoleptic defect in virgin olive oils. This work presents an affordable solution for olive 385 

oil classification thanks to the use of state-of-the-art sample treatment and data treatment 386 

methodologies for untargeted foodomics. It contributes to postulate DHS-TD methodology 387 

as a very powerful technique for the identification and quantitation of volatiles. Also it is 388 

feasible for the classification of samples trough untargeted analysis not only in oils, but in 389 

any complex sample with an important volatile composition. 390 
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 404 

FIGURE CAPTIONS   405 

Figure 1: Evolution of PARADISe model at interval 57 (17.53 – 17.87 min) for 1 component 406 

(A) and 5 components (B) finally selected.  407 

Figure 2: Evolution of PCA plots after each data treatment step (mean centered in all cases): 408 

A Raw data, B corrected dividing by TOL-D8 area, C corrected by the nearest standard. 409 

Figure 3: PLS-DA plot for the training set used in the construction of the classification 410 

model. 411 

Figure 4: PLS-DA plots focused on defects: A colored by type of defect, B colored by 412 

intensity of the defect, C colored by fruity intensity. 413 
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