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Abstract 

We report a joint experimental and theoretical study of the structural, vibrational, elastic, 

optical and electronic properties of the layered high-mobility semiconductor Bi2O2Se at 

high pressure. A good agreement between experiments and ab initio calculations is 

observed for the equation of state, the pressure coefficients of the Raman-active modes and 

the bandgap of the material. In particular, a detailed description of the vibrational properties 

is provided. Unlike other Sillén-type compounds which undergo a tetragonal to collapsed 

tetragonal pressure-induced phase transition at relatively low pressures, Bi2O2Se shows a 
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remarkable structural stability up to 30 GPa; however, our results indicate that this 

compound exhibits considerable electronic changes around 4 GPa, likely related to the 

progressive shortening and hardening of the long and weak Bi-Se bonds linking the Bi2O2 

and Se atomic layers. Variations of the structural, vibrational, and electronic properties 

induced by these electronic changes are discussed.      

 

 Corresponding authors, Email: andrepereira@ufgd.edu.br, fjmanjon@fis.upv.es 

 

1. Introduction 

In recent years, studies related to topological insulators (TIs) have attracted the 

attention of many research groups. TIs are a class of quantum materials in which time-

reversal symmetry, relativistic effects and an inverted band structure result in the 

occurrence, in an insulator bulk crystal, of electronic metallic states on the surface which 

are protected against non-magnetic impurities or defects. Among such materials, layered 

compounds Bi2Se3, Bi2Te3 and Sb2Te3 were predicted and found to behave as Tis1-4. It must 

be stressed that TIs have promising applications in spintronic devices and dissipationless 

transistors based on the quantum spin Hall effect and quantum anomalous Hall effect5,6, as 

well as to host Majorana particles7. In fact, TIs have already found practical applications in 

advanced magnetoelectronic and optoelectronic devices8,9. 

It has been recently suggested that there could be a close relationship between TIs 

and highly-efficient thermoelectric materials (TMs)10; therefore the search of new TIs is 

also important to find new TMs. In this context, the metal chalcogenide semiconductors 

belonging to the A2X3 (A= Sb, Bi; X= Se, Te) family with layered tetradymite structure 

have been of great interest mainly because of their exceptional thermoelectric (TE) 

properties, with Bi2Te3 and Sb2Te3 being the most widely used TMs at ambient 

conditions11,12.  

The strong interest in improving the TE properties of TMs, especially in the most 

interesting temperature range for TE energy harvest (between 400 and 700 K), suggests to 

engineer the bandgap of the materials since the optimized TMs are predicted to be 

semiconductors with a bandgap Eg = 10kBTop, where kB is the Boltzmann constant and Top 

is the operating temperature of TE devices13. Additionally, there is a strong interest in 
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increasing the chemical stability and in decreasing the toxicity of chalcogenide-based TMs. 

All the above requirements are stimulating the study of layered compounds involving heavy 

elements such as Bi and Sb combined with O, S and Se instead of Te. In this way, a 

decrease in toxicity and an increase of the chemical stability and of the bandgap will allow 

to reach the goal of achieving a figure of merit, ZT, near 3 in order to make a widespread 

use of TMs for TE energy harvest14. 

Among the studied layered oxychalcogenides, Bi2O2Se has been found as a 

promising TM since it is an intrinsic n-type semiconductor with rather good TE properties 

around 800K15, that can be enhanced under certain stresses, as predicted by ab initio 

calculations16, or by appropriate doping17,18. Most importantly, recent studies have shown 

that 2D nanometer-size thin films of Bi2O2Se exhibit an extraordinary high-mobility, which 

combined with its extraordinary chemical stability and large bandgap make this material a 

promising candidate for the realization of novel quantum phenomena, future logic devices, 

and flexible electronic applications19,20. In fact, the application of Bi2O2Se films in 

electronic applications has been recently proved21. Besides, it has been recently predicted 

that 2D bismuth oxychalcogenides are exceptional ferroelastic/ferroelectric materials with 

interest in a number of applications still to be developed22. 

At room pressure, Bi2O2Se crystallizes in a layered body-centered tetragonal 

structure (space group No. 139, I4/mmm – D4h
17). In this structure, Se, O and Bi atoms 

located at 2a (0,0,0), 4d (0, 1/2, 1/4) and 4e (0,0,z) Wyckoff sites, respectively. Therefore, 

the z coordinate of the Bi atom is the only free atomic coordinate in the structure. In this 

structure (Fig. 1(top)), Bi and O atoms form Bi2O2 layers perpendicular to the [001] 

direction where Bi and O atoms are four-fold coordinated and form a square pyramid with 

Bi-O bond lengths of 2.3 Å. On the other hand, Se atoms form atomic layers located 

between the Bi2O2 layers. A weak link between Bi2O2 and Se atomic layers occurs thanks 

to weak Bi-Se electrostatic interactions (each Bi atom forms four Bi-Se bonds so that each 

Se is eightfold coordinated) with a length above 3.0 Å. In summary, the Bi2O2Se structure 

can be understood as a layered structure where Bi2O2 layers and Se atomic layers are 3D 

linked thanks to weak Bi-Se electrostatic interactions and where the lone electron pair 

(LEP) of each Bi atom is directed perpendicularly to the layers towards the center of the 

four Se atoms interacting with each Bi atom. In fact, since the closest Bi atoms of different 
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layers are aligned along the c axis, their corresponding LEPs are facing to each other across 

the Se atomic layer.  

A way of interpreting the structure of the Bi2O2 sublattice is by applying the inverse 

Zintl-Klemm concept23,24; i.e., a “Zintl polycation” (Bi2O2)
2+ is formed when the two 

electropositive Bi atoms formally transfer 2 electrons to the Se atom. In this way, each Bi 

atom becomes a pseudo Ψ-Pb atom and the Bi2O2 sublattice adopts the same layered 

structure as litharge PbO (Pb2O2 and (Bi2O2)
2+ are isoelectronic)25. This view is consistent 

with previous reports where Bi2O2 layers are assumed to be insulating and conductivity of 

Bi2O2Se is mainly due to the large conductivity along the Se layers19,20. It must be stressed 

that the formation of layered compounds seems to be a common feature in many Sb- and 

Bi-related sesquioxides and sesquichalcogenides, like the polymorphs -Bi2O3,-Bi2O3, 

HPC-Bi2O3, Sb2S3, Bi2S3, Bi2Se3, Sb2Te3 and Bi2Te3
26,27-30, and also in other related 

compounds, like BiSe, BiTe, and Bi4Te3
31. 

Pressure is a thermodynamic magnitude and a powerful tool to unravel the intrinsic 

properties of materials because it is cleaner than chemical doping and simpler to analyze 

than temperature. Therefore, the understanding of the behavior of Bi2O2Se under 

compression will help to improve and fully exploit the great potential of the electronic and 

TE properties of this interesting material. Despite of the increasing interest in bismuth 

oxychalcogenides, most of the properties of layered Bi2O2Se are barely known specially at 

high pressures (HPs). In this respect, it must be noted that layered compounds of the Bi2Se3 

family studied at HP have exhibited novel phenomena such as structural phase transitions at 

low pressures, pressure-induced electronic topological transition (ETT) or Lifshitz 

transition, and pressure-induced superconductivity26. Furthermore, HP exploration of 

Sillén-type compounds, which are isostructural to Bi2O2Se, like iron-based pnictide 

superconductors, have shown changes in the Fermi surface topology and new 

superconductor phases usually related to a tetragonal to collapsed tetragonal pressure-

induced phase transition at relatively low pressures32-38. 

In this work, we report a joint experimental and theoretical HP study of the 

structural, vibrational, elastic, optical, and electronic properties of Bi2O2Se up to 30 GPa. 

No other study of Bi2O2Se under compression has been previously reported to our 

knowledge. For that purpose, x-ray diffraction (XRD), Raman scattering (RS) and optical 
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absorption measurements have been combined with ab initio total-energy structural and 

lattice-dynamics calculations. It has been found that, unlike other isostructural Sillén-type 

compounds32-38, the tetragonal structure of Bi2O2Se presents a remarkable high stability 

with no phase transition up to 30 GPa. Furthermore, HP studies of both end members Bi2O3 

and Bi2Se3 at high pressures show phase transitions below 30 GPa27-29,39. 

 Curiously enough, interesting electronic changes in Bi2O2Se occur near 4 GPa 

consisting of crossing and anticrossing behaviors of the topmost and second topmost 

valence bands at different points of the Brillouin zone. These changes are likely related to 

the progressive shortening and hardening of the long and weak Bi-Se bonds between the 

layers. Therefore, this study will help to understand the behavior of Bi2O2Se and other 

Sillén-type compounds under compression and, in general, those of layered materials 

lacking van der Waals forces between their layers.  

 

2. Experimental Method 

Bi
2
O

2
Se polycrystalline material was recently synthesized from Bi

2
Se

3 
and Bi

2
O

3 
by 

solid state reaction in an evacuated quartz ampoule40. In accordance with the literature, it 

was observed that the prepared samples crystallize in the space group 139, I4/mmm – D4h
17, 

with lattice parameters a = 3.8859 Å and c = 12.2055 Å and yield a unit-cell volume V0 = 

184.30 Å3. The z atomic positions of Bi and O are: z(Bi)= 0.355(1) and z(O)=0.250(3). All 

these parameters compare well within 0.2% with structural of ICSD-2903 entry41. This 

structure is the same as that of Nd2O2Te42 and the recently synthesized Bi2O2Te43 and it is 

composed of insulating Bi2O2
2+ layers separated by conducting square Se2- atomic layers 

(Fig. 1(top)). Structural analyses have shown no spurious phases or other phases related to 

Bi, O or Se. On the other hand, energy-dispersive X-ray spectroscopy (EDS) analyses 

showed that the composition of the sample is not purely stoichiometric and has a slight 

excess of O and a slight deficiency of Se with respect to Bi with an approximate 

stoichiometry of Bi2O2.2Se0.8. 

Both powder angle-dispersive XRD measurements at room and HP (up 22 GPa) 

were performed at room temperature in an Xcalibur diffractometer with the lines K1 and 

K2 of a molybdenum source (λ = 0.7093 and 0.7136 Å, respectively) with a Merrill-

Bassett-type diamond anvil cell (DAC) with diamond culets of 400 m in diameter44. 
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Pressure was determined by the luminescence of small ruby chips evenly distributed in the 

pressure chamber with an error below 0.2 GPa in the whole pressure range studied45. A 

more accurate powder angle-dispersive XRD experiment was also performed up to 21 GPa 

at room temperature in the BL04-MSPD beamline at ALBA synchrotron facility46. This 

beamline is equipped with Kirkpatrick-Baez mirrors to focus the monochromatic beam and 

a Rayonix CCD detector with a 165 mm diameter active area and was operated with a 

wavelength of 0.4246 Å. Cu powder was used as the internal pressure gauge using the 

values V0 = 47.24 Å3, B0 = 133 GPa and B0’ = 5.01, corresponding to a 3rd-order Vinet 

equation of state (EOS) which gives a pressure error below 1% in the 0-20 GPa range47. 

Integration of 2D diffraction images was performed with Dioptas software48 while 

structural analysis was performed by Le Bail refinements to the XRD patterns recorded at 

all pressures with Fullprof49 and PowderCell50 program packages.  

Unpolarized HP-RS measurements up to 28.3 GPa were carried out with a Horiba 

Jobin Yvon LabRAM HR microspectrometer equipped with a thermoelectrically-cooled 

multichannel charge-coupled device detector which allows a spectral resolution better than 

2 cm−1. The signal was collected in backscattering geometry exciting with a HeNe laser 

(632.8 nm line) with a power of less than 10 mW. The measurements were performed at 

three different zones with different types of filters to assure that the sample was not burned 

during laser excitation. Nonetheless, it was not observed any significant difference in the 

spectrum apart from a change in the intensity of the peaks. Pressure was also determined by 

the ruby luminescence method44. Phonons were analyzed by fitting Raman peaks with a 

Voigt profile fixing the Gaussian linewidth (1.6 cm-1) to the experimental setup resolution. 

Finally, HP optical absorption measurements at room temperature up to 19.8 GPa 

were performed in a plate of Bi2O2Se 3-µm-thick and 100x100 µm2 in size uniformly 

cleaved along the (001) plane of a single crystal. Therefore, our optical absorption 

measurements were performed with the electric field geometry E⊥c. The sample was 

loaded using a mixture of 16:3:1 methanol-ethanol-water together with a ruby chip for 

pressure calibration in a membrane-type DAC with 500 µm diamond culet anvils. The 

pressure chamber was in a hole of 250 µm in diameter made on an Inconel gasket 

preindented to 45 µm in thickness. High-pressure optical absorption experiments at room 

temperature were performed by the sample-in–sample-out method using a micro-optical 
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system51,52 composed of a halogen lamp, one CaF2 lens, two Cassegrain objectives, and two 

spectrometers in the UV-VIS and VIS-NIR range, respectively. It must be stressed that all 

HP measurements were performed with a 16:3:1 methanol-ethanol-water mixture as a 

pressure-transmitting medium that provides hydrostatic conditions up to 10 GPa and quasi-

hydrostatic conditions up to the maximum pressure attained in our experiments53. Possible 

effects of non-purely hydrostatic conditions have been described elsewhere54. 

  

3. Computational Details 

Ab initio total-energy calculations were performed within the framework of density 

functional theory (DFT)55 to study the structural, vibrational, elastic, optical and electronic 

properties of Bi2O2Se under pressure. The Vienna Ab-initio Simulation Package (VASP)56 

was used to carry out simulations with the projector augmented wave (PAW)57 

pseudopotentials. The PAW scheme replaces core electrons and makes smoothed 

pseudovalence wave functions taking into account the full nodal character of the all-

electron charge density in the core region. The set of plane waves employed was extended 

up to a kinetic energy cutoff of 520 eV due to the presence of oxygen in the compound 

under study. The generalized gradient approximation (GGA) was used for the description 

of the exchange-correlation energy within the PBEsol prescription58. The Brillouin zone 

(BZ) of this body-centered tetragonal structure (with c>a) was sampled with a dense 

Monkhorst-Pack grid of special k-points59. With the cutoff energy and the k-point sampling 

employed, a high convergence of 1−2 meV per formula unit in the total energy is achieved. 

This ensures an accurate calculation of the forces on atoms. At a set of selected volumes, 

the structure was fully relaxed to the optimized configuration through the calculation of the 

forces on atoms and the stress tensor until the forces on the atoms were smaller than 0.005 

eV/Å and the deviations of the stress tensor from a diagonal hydrostatic form were lower 

than 0.1 GPa. 

The optimized structure at different pressures was used to study the electronic 

properties of Bi2O2Se taking into account the spin orbit coupling (SOC). The band structure 

was analysed along the high-symmetry directions of the BZ. We want to emphasize that the 

BZ of Bi2O2Se is that of Sillén-type compounds, like SrFe2As2
38; i.e., that corresponding to 

a body-centered tetragonal structure (Fig. 1(bottom)) and not the simple tetragonal BZ 
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recently used in several calculations of Bi2O2Se19,22,60,61. The path suggested for this 

structure (space group 139, I4/mmm with c>a) by Bradly and Cracknell and used at the 

Bilbao server web page was used to plot the electronic band structure and phonon 

dispersion curves (PDCs)62,63. 

Lattice-dynamics calculations were performed to study the phonons at the  point of 

the BZ using the direct force constant approach (or supercell method). The diagonalization 

of the dynamical matrix provides the frequency and symmetry of the phonon modes. To 

obtain the PDCs, along high-symmetry directions of the BZ, and the one-phonon density of 

states (PDOS), similar calculations were performed using appropriate supercells, which 

allow the PDCs at k-points to be obtained commensurate with the supercell size64. Finally, 

in order to study the HP mechanical stability of Bi2O2Se, the elastic stiffness constants were 

determined employing the stress theorem65. The optimized structures were strained, at 

different pressures, taking into account their symmetry66. 

 

4. Results 

4.1 Structural properties under pressure 

Angle-dispersive XRD patterns of Bi2O2Se with increasing pressure up to 22 GPa 

are shown in Figure 2. Le Bail refinements to the XRD patterns recorded at all pressures 

were performed using the tetragonal I4/mmm structure of Bi2O2Se (see structural data of 

synchrotron radiation measurements in Table S1 in the Supplementary material). These 

values at 300 K are in agreement with our ab initio calculations at 0 K that underestimate 

the experimental volume by only 0.5%; i.e., well within the error margin of calculations. 

Noteworthy, our experimental and theoretical values are also in good agreement with those 

previously found in the literature15. 

All diffraction peaks shift to larger angles on increasing pressure up to 22 GPa. This 

result is coherent with the decrease of interplanar distances at HP. No additional diffraction 

lines or abrupt intensity changes were observed, thus indicating the absence of a structural 

phase transition. Upon compression, only two interesting phenomena can be noted: i) the 

overlap of intense peaks related to the (103) and (110) planes above 14.5 GPa and ii) the 

appearance of a low-intensity peak at ~11º above 3.0 GPa (Fig. 2). This peak presents a 

large shift to high angles at HP, remains up to the maximum pressure of our study and is 
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not related to the Bi2O2Se structure. In order to find the origin of this peak, we tried to 

refine the HP-XRD patterns using some possible structures related to elemental Bi, O and 

Se. In this way, this peak was tentatively assigned to the most intense reflections of the -

 and phases below and above 10 GPa, respectively67,68. The high compressibility of 

these solid phases of oxygen would explain the large shift rate to higher angles observed in 

the measurements and is consistent with the excess of O found by EDS in original samples. 

Despite this fact, HP-XRD patterns mainly correspond to the initial tetragonal Bi2O2Se 

phase up to 22 GPa, indicating that Bi2O2Se does not present any clear phase transition. On 

pressure downstroke, the diffraction pattern obtained after opening the cell is identical to 

that of the initial sample (see top of Fig. 2). The lack of observation of reflections related to 

oxygen near room pressure on upstroke and downstroke is consistent with our hypothesis 

since oxygen is liquid near room conditions and no reflections from a solid phase are 

expected to be seen. 

The pressure dependence of the experimental and theoretical lattice parameters a 

and c of Bi2O2Se is shown in Fig. 3(left). The axial compressibility, defined as  

(x = a, c), obtained from a Birch-Murnaghan (BM) EOS fit of the experimental data69 is 

reported in Table 1 and is in good agreement with our theoretical results. Deviations of 

experimental lattice parameters and unit cell volume above 10 GPa with respect to 

theoretical estimates are likely due to non-hydrostatic stresses in the sample due to the loss 

of hydrostatic conditions of the pressure-transmitting medium53. As expected for a 2D 

compound, the c-axis compressibility is much larger than the a-axis compressibility. 

Moreover, the c/a ratio (inset of Fig. 3(left)) was found to decrease smoothly with pressure 

in good agreement with our calculations, as it is usual in many layered materials. However, 

the compressibility of the c axis (6.4·10-3 GPa-1) is much smaller than in other layered 

materials with van der Waals forces between the layers, like Bi2Se3 (38.5·10-3 GPa-1)39. 

This result is consistent with the larger strength of weak electrostatic interlayer Bi-Se 

interactions than of interlayer van der Waals forces. For completeness, the theoretical 

evolution of the z coordinate of Bi at HP is given at the inset of Fig. 3(right). It can be 

observed that there is no clear change of the theoretical c/a ratio or of the z coordinate of Bi 

is observed in the range up to 40 GPa that could indicate a second-order pressure-induced 
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phase transition from a tetragonal to a collapsed tetragonal structure, unlike in other Sillén-

type compounds32-38. 

Figure 3(right) shows the experimental and theoretical pressure dependence of the 

unit-cell volume of Bi2O2Se up to 22 GPa. A 3rd-order BM EOS was used to fit our P-V 

data to obtain the zero pressure volume, V0, bulk modulus, B0, and its pressure derivative, 

B0’, in the quasi-hydrostatic pressure range of the pressure transmitting medium (0-10 

GPa). Experimental and theoretical data are summarized in Table 1 showing rather good 

agreement up to 22 GPa, thus the presence of any first-order phase transition can be clearly 

excluded. It can be stressed that the experimental compressibility of tetragonal Bi2O2Se is 

found between that of its constituent materials, -Bi2O3 (B0=85.4 GPa28) and layered Bi2Se3 

(B0= 53 GPa39). It is noteworthy that the bulk modulus of Bi2O2Se is larger than that of 

other sesquioxides with channel-type structure, like-Bi2O3 (B0= 34 GPa29), and larger than 

that of layered sesquichalcogenides, like Bi2Se3, Sb2Te3 (B0= 40 GPa70) and Bi2Te3 (B0= 

40.9 GPa71). These results can be understood by considering that Bi2O2Se is a layered 

material where Bi2O2 layers are separated by Se square arrays showing weak Bi-Se 

electrostatic interactions at room pressure instead of a standard van der Waals gap between 

Bi2O2 layers. As already commented, since the van der Waals gap is much more 

compressible at low pressures than weak electrostatic interactions, Bi2O2Se shows a smaller 

compressibility (larger bulk modulus) at room pressure than usual layered compounds with 

van der Waals gap, like those of the Bi2Se3 family. 

 The good agreement between experimental and theoretical data allows us to exploit 

theoretical data where experimental data are lacking. Since no reliable Rietveld refinement 

of XRD patterns could be performed (due to texturing effects of the polycrystalline sample) 

to obtain experimental atomic parameters and bond distances. Figure 4 presents the 

pressure dependence of the theoretical Bi-O, Bi-Se, Se-O and interlayer Bi-Bi distances as 

well as of the Bi2O2 layer thickness. As can be observed, the Bi-O bond distance is much 

smaller than the Bi-Se distance at room pressure, thus indicating the strong ionic-covalent 

character of the Bi-O bonds and the weak electrostatic character of the Bi-Se bonds. This 

result justifies the fourfold coordination of Bi and the 2D character of Bi2O2Se at room 

pressure and its easy exfoliation. Regarding the pressure dependence of the bond distances, 

it can be observed that they decrease with increasing pressure in a monotonous way. 
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Notably, while the Bi-O bond distance decreases at a rate of -4.3·10-3 Å/GPa at room 

pressure, the Bi-Se bond distance decreases more than three times faster (-14.8·10-3Å/GPa). 

This strong decrease of the Bi-Se distance also correlates with the strong decrease of the 

Bi2O2 interlayer distance (-29.5·10-3Å/GPa) given by the interlayer Bi-Bi distance which 

results in a strong decrease of the c axis (-78.1·10-3Å/GPa). The strong decrease of the 

interlayer distance with pressure contrasts with the negligible decrease of the layer 

thickness with pressure (-0.2·10-3Å/GPa), which in turn is related to the small increase of 

the Bi z coordinate. Note that the Bi2O2 layer thickness decreases at a smaller rate than the 

Bi-O bond distance, thus pointing to an increase of the Bi-O-Bi angle inside the layer with 

pressure. For comparison with other Sillén-type compounds, the structural values found in 

Bi2O2Se are between those found for SrRh2P2 and BaRh2P2 since the interlayer Bi-Bi 

distance (z coordinate of Bi) at room pressure is 3.59 Å (0.354) and those for the P-P 

distance (z coordinate of P) in SrRh2P2 and BaRh2P2 are 3.284  Å (0.36) and 3.737 Å 

(0.351), respectively32. In these two compounds, the decrease of the interlayer P-P distance 

(equivalent to Bi-Bi distance in Bi2O2Se) is of -23·10-3Å/GPa which is smaller than in 

Bi2O2Se. A considerable decrease of the interlayer P-P distance occurs in SrRh2P2 around 6 

GPa from a non-bonding to a bonding state, which does not occur in BaRh2P2 at least up to 

11 GPa; however, a phase transition at higher pressure (likely around 20 GPa) is expected 

when the P-P distance decreases below 3.1 Å32. Such bondings are typical of light elements 

(O, S, N, P and As), but not of heavy elements, like Bi, so a collapse of the tetragonal 

structure, like in SrRh2P2, BaRh2P2, LaCo2P2, EuCo2P2, EuFe2P2 and EuRu2P2
32,33, is not 

expected to occur in Bi2O2Se. It remains to be seen what happens in Sb-based Sillén-type 

compounds34. 

It must be stressed that despite the strong decrease of the Bi-Se distance, the value 

of this distance does not decrease below 3.0 Å even up to 30 GPa, therefore, despite the Bi-

Se bond length decreases and its strength hardens at HP, Bi maintains its fourfold 

coordination. Therefore, Bi2O2 layers are almost unaffected by pressure and the effect of 

pressure is a rather monotonous and progressive slight contraction of the Bi2O2 interlayer 

thickness. In this way, we can affirm that Bi2O2Se still behaves as a 2D material at HP even 

beyond 30 GPa since there is no net increase of Bi coordination between room pressure and 

30 GPa. The progressive and monotonous compression of the interlayer distance contrasts 
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with observations in van-der-Waals-based 2D materials, where the strong compression of 

the interlayer distance at low pressures is followed by a hardening of the interlayer van der 

Waals interactions and then results in a considerable decrease of the layer thickness. Thus, 

all our results on the HP behavior of Bi2O2Se are clearly related to the lack of a van der 

Waals gap between the layers and the presence of a weak electrostatic Bi-Se interaction 

between the layers in 2D Bi2O2Se. 

 

4.3. Vibrational properties under pressure 

As regards the lattice dynamics of Bi2O2Se, group theoretical considerations of the 

Bi2O2Se structure in the I4/mmm space group indicates that there are 10 normal modes of 

vibration at whose mechanical decomposition is72: 

 

 = 1 A1g(R) + 2 A2u(IR) + 1 B1g (R) + 2 Eu(IR) + 2 Eg(R) + A2u + Eu 

 

where A1g, B1g and Eg modes are Raman-active (R) and A2u and Eu are infrared-active (IR). 

Therefore, there are four Raman-active modes (𝑅𝑎𝑚𝑎𝑛= A1g + B1g + 2Eg), four infrared-

active (IR) modes (𝐼𝑅= 2A2u +2 Eu) and two acoustic modes (A𝑐𝑜𝑢𝑠𝑡𝑖𝑐 = A2u + Eu). Note 

that E modes are doubly degenerated. Table 2 summarizes the frequencies of the 

experimental and theoretical vibrational modes at  in Bi2O2Se at room pressure together 

with the assignment of the vibrational modes to atomic movements thanks to the program 

J-ICE73. A description of vibrational modes and its comparison with other layered materials 

is provided in the Supplementary Material. 

RS measurements in Bi2O2Se at selected pressures up to 28 GPa (Fig. 5 (left))  

show that the most intense Raman peak at room pressure is observed around 159 cm-1 and, 

according to theoretical calculations, would correspond to the A1g mode (Fig. 5(right)). 

The Eg mode, theoretically predicted at 72.0 cm-1 at room pressure, is not experimentally 

observed at room pressure because it is in the limit of detection of our system and in a very 

noisy region of the RS spectrum; however, this peak is clearly seen above 3.8 GPa. It must 

be noted that our RS spectrum at room pressure is similar to that previously reported for 

bulk samples20. As regards the high-frequency B1g and Eg modes at room pressure, they are 

theoretically predicted at 369.4 cm-1 and 444.0 cm-1, respectively; however they were not 
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observed in our RS spectrum neither it was in previous measurements20. Only a broad band 

near 350 cm-1 is observed which is close to the position expected for the B1g mode.  

At present we have no explanation for the non-observation of the high-frequency 

Raman-active modes of Bi2O2Se even at room pressure. It could be due to their intrinsically 

small Raman scattering cross-section (RS measurements with very long exposure time 

and/or with high laser intensity were also performed) or to phonon damping of longitudinal 

optic (LO) phonons caused by the large carrier concentration in this n-type semiconductor. 

In this context, it could be possible that the weak broad bands observed in the high-

frequency region could likely be due to plasmon-phonon coupling L+ or L- bands of the B1g 

and Eg modes, as it occurs in many highly-doped semiconductors74,75. A further study is 

needed to verify this hypothesis. It is well known that plasmon-phonon coupling severely 

limits the mobility of carriers76, so this coupling could explain the rather low mobility (~ 

150 cm2/Vs) found in bulk Bi2O2Se at room temperature in comparison to low temperature 

where carriers are freezed19. Additional proofs have to be made in order to resolve this 

controversy. In case that phonon-plasmon coupling was responsible for the non-observation 

of high-frequency Raman modes, we propose that observation of high-frequency B1g and Eg 

Raman-active modes at room pressure could be a good test to monitor the synthesis of 

Bi2O2Se samples with low carrier concentration in order to improve the mobility of carriers 

at room temperature. 

Since RS spectra of Bi2O2Se up to 28.3 GPa were taken with the same power and 

exposure time and in the same zone of the sample, we can reasonably compare the absolute 

intensity of different peaks. In particular, the intensity of the A1g mode decreases from 0.3 

to 4.2 GPa and increases above this pressure with increasing pressure. This change of 

intensity is likely related to a change of the electronic polarizability due to changes of 

electronic origin as will be commented in the next section since they cannot be ascribed to 

structural changes related to the Bi LEP, unlike in other Bi-related compounds as -

Bi2O3
29,77. Additionally, an increase in the intensity of Raman peaks, followed by the rise of 

new broad bands (mainly at 154.7 cm-1 and in the region between 250 and 450 cm-1), is 

observed above 10 GPa. These new bands were observed in RS measurements performed in 

different zones of the sample and the bands shift with increasing pressure at a similar rate to 

that of the first-order Raman modes (see Figure 5(right)), so they cannot be ascribed to 
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solid oxygen78. In fact, one of them could be related to the B1g vibrational mode 

theoretically predicted to be initially at 369.4 cm-1. Since the recovered sample presents the 

same RS initial spectrum (see top RS spectrum in Fig. 5(left)), it seems that all these bands 

come from the sample so the hypothesis of sample decomposition is not valid to explain 

them. Besides, considerable disorder occurs in the sample on increasing pressure above 10 

GPa, as will be discussed in the next section. Therefore, we have attributed the broad bands 

to second-order Raman modes and/or defect-activated Raman scattering corresponding to 

the PDOS as it occurs in a number of materials75,79,80. A comparison of the Raman 

spectrum at 23.4 GPa and the PDOS at 23.7 GPa (Figure S6 in Supplementary Material) 

shows that the second hypothesis is reasonable despite there are differences in frequency 

and intensity between the experimental and theoretical spectra which point to an 

overestimation of the frequencies of the high-frequency vibrational modes in theoretical 

calculations. It must be stressed that the RS spectrum of Bi2O2Se after pressure release 

from 28.3 GPa is similar to the original one. This means that no hint of the high-frequency 

phonons is observed despite the possible creation of pressure-induced defects, which can 

behave as electron trapping centers, as it occurs in ZnO after the highly reconstructive first-

order wurtzite-to-rocksalt transition81. 

 Figure 5(right) shows the experimental and theoretical Raman-active mode 

frequencies of Bi2O2Se as a function of pressure up to 28.3 GPa and Table 3 summarizes 

the experimental and theoretical frequencies and pressure coefficients of the vibrational 

modes of Bi2O2Se. As it can be observed, the pressure evolution of the experimental low-

frequency Raman-active A1g and Eg modes agrees well with our calculations despite 

theoretical frequencies are slightly overestimated. As it can be observed, the relative 

maxima of the broad band observed above 250 cm-1 also show similar pressure coefficients 

as the high-frequency modes. It is possible that the clear observation of several vibrational 

modes especially above 11.3 GPa could be related to the creation of defects in the sample 

around 10 GPa which also could be due to the loss of hydrostatic conditions of the 

pressure-transmitting medium and to the reduction of the phonon damping. In this context, 

more RS studies with samples with different n-type concentration are needed to shed light 

about the nature of these additional HP vibrational modes.  
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 In summary, both HP-XRD and HP-RS measurements are in agreement with 

theoretical calculations and show that Bi2O2Se does not undergo any phase transition up to 

30 GPa, unlike other isostructural Sillén-type compounds, which undergo a pressure-

induced second-order tetragonal-to-collapsed tetragonal phase transition at relatively low 

pressures32-37 and lead to significant changes of vibrational and elastic properties82. 

 

 4.4. Dynamical and Mechanical stability of Bi2O2Se at HP 

In order to verify that there is no hidden pressure-induced second-order phase 

transition, we have obtained the PDCs of Bi2O2Se along the main points of the BZ at 0, 12 

and 23.7 GPa (Fig. 6). As it can be observed, there are smooth changes of vibrational 

frequencies with increasing pressure, but there is no softening of vibrational modes (modes 

whose frequency goes to zero) which could lead to think about the existence of a dynamical 

instability of the tetragonal phase of Bi2O2Se and therefore the presence of a second-order 

phase transition in the whole pressure range up to 25 GPa.  

In a complementary way, we have calculated the pressure dependence of the elastic 

stiffness constants also known as elastic constants (Figure S7 in Supplementary Material) 

and studied the generalized stability criteria up to 45 GPa (Fig. 7) for a body-centered 

tetragonal lattice (see Supplementary Material for more information). Evidence of a 

mechanical instability of the tetragonal phase of Bi2O2Se is only observed around 41 GPa 

due to the decrease of the M2 stability criterion. This result clearly shows that the body-

centered tetragonal structure of Bi2O2Se is mechanically stable up to 41 GPa.  

In a nutshell, we can conclude that our measurements and calculations clearly 

support the high structural stability of the tetragonal Sillén-type phase of Bi2O2Se under 

compression and the 2D character of the compound up to 30 GPa. It must be stressed that 

the high structural stability of body-centered tetragonal Bi2O2Se could be related to the 

behavior of the Bi LEPs. Bi LEPs, oriented towards the atomic Se layers in Bi2O2Se, are 

likely responsible for the 2D character of many Bi-containing compounds, as already 

commented. It has been shown that HP leads to strong compression of Bi LEPs in other Bi-

based compounds, like -Bi2O3
29,77, and consequently leads to structural changes at 

relatively low pressures. Therefore, the large structural stability of layered Bi2O2Se can be 

understood by the relatively low compression of the Bi-Se distance in comparison to the 
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decrease of the van der Waals interlayer distance in van-der-Waals-based layered 

compounds. In this way, there is a small distortion of Bi LEPs at HP that prevents strong 

structural changes as those observed in other Bi-based compounds. 

   

4.5. Optical Absorption Measurements 

Despite the interest that TE properties of chalcogenides have attracted, the number 

of detailed studies regarding their optical properties is scarce. Only very recently, the 

indirect bandgap of Bi2O2Se has been determined by angle-resolved photoelectron 

spectroscopy (ARPES) to be around 0.8 eV19. Figure 8 shows the optical absorption 

spectrum of a 3 µm-thick sample of Bi2O2Se at room conditions. The maximum value that 

the absorption coefficient reaches (~12·103 cm-1) is typical of a direct bandgap. However, 

the relatively slow rise of the absorption edge that extends for 0.5 eV resembles either the 

absorption edge of an indirect bandgap, where α ~ (hν –Eg)
2 , or the low-energy exponential 

absorption tail of a direct transition, as described by the Urbach law83. In the case of 

Urbach’s tail, the absorption coefficient can be described by α = A0·exp[(hν –Eg)/EU], 

where A0 is an intrinsic constant of the material, EU is Urbach’s energy and relates to the 

steepness of the absorption edge, and Eg is the bandgap. In the inset of Fig. 8, Tauc plots 

with the energy dependence of both the ln(α) and α1/2 are shown to clarify this issue84,85. 

We find a longer straight linear range with ln(α) than with α1/2; thus suggesting that the 

optical bandgap of Bi2O2Se is most likely direct, with a value Eg = 1.486 eV, and its low 

energy absorption tail follows an Urbach’s law. This is also demonstrated by the 

remarkable agreement between our experimental and simulated spectra (Fig. 8) that 

provides values of A0 = 8300 cm-1 and EU = 0.136 eV once the direct bandgap value is 

fixed. 

The theoretical electronic band structure of bulk Bi2O2Se calculated with DFT 

GGA-PBEsol including SOC at 0 GPa is shown at the top of Figure 9. Our calculations 

exhibit the minimum of the conduction band (CB) at the  point and the maximum of the 

valence band (VB) at the N point. Other two local maxima of the VB are located along the 

Z-X- directions. According to our calculations, the bandgap of Bi2O2Se is indirect (N-) 

with a value of 0.296 eV and the direct bandgaps of lower energy are located at Z (1.13 eV) 

and Γ (1.15 eV) points of the BZ. When compared with the indirect bandgap obtained from 
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ARPES measurements (0.8 eV)19, it can be observed that our calculations underestimate the 

indirect bandgap by 0.5 eV. Taking into account this underestimation of the bandgap, we 

can estimate from our calculations that the real direct optical transitions are expected 

around 1.4-1.6 eV; thus in good agreement with our optical absorption measurements at 

room pressure. 

In order to study the HP behavior of the optical bandgap and check the nature of the 

direct gap, we have performed optical absorption experiments at HP (see Fig. 10). As 

pressure increases, the absorption edge keeps its shape and shifts to higher energies up to 

~5 GPa. Above this pressure, the absorption edge becomes insensitive to pressure with the 

sample keeping its optical quality as evidenced by the persistence of interference fringes at 

the low-energy range due to the Fabry-Pérot cavity created by the sample. At ~15 GPa, in 

agreement with the appearance of extra vibrational bands observed before by RS 

spectroscopy, the fringes vanish, the low-energy tail grows, and the edge appears to shift to 

low energies. This might be indicative of the pressure-induced creation of defects as we 

will further comment. In summary, the optical bandgap of Bi2O2Se shows a particular 

behavior that can be divided into three steps. First the bandgap blueshifts up to 5 GPa with 

a pressure coefficient of dEg/dP = 29 meV/GPa. This is followed by a pressure-independent 

behavior from 5 to 15 GPa and finally a redshift with dEg/dP = -13 meV/GPa, accompanied 

by an abrupt increase of Urbach’s energy. 

The HP evolution of the experimental optical bandgap and Urbach’s energy EU up 

to 20 GPa are shown in Fig. 11, where they are compared to the calculated pressure 

dependence of the indirect N- bandgap and the two lowermost direct Z-Z and - 

transitions. On one hand, the behavior of the experimental optical bandgap is qualitatively 

similar to that of the direct bandgap at the Γ point. In order to show it more clearly, the 

theoretical values have been increased by 0.34 eV so that the theoretical direct bandgap at Γ 

matches the experimental value of the optical direct bandgap at 0 GPa. On the other hand, 

the indirect transition shows a maximum at 5 GPa and then slowly redshifts with pressure, 

while the pressure dependence of the direct Z transition is also similar to the experimental 

behavior, but with a much smaller pressure coefficient. Therefore, our results confirm that 

Bi2O2Se has an indirect bandgap that can be estimated around ~0.8 eV if a shift of 0.5 eV is 

added to our calculations and a direct optical bandgap around 1.49 eV. The reason for not 
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observing optically the indirect N- transition and the direct transition at Z could be related 

to their forbidden character (the minimum of the CB is mainly contributed by p orbitals of 

Bi) or to their very low absorption coefficient so that the optical direct bandgap at  is the 

one observed experimentally.  

Above 15 GPa, our calculations do not reproduce the redshift experimentally 

observed (Fig. 11(top)). We believe that the experimentally observed redshiftting tail is due 

to the progressive creation of defects above 10 GPa. The deterioration of the sample above 

15 GPa is evident by the disappearance of interference fringes in the optical absorption 

measurements (Fig. 10), and Urbach’s model allows us to indirectly quantify such effect 

with Urbach’s energy EU, as shown in Fig. 11(bottom). Up to 15 GPa, EU takes a value of 

~160 meV, which is already high and similar to that of disordered systems as indium 

thiospinels86,87; however, above 15 GPa, the value of EU increases up to 240 meV at 20 

GPa, which indicates that the number of defects increases abruptly above 15 GPa and 

making optical absorption measurements very difficult above 20 GPa. Therefore, we 

ascribe the decrease of the optical bandgap in Bi2O2Se above 15 GPa to the creation of 

defects that produce levels between the VB and CB, thus decreasing the optical bandgap. In 

this respect, the decrease of pressure allows to show the reversibility of the change of the 

optical bandgap, but the sample is so damaged that interference fringes are no longer 

observed. 

It is interesting to notice the change of the pressure dependence exhibited by both 

the direct and indirect bandgaps between 4 and 5 GPa with an abrupt change of their 

pressure coefficients. In order to understand these phenomena, we have compared in Fig. 9 

the theoretical electronic band structure of bulk Bi2O2Se at 0 and 4.8 GPa. The electronic 

density of states (DOS) at both pressures is also provided as Fig. S9 in the Supplementary 

material. As observed, the two topmost VBs at  are closer at 4.8 GPa than at 0 GPa. In 

fact, they cross each other around 4 GPa. This crossing explains the abrupt change in 

pressure coefficient of the direct gap between 4 and 5 GPa. This effect can be better seen in 

Fig. 12(left) where the pressure dependence of the orbital decomposition of the topmost 

VB (TVBs) and the second topmost VB (STVBs) are shown. At room pressure, the TVB in 

Bi2O2Se at  is mainly contributed by the px and py orbitals of Se while the STVB is mainly 

contributed by the pz orbital of Se. Since STVB has a larger pressure coefficient than TVB, 
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they come close to each other and a crossing of these bands occurs at 4 GPa. Above that 

pressure, the presence of the px and py orbitals at the TVB almost decreases to zero and the 

pz orbital is the main responsible for these bands at higher pressures. The contrary occurs to 

STVB so the energy distance between TVB and STBV increases above 4 GPa. This abrupt 

change is a clear indication of a band crossing. The larger pressure coefficient of the bands 

with px and py character is similar to that of the conduction band at  (also with px and py 

character) so the pressure coefficient of the direct bangap above 5 GPa becomes negligible.   

Similarly, the indirect bandgap N- (Fig. 11) presents a change in the pressure 

coefficient (a maximum value in energy is obtained around 4.8 GPa). As in the case of the 

direct bandgap, the change in pressure coefficient of the N- indirect bandgap can be 

understood by the change of the character of the two topmost VBs at the N point with 

increasing pressure. At ambient pressure, the TVB at the N point is mainly contributed by 

px and py orbitals of Se (Fig. 12(right)), being the px orbital contribution more than 10 

times higher than the py one. On the other hand, the STVB at the N point is of the same 

symmetry and has similar orbital contribution of px and py orbitals of Se; however, in this 

case the py orbital contribution around 2.5 times higher than the px one. Since STVB have a 

larger pressure coefficient than TVB, they become closer in energy with increasing 

pressure, reaching a minimum energy distance around 5.0 GPa, and tend to separate at 

higher pressures. This is typical of a band anticrossing since both bands have the same 

character88. At the same time, a progressive variation of the contributions of px and py 

orbitals of Se in both VBs occur as they come closer. In fact, the proportion of py character 

in the TVB becomes larger than that of px character above 5.0 GPa and the contrary occurs 

in the STVB, where the proportion of px character becomes larger than that of py character 

above 2.5 GPa. These continuous changes of character are indicative of an anticrossing of 

the two topmost VBs at the N point around 4 GPa. In summary, we can conclude that these 

crossings and anticrossings observed in the top of the VB of Bi2O2Se are related to the high 

compressibility of the Bi-Se bonds as compared with the Bi-O bonds. Note that the 

evolution of the Bi-Se distance with pressure (Fig. 4) shows a pressure coefficient of -

14.8·10-3Å/GPa in the range from 0 to 4 GPa and a pressure coefficient of -8.2·10-3Å/GPa 

in the range of 10 to 16 GPa; thus indicating that the bond Bi-Se becomes almost half as 

compressible at 10 GPa than at room pressure. This is a consequence of the 2D layered 
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character of Bi2O2Se (Fig. 1(top)); therefore, we can ascribe the changes observed near 4 

GPa in RS measurements to changes in the electronic band structure related to the strong 

compression of the interlayer distance and therefore affecting considerably to Se atoms. 

Finally, it must be stressed that the change of the character of the TVB at the N point 

around 4 GPa could lead to a pressure-induced electronic topological transition (ETT) if p-

type doping of Bi2O2Se is achieved.  

 

5. Conclusions 

Our joint experimental and theoretical study of the structural, vibrational, optical, 

elastic and electronic properties of layered Bi2O2Se under compression has shown a good 

agreement between experiments and ab initio calculations for the EOS, the pressure 

coefficients of the Raman-active modes and the bandgap of this material. The 

compressibility and vibrational properties of this layered compound based on weak 

interlayer electrostatic interactions has been analyzed and discussed in comparison with 

typical layered compounds based on van der Waals interlayer forces. In particular, the 

vibrational properties of Bi2O2Se have been discussed in detail on the light of the correct 

Brillouin zone for Sillén-type compounds. 

No first- or second-order phase transition has been observed in Bi2O2Se up to 30 

GPa. Therefore, this material is one of the more stable Sillén-type compounds under 

compression. Curiously, the Bi-based compound BiSbO4 has been recently found to be 

stable up to 70 GPa 89. Despite the lack of important structural changes at high pressure, 

Bi2O2Se exhibits interesting electronic changes around 4 GPa, which are mainly related to 

the shortening and hardening of the long Bi-Se bonds, and leads to a strong change in the 

vibrational, optical and electronic properties of the material due to a change of the character 

of the topmost valence bands. We hope this work will stimulate further studies of Bi2O2Se 

and will help to shed light over this high-mobility semiconductor in order to enhance the 

interesting electronic and TE properties of bismuth oxychalcogenides. Furthermore, the 

results here reported for Bi2O2Se will be helpful to understand the properties of other 

layered Sillén-type compounds and in general in other layered materials lacking van der 

Waals forces between their layers. In particular, this study will be interesting to understand 
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the behavior under pressure of Sb-based Sillén-type compounds32 whose properties under 

pressure have not been explored to our knowledge. 
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Tables 

Table 1 - EOS parameters and axial compressibilities of Bi2O2Se at room pressure. 

 
V0 

(Å3) 

B0 

(GPa)  

κa 

(10-3 GPa-1) 

κc 

(10-3 GPa-1) 

Experimental 184.69(8) 71.5(13) 5.6(3) 3.6(2) 6.4(2) 

Theoretical 183.8 88.17 4.86 3.0 5.9 

 

 

 

Table 2 - Experimental and theoretical Raman (R) and infrared (IR) mode frequencies of 

Bi2O2Se at room pressure. 

Symmetry 
Exp. Freq. 

(cm-1) 

Theor. Freq. 

(cm-1) 
Assignment 

Eu (IR)  59.2 Bi and Se out-of-phase movement 

along the layer (shear interlayer 

mode) 

A2u (IR)  64.5 Bi and Se out of-phase movement 

perpendicular to the layer 

(longitudinal interlayer mode) 

Eg (R)  72.0 Bi out-of-phase interlayer movement 

along the layer 

A1g (R) 159.2 165.7 Bi out-phase interlayer  

movement perpendicular to the  

layers (breathing mode of the layers) 

Eu (IR)  293.9 O in-phase intralayer movement  

along the layer 

Bg (R)  369.4 O out-of-phase intralayer movement 

perpendicular to the layer 

A2u (IR)  402.8 O in-phase intralayer movement  

perpendicular to the layer 

Eg (R)  444.0 O out-of-phase intralayer movement 

along the layer 
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Table 3 – Experimental and theoretical first-order Raman (R) and infrared (IR) vibrational 

mode frequencies and pressure coefficients at room pressure in Bi2O2Se as obtained by a fit 

with the equation Pa·P in the pressure range from 0 to 4 GPa. The frequencies 

and pressure coefficients of other modes observed at different pressures (indicated) are also 

provided.  

Symmetry 

Experimental Theoretical 



(cm-1) 

a 

(cm-1/GPa) 


(cm-1) 

a 

(cm-1/GPa) 

Eu (IR)   59.2(3) 5.5(2) 

A2u (IR)   64.5(1) 4.1(9) 

Eg (R) 59.5(5) 1.0(2) 72.0(1) 1.1(8) 

A1g (R) 160.5(6) 2.1(3) 165.7(3) 2.1(2) 

Eu (IR)   293.9(1) 4.2(6) 

Bg (R)   369.4(5) 4.0(5) 

A2u (IR)   402.8(6) 3.1(4) 

Eg (R)   444.0(1) 5.3(7) 

P1 (6.6 GPa) 137(3) 1.9(4)   

P2 (10.0 GPa) 280(8) 1.1(5)   

P3 (10.0 GPa) 285(7) 2.6(4)   

P4 (6.6 GPa) 296(4) 4.0(2)   

P5 (10.0 GPa) 381(7) 1.8(3)   

P6 (10.0 GPa) 447(5) 2.5(2)   

P7 (10.0 GPa) 537(8) 0.4(4)   

P8 (10.0 GPa) 568(6) 1.2(2)   
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Figure Captions 

 

Figure 1. (color online) (top) Crystalline structure of tetragonal Bi2O2Se at 1 atm. Large 

magenta balls represent Bi atoms, while small red balls represent O atoms and medium-

sized green balls represent Se atoms. Bi atoms are linked to four O atoms with short bonds 

(solid lines) and to four Se atoms with long bonds (dashed lines). O atoms are surrounded 

by four Bi atoms and Se atoms are surrounded by eight Bi atoms. The structure is 

composed by alternate Bi2O2 layers, where Bi atoms show fourfold coordination, and 

atomic Se layers. (bottom) Brillouin zone of the body-centered tetragonal unit cell with c/a 

> 1. 

 

Figure 2. (color online) Angle-dispersive XRD patterns of Bi2O2Se measured at different 

pressures up to 22 GPa at room temperature and on decreasing pressure to room pressure 

(top pattern). The low-pressure patterns (in circles) include the calculated LeBail (black 

line) and difference (red line) XRD profiles. Blue and black vertical markers indicate the 

Bragg reflections of the tetragonal Bi2O2Se phase and the Cu pressure gauge, respectively. 

 

Figure 3. (color online) Experimental (symbols) and theoretical (lines) pressure 

dependence of the lattice parameters a and c (left) and of the unit-cell volume (right) for 

Bi2O2Se. Insets show the pressure dependence of the z coordinate of Bi atoms (left) and the 

c/a ratio (right). Experimental data include those from our in-home Xcalibur diffractometer 

(squares) and from the ALBA-CELLS beamline (circles). Errors in the determination of 

parameters are indicated by symbol sizes. In the volume plot, the solid black line is the 

EOS fit to the theoretical data while the dashed red line is the EOS fit to experimental data 

in the quasi-hydrostatic pressure range.  

 

Figure 4. (color online) Pressure dependence of the theoretical interatomic and interplanar 

distances in Bi2O2Se.  

 

Figure 5. (color online) (left) Room-temperature Raman spectra of Bi2O2Se at selected 

pressures up to 28.3 GPa. The top spectrum corresponds to the recovered sample after 

decompression. (right) Experimental (symbols) and theoretical (lines) pressure dependence 
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of the Raman-active modes of Bi2O2Se. Different colors represent Raman-active modes of 

different symmetries. 

 

Figure 6. Theoretical PDCs of Bi2O2Se at 0 GPa (top), 12 GPa (center), and 23.7 GPa 

(bottom) following the path: X (0,0,½) -  (0,0,0) - Z (½,½,-½) - P (¼;¼,¼) - N (0, ½,0). 

 

Figure 7. Pressure dependence of generalized stability criteria of Bi2O2Se up to 45 GPa. 

 

Figure 8. (color online) Optical absorption spectrum (black) of Bi2O2Se at ambient 

pressure fitted to a direct-type Urbach law (red). The inset shows the linear range presented 

by the absorption edge of Bi2O2Se considering either an indirect (α1/2) or a direct-type 

Urbach tail (ln(α)). The points are experimental data while the straight red lines are guides 

for the eye. 

 

Figure 9. (color online) Electronic band structure of Bi2O2Se at (top) 0 GPa and 4.8 GPa 

(bottom) following the path: X (0,0,½) -  (0,0,0) - Z (½,½,-½) - P (¼;¼,¼) - N (0, ½,0). 

Topmost valence bands (in red) and second topmost valence bands (in blue) are colored in 

order to better show the crossing and anticrossing taking place in these bands with 

increasing pressure around 4 GPa. 

 

Figure 10.  (color online) Optical absorption edge of Bi2O2Se on increasing pressure up to 

20 GPa.  

 

Figure 11. (Color online) (top) Pressure dependence of the band gap of Bi2O2Se obtained 

from fitting the absorption edge to the Urbach’s law. Dots represent the experimental data 

and the continuous lines are the calculated dependences for the Γ → Γ (red line) and the Z 

→ Z (blue line) direct transitions after adding +0.34 eV to compare to the experimentally 

observed bandgap at ambient pressure. The theoretical N-Γ indirect bandgap of Bi2O2Se is 

also shown for comparison (pink line). (bottom) Pressure dependence of the Urbach energy 

in Bi2O2Se. 
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Figure 12. Pressure evolution of the Se orbitals contribution in the top valence bands at 

(left)  and (right) N points. The sudden change of character of topmost valence bands at  

is indicative of a band crossing while the progressive change of character of topmost 

valence bands at N is indicative of a band anticrossing.  
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Figure 1(top) 
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Figure 1(bottom) 
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Figure 3(left)   
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Figure 3(right) 
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Figure 4 
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Figure 5 (left) 
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Figure 5 (right) 
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Figure 6 
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(bottom) 
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Figure 9 
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(bottom) 
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Figure 12 (left) 
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Figure 12(right) 
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