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This work presents a finite element study of the Debye memory in piezoelectric devices. This memory dependency is due to
the spontaneous polarization of the electric dipoles and it can be understood as a transient viscosity-like effect. The formulation
assumes a small strain and rotation hypothesis and the main contribution is the inclusion of time-dependent constitutive behavior.
For this purpose, a unique numerical formulation that uses convolution integrals is developed to solve the time-dependent electric
constitutive equation. A consistent and monolithic finite element formulation is then obtained and implemented. Finally, a commercial
piezoelectric device is simulated for two operational modes: an actuator and a sensor. Several important conclusions on the coupled
mechanical and electric fields are reported and the stability of the time integration scheme is tested by representing the time
evolution of the electro-mechanic energy.

I. INTRODUCTION

Piezoelectric materials are widely used in mechatronic

devices [?], [?], [?] due to their intrinsic ability to couple

electric and mechanic energies. Consequently, these materials

are commonly incorporated in sensors, actuators, ultrasonic

transducers, smart structures, energy harvesters, medical de-

vices, etc. There is then an increasing need for cutting-edge

simulation tools to study and optimize current and future

development of sophisticated industrial equipment.

As in many scientific and technological fields, piezoelectric

studies started from the necessity of develop practical devices:

the initial emphasis in the decade of 1960 was in applicability

[?]. While the electrical and mechanical basics were rapidly

understood, more advanced issues (e.g. numerical solutions,

nonlinearities) were dealt with in the 1990s [?]. From a

mechanical point of view piezoelectric devices have been

extensively studied for both small and large strains. For the

former, the authors of the present work have published several

articles using finite element methods (FE): [?], [?], [?], [?]

and [?]. For the latter, polyconvex approaches are reported in

[?]. Other numerical techniques such as the boundary element

method have been applied to model small strain piezoelectrics,

see [?].

In contrast to advances in the mechanical behavior, some

electrical behavior has not yet been completely simulated.

One of these is the Debye effect, also called Debye memory:

see the classical [?] and the recents [?], [?]. The Debye

effect can be understood as a dielectric relaxation similar to

viscoelasticity in continuum mechanics. This memory incorpo-

rates irreversibilities due to delays in microscopic polarizations

that can be relevant for high-frequency applications such as

ultrasonics.

In the present work a three-dimensional, pseudo non-linear,

transient numerical formulation based on the FE method is de-

veloped to model piezoelectric materials with Debye memory.
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The governing equations are obtained from the Extended Non-

Equilibrium Thermodynamics (ENET) [?], and discretized

with standard isoparametric shape functions. Although the

governing equations are linear, the results present loop shapes

because of the strong dissipation induced by the memory.

A Newmark-β algorithm [?] is used to discretize inertial

effects and is combined with convolution integrals to solve

the irreversibility from Debye terms.

The resulting formulation is implemented into the research

FE code FEAP [?] and several examples are presented to

highlight the importance of the Debye effect in piezoelectric

applications. A piezoelectric plate is simulated and polariza-

tion evolutions for several prescribed shapes (steps and spikes)

and frequencies of the electric field are shown.

A limitation of the presented model is the consideration

of the mechanical field as linear and elastic, although the

material is studied as transversely isotropic. Another restriction

is the absence of magnetic field, that is the objective of an

ongoing research [?]. Thermal effects are also ignored and

will be studied in the future since under high frequencies some

piezoelectric devices tend to overheat.

II. GOVERNING EQUATIONS

The governing equations for the piezoelectric problem with

Debye memory are balance of linear and angular momentum,

Gauss law from Maxwell’s equations, constitutive equations

and initial and boundary conditions. Constitutive equations

are obtained from an electromagnetic enthalpy that couples

both mechanical and electrical energies. Irreversibilities appear

due to the presence of the Debye effect; consequently, the

constitutive equations are expressed as the sum of reversible

terms, as in classical piezoelectricity, and irreversible terms,

as for Debye memory.

A. Equilibrium equations

Consider a domain Ω and boundary Γ with outward normal

n, see Fig. ??. The local balance of momentum of a mechan-
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ical system is given by:

ρm ü = ∇ · T + f , (1)

where ρm, u and T denote mass density, displacement vector,

Cauchy stress tensor and body force, respectively. The symbols

( ˙ ), ∇ and (·) are used for time derivation, Del operator and

dot product, respectively. The body forces are included in f ;

in common applications they are gravity, external fields, etc.

Balance of angular momentum is automatically satisfied by

the symmetry of T .

Assuming small strains, displacements and rotations, the

strain tensor is obtained as the symmetric part of the displace-

ment gradient; in the present work it is expressed by:

S =
1

2

(

∇⊗ u+ u⊗∇

)
.
= ∇syu, (2)

where ⊗ is the outer product.

For electrical equilibrium, the Gauss law is introduced as:

∇ ·D = ρq, (3)

where D denotes electric displacement and ρq the volumetric

electric charge density. Using now the two electric Maxwell

equations in absence of a magnetic field and the Helmholtz

decomposition theorem (also called fundamental theorem of

vector calculus), the electric field E is obtained from a scalar

electric potential for voltage V :

E = −∇V. (4)

B. Polarization vector

In electromagnetism [?], the polarization vector P typically

expresses the density of permanent or induced electric dipole

moments in a dielectric material. The Fig. ?? represents a

piezoelectric domain with a wide range of randomly oriented

dipoles. Macroscopically and in the presence of Debye mem-

ory, P is composed of two microscopic terms:

P =
∑

i

[

p0
i − pi(t)

]

. (5)

On the one hand, p0 represents the instantaneous polar-

ization of each dipole moment and it is directly related with

reversible processes as in classical piezoelectric theory. On the

other hand, p(t) represents the momentary delay in polarizable

media, and it is responsible for the Debye memory that

introduces irreversibilities with entropy production.

From a macroscopic point of view and according to the

ENET, see [?], [?], this irreversibility is taken into account

by the introduction of an empirical relaxation time τ
P

. Con-

sequently, (??) is expressed as the sum of reversible and

irreversible terms. In addition and as common in electro-

magnetism, the polarization is substituted with the electric

displacement vector, again divided into reversible Dr and

irreversible τ
P
Ḋ terms:

D
.
= Dr

︸︷︷︸

rev.

− τ
P
Ḋ

︸︷︷︸

irrev.

, (6)

where the second term of the right side is dimensionally

correct.
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Fig. 1. A piezoelectric of domain Ω and boundary Γ with outward normal
n and with randomly oriented electric dipoles pi.

C. Constitutive equations

These equations are obtained from thermodynamic energy

potentials and relate cause and effect variables. In the present

work, these equations firstly relate mechanical tensors—T

with S—and secondly electrical fields—D with E.

For an amenable FE implementation based on displacements

(mechanical u and voltage V ), the electromagnetic enthalpy

potential Π(S,E, Ḋ) = Πr(S,E) + Πi(Ḋ) is set apply-

ing a Legendre transformation to the total internal energy

U = U(S,Dr, Ḋ). Πr denotes the reversible energy that is

exchanged between mechanic and electric fields and Πi =
τ
P
E · Ḋ is the irreversible electric energy (also called non-

conservative or damping effect) that is converted into heat due

to the Debye memory. Other irreversibilities which increase

temperature could be added—for instance Biot terms—but

they are not the aim of the current work.

The objective of the Legendre transformation is to replace

Dr by E to take advantage of the “kinematic” variables (using

the mechanical nomenclature) (??) and (??).

In a first and qualified approximation, Π can be obtained by

applying to Π(S,E, Ḋ) a Taylor series expansion considering

only terms up to quadratic degree:

Π(S,E, Ḋ) =
1

2

(

S :C :S−E ·ǫ ·E
)

−eV :S ·E+τ
P
E ·Ḋ,

(7)

where C denotes a fourth order tensor of elastic moduli, ǫ

is a second order permittivity tensor and eV is a third order

piezoelectric tensor. In addition, the symbol (:) denotes double

contraction (also called double dot product) of the contiguous

tensors. Generally, in finite element development of elastic

bodies second order tensors are replaced by vectors using

Voigt notation [?]. Thus, third and fourth order tensors become

matrices where the stress and strain indices are mapped

according to:

Sij →
[
S11 S22 S33 2 S12 2 S23 2 S31

]
,

Tij →
[
T11 T22 T33 T12 T23 T31

]
.

(8)

Finally, the constitutive equations are obtained by differen-

tiation of Π from (??) with respect to S and E. Taking into

account (??) this yields:

T =
∂Π

∂S
= C : S − (eV )⊤ ·E,

D = −
∂Π

∂E
= ǫ ·E + eV : S − τ

P
Ḋ,

(9)
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where the supraindex ( )⊤ denotes transposition of a vector

or a matrix.

D. Boundary conditions

The coupled equations given by (??), (??), (??), (??) and

(??) require satisfaction of boundary conditions. Here, two

simple types of Dirichlet and Neumann conditions are used.

Since the problem is coupled, both boundary conditions are

composed of mechanical and electrical terms, given by:

Dirichlet type Neumann type

u = u, T · n = t,

V = V , D · n = q
Γ
,

(10)

where u, V , t and q
Γ

denote prescribed displacements, pre-

scribed voltage, traction vector, and electric charges on Γ,

respectively. This boundary must be split in two parts for both

types of boundary conditions: ΓD and ΓN .

E. Initial conditions

The momentum equation requires initial conditions for

displacement and velocity and, due to the Debye effect, the

electric displacement also requires an initial value.

u(0) = ū0 , u̇(0) = ¯̇u0 , D(0) = D̄
0 . (11)

Zero values are assumed for all of them in this work.

III. FINITE ELEMENT FORMULATION

This section presents a numerical discretization, based on

the FE method, of the governing equations reported in Sec. ??.

A. Weak forms

The governing equations are expressed in strong forms,

namely, they are 2nd order differential functions of the degrees

of freedom u and V . For an amenable FE formulation, the

weak forms must be calculated following the steps:

• (??) and (??) are multiplied by arbitrary test functions

denoted by δu and δV .

• the divergence theorem is applied to the gradient terms

of both equations.

• the Neumann boundary conditions (??) are enforced with

a boundary integral ΓN .

The resulting weak forms are given by:

∫

Ω

[

δu · (f − ρmü)− δS : T
]

dΩ+

∮

ΓN

δu · t̄ dΓ = 0,

∫

Ω

[

δV ρq + (∇δV )·D
]

dΩ−

∮

ΓN

δV q̄
Γ

dΓ = 0.

(12)
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Fig. 2. A continuum domain Ω with boundary Γ is discretized with n three-
dimensional eight-node brick elements of domain Ωe and boundary Γe.

B. Discretizations: Convolution integrals

The continuum domain is discretized by n three-

dimensional eight-node brick elements of domain Ωe and

boundary Γe such that Ω ≈
∑n

i Ωe (see Fig. ??). Standard

shape functions N are expressed as a function of parametric

coordinates ξ for each element. An isoparametric interpolation

is adopted such that global cartesian coordinates x, degrees of

freedom and test functions are approximated by the same N :

.

x ≈ N a x̃a ,

u ≈ N a ũa , ü ≈ N a
˜̈ua , δu ≈ N a δũa ,

V ≈ N a Ṽa , δV ≈ N a δṼa,

(13)

where x̃a, ũa, Ṽa denote a nodal value at the local node a
(or alternatively b) of the mesh, and summation for repeated

indices a or b is applied. Likewise, (??) and (??) are approx-

imated by:

S ≈ ∇syN a ũa = B
sy
a ũa,

E ≈ −∇N a Ṽa = −Ba Ṽa,
(14)

B
sy
a =











Na,1 0 0
0 Na,2 0
0 0 Na,3

Na,2 Na,1 0
0 Na,3 Na,2

Na,3 0 Na,1











, Ba =







Na,1

Na,2

Na,3






,

(15)

where (·,j) denotes differentiation with respect to the jth

Cartesian coordinate.

Time discretization of the momentum equation is performed

using the Newmark method given by:

ũn+1
a = ũn

a +∆t ˜̇un
a +∆t2

[(
1
2 − β

N

)
˜̈un
a + β

N

˜̈un+1
a

]

,

˜̇un+1
a = ˜̇un

a +∆t
[(
1− γ

N

)
˜̈un
a + γ

N

˜̈un+1
a

]

,

(16)

where ũn
a , ˜̇un

a , ˜̈un
a are approximate values of nodal displace-

ment, velocity and acceleration at time tn, respectively, and

β
N

and γ
N

are parameters to control stability and accuracy.

The time increment is denoted by ∆t = tn+1 − tn, where

n+ 1 represents the current and n the previous time steps.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

The discretized form of the mechanical constitutive (??) is

directly calculated by means of (??) to give:

T n+1
≈ C B

sy
a ũn+1

a + (eV )⊤ Ba Ṽ n+1
a . (17)

Due to the presence of the Debye memory, the electric con-

stitutive (??) is an ordinary differential equation; for constant

material properties an exact solution to the differential equa-

tion may be computed from the solution to the homogeneous

equation using variation of parameters:

D(t) = D̄
0

e−t/τ
P

+
1

τ
P

∫ t

0

[

eV :S(t′) + ǫ·E(t′)
]

e−(t−t′)/τ
P dt′,

(18)

where D̄
0

is determined from (??). Evaluating (??) at tn and

tn+1 leads to the incremental form:

Dn+1 = e−∆t/τ
P Dn

+
1

τ
P

∫ tn+1

tn

[

eV :S(t′) + ǫ·E(t′)
]

e−(tn+1−t′)/τ
P dt′.

(19)

The time evolution of S(t′) and E(t′) may be approximated

at each time increment by the finite difference θ-method [?]:

S(t′) ≈ (1− θ1) Sn + θ1 Sn+1,

E(t′) ≈ (1− θ2) En + θ2 En+1,
(20)

which includes both the explicit Euler θ1 = θ2 = 0 and the

implicit Crank-Nicolson θ1 = θ2 = 1/2 methods. Introducing

(??) into (??) yields:

Dn+1 = e−∆t/τ
P Dn +

{

eV

[
(1− θ1) S

n + θ1 Sn+1
]

+ ǫ
[
(1− θ2) E

n + θ2 En+1
]}(

1− e−∆t/τ
P

)

,

(21)

where the integral of the exponential term was solved as:

1

τ
P

∫ tn+1

tn

e−(tn+1−t′)/τ
P dt′ = 1− e−∆t/τ

P . (22)

The memory and coupled effects are represented by the

dependency of both mechanical and electrical degrees of

freedom on the current and previous time steps.

C. Residuals and tangent matrices

Although the present problem is linear, the FE formulation

is based on mechanical and electric residuals R
u and R

V to

accommodate future non-linear developments. For instance,

induced electrostriction or dependency of material properties

with basic variables will be studied in the future. Therefore,

the approximated solutions are achieved by minimizing these

residuals with the Newton-Raphson algorithm, [?]. Mathemat-

ically, residuals are calculated introducing the discretizations

(??), (??) into the weak forms (??):

R
u,n+1
a =

∫

Ωe

[

B
sy⊤
a T n+1 +N a

(
f − ρm N b

˜̈un+1
b

)]

dΩe

+

∮

Γe

N a t̄ dΓe,

R
V,n+1
a =

∫

Ωe

(

B⊤

a Dn+1 +N a ρq

)

dΩe

−

∮

Γe

N a q̄
Γ

dΓe.

(23)

The present FE formulation is based on a monolithic ap-

proach, that is, fully coupled tangent stiffness matrices are

calculated.

To develop these tangent matrices for the Newton solution,

a linearization of the residuals with respect to the degrees of

freedom ũn+1
b and Ṽ n+1

b is performed. The element matrices

are assembled in a standard FE scheme to form the total

matrices for the problem. The resulting system yields:





K
uu
ab + c3 M

uu
ab K

uV
ab

K
V u
ab K

V V
ab





k 





dũn+1
b

dṼ n+1
b







k

=







R
u,n+1
a

R
V,n+1
a







k

,

(24)

where K and M denote tangent stiffness and mass matrices,

and c3 results from linearizing the Newmark relations (??) to

give:

dũn+1
a = β

N
∆t2 d˜̈un+1

a → c3 =
1

β
N
∆t2

. (25)

These matrices are obtained by derivation of (??); only the

terms that explicitly depend on the degrees of freedom remain:

K
uu
ab =

∫

Ωe

B
sy⊤
a

∂T n+1

∂ũn+1
b

dΩe,

K
uV
ab =

∫

Ωe

B
sy⊤
a

∂T n+1

∂Ṽ n+1
b

dΩe,

K
V u
ab =−

∫

Ωe

B
⊤

a

∂Dn+1

∂ũn+1
b

dΩe,

K
V V
ab =−

∫

Ωe

B
⊤

a

∂Dn+1

∂Ṽ n+1
b

dΩe,

M
uu
ab =

∫

Ωe

N a ρm I N b dΩe,

(26)

where I is the identity second order tensor. The previous

derivatives are explicitly calculated using (??) and (??):
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∂Tn+1

∂ũn+1
b

= C B
sy
b ,

∂T n+1

∂Ṽ n+1
b

= (eV )⊤ Bb,

∂Dn+1

∂ũn+1
b

= θ1

(

1− e−∆t/τ
P

)

eV B
sy
b ,

∂Dn+1

∂Ṽ n+1
b

= −θ2

(

1− e−∆t/τ
P

)

ǫ Bb.

(27)

The time-dependency appears only in the last two equations.

This FE formulation is implemented in the FE system

FEAP [?]. The main advantage of this system are that the

required solvers are already developed and users only have to

implement their formulations into a user element.

IV. RESULTS

This section reports several numerical results to study the

influence of the Debye memory on the response of piezoelec-

tric devices. For this purpose, a rectangular piezoelectric plate

7R-34-23-2500 made out of P-5E (lead zirconate titanate) and

manufactured by Piezotite [?] is studied. The dimensions

are 33.3 × 22.8 × 0.8 (mm), see Fig. ??, the polarization is

along the thickness and the material properties given in Table

??.

This piezoelectric is recommended for ultrasonic actuator

applications and its maximum allowable voltage is Vmx =
0.7Ech = 840 (V), where Ec = 1.5×106 (V/m) is the coercive

field and h the plate thickness.

Although constructed for the actuator mode, this device

can also be employed in the sensor mode. In the former, an

electric field is prescribed by a time-dependent voltage and

a mechanical vibration is caused; in the latter, a mechanical

vibration caused by a time-dependent vertical displacement

w(t) induces an electric field. The second mode is the

basis of energy harvesters and/or frequency monitoring of

strains/displacements. The other boundary conditions for both

modes are shown in Fig. ??: mechanically, they are fixed-free

and electrically the voltage is set to zero at the bottom.

V = 0

V (t)
w(t)

V = 0

Fig. 3. Front view of the piezoelectric plate and sketches of both mode
operations: actuator with time-dependent voltage (left) and sensor with vertical
displacement (right).

For studying the response of piezoelectrics with memory,

the relaxation parameters τ
P

can be approximately calculated

by the Casimir limit defined in [?] and modified by [?]. In

the second reference, the original limit based on temperature

T is converted into another based on polarization. Notice

that τ
P

depends on the application velocity of the electric

and mechanic fields and on the material; τ
P

is very small

with O(10−9) for polymers, colloids and glassy systems and

relatively large for ceramics at the macro scale with O(10−1);
see [?] for both orders of magnitude.

Three relaxations are considered here: τ
P

= 0, 10, 80 (s);

the zero value corresponds to the classical piezoelectricity

(without memory) and it is included for comparisons with the

others. The previous values of τ
P

are based on [?], where

an estimation of τ
P

= 1 (s) is assumed with ǫ ≈ 5ǫ0. For

Piezotite, ǫ ≈ 960ǫ0 and, consequently, the value 80 (s)

seems reasonable.

From the numerical point of view, the piezoelectric device is

modeled by using 200 eight-node, three-dimensional elements

with eight integration points, see Fig. ??. For all simulations,

parameters θ1 = θ2 = 1/2 are chosen, resulting in an implicit

scheme that facilitates the integration of the time-dependent

electric constitutive (??). This implicitness is also coherent

with the use of the standard Newmark-β with β
N

= 1/4
for the time integration with ∆t = 0.5 (s) of the hyperbolic

mechanical expression (??). Finally, the variables S and E are

numerically obtained with (??), and with the electromagnetic

constitutive equation P = D−ǫ0E, in which ǫ0 is the vacuum

permittivity.

0.8

33.3 22.8

Fig. 4. Piezoelectric 7R-34-23-2500 manufactured by Piezotite [?],
dimensions in (mm). Finite element mesh composed of 200 eight-node, three-
dimensional isoparametric elements.

A. Actuator modeling

A typical spike signal depending on frequency ω is V (t) =
exp(−ωt): these signals are commonly used in biomedical

applications [?]. The maximum voltage is approximately 840

(V), according to the manufacturer specifications. Conse-

quently, a time-dependent electric field along the vertical

direction with maximum value Ez ≈ −9 × 105 (V/m) is

generated. Notice that the negative sign of Ez is due to the

zero voltage at the bottom and the positive voltage at the top.

The generated polarization Pz (direct effect) through the

thickness of the plate is represented versus the indirectly

prescribed Ez in the Fig. ?? top. For τ
P

= 0, the distribution

should be a straight line since no dissipation is activated in the

formulation. However, a non-zero τ
P

induce hysteresis loops

due to the Debye memory from (??) since from its integral,

it is clear that the effective permittivity ǫ depends on time.

Notice that the loops’ inclination reduces with the increase

of τ
P

; the explanation can be found in the last (??): the higher

the relaxation time the closer the exponential value to 1 and

the derivative of D (proportional to Pz) with respect to the

electrical field tends to zero.

In the bottom figure, the two generated Pz and Szz are

related. Both magnitudes are fully coupled through the piezo-

electric effect and loops appear, but now due to the product of

eV with the exponential of (??). Because of this loop, a given
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Property Value Units

C11 / C33 / C44 / C66 / C12 / C13 143.7 / 129.8 / 29.41 / 29.41 / 82.7 / 82.3 ×109 (N/m2)

eV
31

/ eV
33

/ eV
15

-7.35 / 13.61 / 11.76 (N/m·V)

ǫ11 / ǫ33 8.49 / 7.76 ×10−9 (C/V·m]

ρm 7800 (kg/m3)
TABLE I

MATERIAL PROPERTIES OF THE P-5E PIEZOELECTRIC OBTAINED FROM MANUFACTURER CATALOGUE, [?].
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τ
P
= 0

= 10

= 80

Ez × 105 (V/m)

Pz × 10−3 (C/m2)

P
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×
1
0
−
3
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/m

2
)

S
z
z
×
1
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−
5
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0
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2

22

4
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8

8
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12

Fig. 5. Top: polarization generated by the applied electric field of Fig. ?? top
(continuous line). Bottom: strain along thickness vs. generated polarization;
three relaxation times in (s).

polarization causes two strain states depending on the time

history. This “memory” behavior should be taken into account

for the design of actuators, particularly in sophisticated appli-

cations that require the monitoring of precise deformations.

The inclination trend of the middle line is now the contrary

to that of the previous figure; inspecting the before last (??),

the reasoning of the exponential term still applies but the

relative positions of the figure abscissa and ordinate have been

exchanged.

As observed, the loop area increases with τ
P

and, con-

sequently, a frequency-dependency appears. This behavior is

studied with detail in Fig. ?? for τ
P

= 80 (s) and for three

prescribed electric spikes with different frequencies. As in the

previous figure, frequency-dependent polarizations (middle)

and strains (bottom) are generated. From these results, it can

be inferred that the loop areas decrease with frequency, trend

consistent with the theoretical conclusions reported in [?] that

states:

ǫ ∝ ǫ∞ + f

(
1

ω

)

, (28)

where the symbol ∝ denotes “proportional to”, f means

“function of” and ǫ∞ is the permittivity in the absence of

Debye memory. According to (??), an increase in frequency

reduces the hysteresis-like second term of the right hand side,

function of 1/ω.
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Fig. 6. Top: Prescribed electric field vs. time. Middle: polarization gener-
ated vs. applied electric field. Bottom: strain along thickness vs. generated
polarization; three frequencies in (Hz) and relaxation time τ

P
= 80 (s).

From a numerical point of view, the stability of the time

integration scheme, including Newmark-β and convolution

integrals, is studied by representing the total energy of the

system Π—the electromagnetic enthalpy (??)—versus time in

Fig. ??. Again, the three relaxation times are considered to

compare results and the frequency is the minimum 0.01 (Hz).

All energies start at value zero, then they rapidly increases

following the application of the electric pulse. After removal,

the energy smoothly returns to zero and, therefore, it is

demonstrated that the numerical integration is stable from

the energetic point of view: spurious numerical energy is
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not introduced in the system. For τ
P

= 0 the energy peak

is approximately 8000 (J), for the others their maximum is

smaller since the Debye memory introduces irreversibilities

represented by Πi in (??).

To qualify this effect and thermodynamically, the entropy

balance is given by:

ρm ṡ = −∇ · js + σs, (29)

where s, js and σs denote entropy, entropy flux and entropy

production, respectively. For reversible effects, σs = 0 and

the entropy is conserved. But the Debye memory produces

an entropy σs = Ḋ ·E/T , where T is temperature in Kelvin

scale. Therefore, part of the total electromechanical energy is

converted into heat. Microscopically this heat is produced by

the mentioned momentary delay of the dipoles.
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B. Sensor modeling

The other relevant application of piezoelectric devices is

the sensor mode, which is simulated with results given in

Fig. ??: a sinusoidal mechanical vibration applied through

the thickness of the piezoelectric plate is prescribed. Due

to the piezoelectric coupling, polarization (top) and electric

fields (bottom) are generated. Again, three relaxation times

are assumed.

The most relevant observation is that the areas of the

hysteresis loops are much smaller than those of the actuator

situation from Fig. ??. This fact is directly related with the

frequency-dependency of the material properties. For instance,

a one-dimensional (1D) analytical approximation of the strain

and electric field generated during the actuator and sensor

modes, respectively, can be estimated as functions of deriva-

tives. In the top (??), T ≈ 0 since the plate is clamped in the

complete lower face; from the bottom equation and since the

only prescription is mechanical, D and its derivative is zero.

Szz ≈ f

[
eV (τ

P
)

C

]
∂V

∂z
, Ez ≈ −f

[
eV (τ

P
)

ǫ(τ
P
)

]
∂u

∂z
,

(30)

where C, ǫ(τ
P
) and eV (τ

P
) denote the 1D material properties.

Notice that the last two coefficients decay with the inverse

of τ
P

, according to (??). As was observed in the previous

subsection, in the actuator model the generated strain directly

depends on ǫ. On the contrary, for the sensor mode the

generated electric field depends of two frequency-dependent

material properties: ǫ and eV and, consequently, the memory

effect is attenuated.

The loop areas slightly depend on τ
P

as in Fig. ??; in fact,

the almost coincidence of all distributions can be explained by

the simplification of the τ
P

exponential term in (??). Again

linear behavior is observed.

Finally, in this case the response is almost one-to-one: a

given polarization value in the top figure produces the same

strain since the memory effect is very weak, therefore, it is

not necessary to considered the Debye memory to properly

analyze electrical signals in this mode.
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10−5 sin 0.03t during 450 (s). Bottom: generated polarization vs. generated
electric field. Three relaxation times τ
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V. CONCLUSIONS

This work presents a numerical formulation within the finite

element method to model piezoelectricity with Debye memory,

which can be considered as a “viscosity-like” effect associated

to the electric field through the inclusion of relaxation times.

The formulation assumes material linearity and small strains

and rotations.

Numerically, a monolithic formulation is developed, with its

main difficulty arising from the time-dependency of the elec-

trical constitutive equations. This difficulty is solved by using

convolution integrals. Then, standard Newmark-β schemes are

employed to solve the dynamics. Energy studies are conducted

to guarantee the stability of the numerical time integration.

A commercial piezoelectric device for both actuator and

sensor operation models is simulated and hysteretic-like be-

haviors are observed due to the electric memory. Obviously,
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the hysteresis depends of the relaxation times and, conse-

quently, a frequency-dependence appears. For the first model

the loops are relevant, for the second they almost disappear.

Despite the fact that the Debye memory is not relevant

in macro piezoelectric devices since the relaxation times are

small, this effect could be relevant in novel and sophisticated

micro- and nano-devices since the dimensions of the sample

can be smaller than the intrinsic mean free path (a scale

parameter in statistical physics) of the material. Also, this

effect is relevant in high-speed applications such as ultrasonic

propagations that are used in biological tissues.

The present numerical tool can be used for the design and

optimization of more sophisticated mechatronic devices based

on piezoelectric materials.
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[12] A. Sáez, F. Garcı́a-Sánchez and J. Domı́nguez, Hypersingular BEM for
dynamic fracture in 2D piezoelectric solids, Computer Methods in Applied

Mechanics and Engineering, 196, 235–246, 2006

[13] J. Debye, On the theory of anomalous dispersion in the region of long-
wave electromagnetic radiation (English Translation), Verh. dtsch. phys.

Ges., 15, 777–793, 1913

[14] B. Tiwari and R. N. P. Choudhary, Study of impedance parameters of
cerium modified lead zirconate titanate ceramics, IEEE Transactions on

Dielectrics and Electrical Insulation, 17(1), 5–17, 2010

[15] G. K. Zhu, M. Mojahedi and C. D. Sarris, Acoustic precursor wave
propagation in viscoelastic media, IEEE Transactions on Ultrasonics,

Ferroelectrics, and Frequency control, 61(3), 505–514, 2014

[16] D. Jou and G. Lebon, Extended Irreversible Thermodynamics, Springer-

Verlag Berlin Heidelberg, 1996

[17] N. Newmark, A method of computation for structural dynamics, J. Engr.
Mech., ASCE, 85, 67–94, 1959

[18] R. L. Taylor, FEAP A Finite Element Analysis Program: User Manual,
University of California, Berkeley, 2010

[19] R. Palma, J. L. Perez-Aparicio, R. L. Taylor, Numerical formulation
to study hysteresis behavior in magnetostrictive actuators, IEEE/ASME

Transaction on Mechatronics, in progress, 2017

[20] J. R. Reitz and F. J. Milford, Foundations of Electromagnetic Theory,
Addison-Wesley Publishing Company, Inc., 1960

[21] S. R. de Groot and P. Mazur, Non-equilibrium Thermodynamics, Dover,
1984

[22] O. C. Zienkiewicz, R. L. Taylor and J. Z. Zhu, The Finite Element
Method: Its basis and Fundamentals, 7th ed., Elsevier Butterworth-
Heinemann, 2013

[23] R. D. Richtmyer and K. W. Morton, Difference methods for initial value
problems, Interscience, 1967

[24] P. Gaudenzi and K. J. Bathe, An iterative finite element procedure for the
analysis of piezoelectric continua, Journal of Intelligent Material Systems

and Structures, 6, 266–273, 1995
[25] Piezotite, Murata Manufacturing Co, Ltd, http://www.murata.com/,

20170
[26] H. B. G. Casimir, Note on the Conduction of Heat in Crystals, Physica,

5(6), 495, 1938
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