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ABSTRACT

This project has been created by Adrián González Ramírez as his Final Degree Project of
the Degree in Design and Development of Video Games of the Jaume I University [1].

This project focuses on creating a tower defense video game [2] and incorporating different
models graphs (Neural Networks [3]) generated with Machine Learning Agents [4] and the Proxi-
mal Policy Optimization (PPO) [5] Reinforcement Learning [6] algorithm, which will determine
the behavior of the Non Playable Characters (NPC).

Machine Learning [7] is, in the decade of 2010, a very present technique in a large number of
areas. The basis of the machine learning studied in this project are the same for any project that
uses Reinforcement Learning [6].

The method presented in this project shows a way to get different difficulty levels without
hardcoded behaviors, as Rubber banding [8], making less evident the manipulation of the difficulty
in the attempt to keep users desire to keep playing.
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1
TECHNICAL PROPOSAL

The present section composes the technical proposal of the Final Degree Project that Adrián

González Ramírez [9] will develop in the Degree in Design and Development of Video

Games at the Jaume I University [1].

The proposed Final Degree Project consists in the development of a video game of the Tower

Defense genre in the Unity3D [10] engine that incorporates a Non-Playable Character (NPC)

that uses Machine Learning [7] techniques to simulate the behavior of a human player and adapt

it to the different situations of inside a game. This NPC will improve its skills based on previous

game experiences by using neural networks.

Keywords: "tower defense", "artificial intelligence", "reinforcement learning", "machine learn-

ing", “neural networks”.

1.1 Project motivation

Nowadays there are countless video games in which the player plays against a player not handled

by a human being, i.e. against a machine. Many of these games have an artificial intelligence

based on rules that often become predictable. A predictable AI can provoke in the player a loss of

desire to continue playing since he can learn certain techniques the machine don’t know how to

react to or, just the opposite, the machine takes control shamelessly of what happens in the game.

Neural networks are a nice option to create a decent AI.

Rubber banding or Dynamic game difficulty balancing [8] is a technique that tries to maintain

games equalized by adapting the difficulty to the player’s level. The rubber banding AIs are quite

3



CHAPTER 1. TECHNICAL PROPOSAL

maddening for players with great skills that look for fair games. One example of rubber banding

is the US7278913B2 [11] used in Mario Kart: Double Dash!! [12] and similar behaviors are still

visible in latest video games. An explanation of the behavior of some games of this king can be

seen in Paste Magazine [13].

Although companies like Electronic Arts deny the existence of this kind of AI (read the words

of Matt Prior in Eurogamer [14], creative director of FIFA 18 [15] ), a lot of players are still

uncomfortable with certain advantages that the AI takes at certain moments. One example is to

see an NPC car in Need for Speed [16] suddenly accelerating and slowing down whenever it gets

too far from the player. Another example is to see goalkeepers in FIFA 18 making fantastic saves

or incredible mistakes depending on the match status.

Using neural networks properly would allow getting AIs adapted to player’s level avoiding

the weird results that other widely used techniques currently show. Keeping the same level of

difficulty during all the match in FIFA would also keep the players desire to play without making

the management of the difficulty so obvious, with specific actions, as now it does.

1.2 The game

The video game TAJ will be a tower defense and it will have totems as main characters. The

game area will be divided into several straight paths that connect the base of one player with

that of the other. The main goal of the player is to defend, with three types of totems and four

types of power-ups, his 3 power stones and to attack the enemy’s ones. The winner will be the

player who conquers the 3 enemy’s power stones.

1.3 Related subjects

This project is related to the following subjects:

• VJ1231 Artificial intelligence

• VJ1234 Advanced Interaction Techniques

• VJ1227 Game Engines

• VJ1226 Character Design and Animation

1.4 Objectives

The main objective is to develop an artificial intelligence for a video game by using neural

networks. This neural network must detect the best action given a game status. This is how the

NPC will be able to adapt its actions to the changing situations during a game. It will have to

4
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learn from its experience in previous games against another random NPC and some tests against

human players.

1.5 Target

TAJ is aimed at casual players of all ages looking for fun in short periods of time such as com-

muting to work or college. These casual players focus much more on short-term competitiveness

and entertaining mechanics than on the story and narrative of the game.

1.6 Expected Results

The main objective of the work is to implement neural networks algorithms that result in an

NPC able to simulate the actions that a human player would perform. The ideal NPC would allow

an addictive, challenging and often unpredictable gameplay, avoiding the predictable behavior

of the predefined rules based AI’s. It is important to obtain a pleasant audiovisual result in the

game by using animated 3D models and sounds that maintain the player’s attention.

1.7 Planning

Table 1.1: Planning of the Final Degree Project.

Dedicated hours

Hours Task
20 Neural networks algorithm’s research

20 Modeling and animating video game components

80
Video game programming (gameplay, mechanics, Head-Up Display HUD, insert 3D

models and animations)

50 Adding neural networks into the video game

30 Creation of the analysis and design document

70 Report of the project

30 Prepare presentation

10 Creation of video about the project

End of Dedicated Hours
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2
GAME DESIGN DOCUMENT

2.1 Introduction

TAJ is a Tower Defense video game for two players who will try to conquer the enemy’s power

stones by using a different kind of totems and power-ups on a map based into two riverbanks and

three paths that connect them.

2.1.1 Game concept

In this adventure, the player finds himself in a village called TAJ, known by everyone as the

greatest power source on the Earth. As legend has it, the one who dominates the territory of TAJ

will shape the future of the planet by attracting cosmic energy that will cause either prosperity

or decay.

Nature is defenseless of innumerable dangers caused by the power of Nerta totems. The

continuous power battles between Nerta and Ittla factions to obtain the power of TAJ will

determine the continuity of the harmony between men, animals, plants, and Earth.

The player will decide to choose between helping the Earth by joining Ittla or getting the

eternal mandate in the darkness by joining Nerta.

2.1.2 Main features

TAJ is a video game with two salient features:

• Simple approach: Make three totems reach the enemy’s base to conquer the enemy’s power

7



CHAPTER 2. GAME DESIGN DOCUMENT

stones and win the battle.

• Tactic-mental game: The way to enter totems into the enemy’s base depends both on how

the player plays and how the enemy plays.

2.1.3 Genre

TAJ is composed of the mixture of two video game genres:

• Arcade: Is a game with short battles, based on easy to understand and addictive mechanics.

• Tower defense: The goal is to defend possessions (power stones) and conquer the enemy’s

ones.

2.1.4 Purpose

The purpose of TAJ is to offer players a fast and simple entertainment. At the same time, it is

interesting to get players competitiveness and force them to play with different tactics that make

them better against different opponents.

It will exist an arduous NPC for the players to train before playing against human opponents.

2.1.5 Visual style

The representation of the video game will be based on 3D models that will contribute to the game

experience. A pleasant environment with contrasted and saturated colors will be used to attract

more players and encourage them to play.

Both the environment, based on a tropical island, and all the characters and power-ups will

be modeled in low-poly to get a casual look and nothing overwhelming.

2.2 Game mechanics

This section talks about the gameplay of TAJ and details the mechanics that the player can

perform to achieve their goals. It also offers a list of both characters and power-ups that make up

the game.

2.2.1 Gameplay

The village of TAJ is divided into two clearly separated riverbanks that make up the balance of

power. Each one of these riverbanks has three power stones. The riverbanks are connected to

each other with 3 different paths through which the totems can move.

Each player will have 3 different types of totems that can be used on one of the 3 paths only

every so often because they need to be charged to be used. These totems, once used, will advance

8



2.2. GAME MECHANICS

FIGURE 2.1. Sketch of the TAJ Game screen.

towards the opponent’s riverbank. If on the way to the enemy’s base they find an enemy totem,

they both will fight. The one who remains alive will continue advancing to the enemy’s base.

The winner will be the player who manages to enter one totem (of any type) in each path of the

enemy’s riverbank.

In addition, the player will have the option to insert totems in a shrine (instead of in a path).

This insertion accumulates spirits which can be used together to get benefit from power-ups that

will suddenly change the course of the game.

When entering a totem into the enemy’s riverbank by using a path, the first totem introduced

will conquer the power stone related to this path. The following totems will not conquer any other

power stone.

There will be 4 power-ups:

• The force of ice will paralyze every enemy totems at all. One spirit is needed to use it.

• The force of wind will accelerate the advance of the totems of the player who uses it towards

the opposite base. One spirit is needed to use it.

• The force of the sun will reload all the totems charge of the player who uses it and it will

allow to insert them instantly. One spirit is needed to use it.

• The force of the faith will eliminate all the enemies of the selected path. This is the one

which will require more spirits to be spent. Two spirits are needed to use it.

9
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2.2.2 Game environment

TAJ will be the village where the power battles will take place. As commented in Section 2.2.1,

the village of TAJ is divided into two clearly separated riverbanks.

Each player is located on one side of the screen just to create a well-known confrontation

environment easy to understand for the user.

Each riverbank has three gaps where it is possible to insert the different totems. Each one of

this three gaps is part of each one of the three paths that connect both riverbanks. To place a

totem in one of this gaps means to send them to fight towards the enemy’s riverbank.

In addition to this, each riverbank has one shrine, where the totems are able to get spirits.

2.2.3 Challenges

The main challenge that the video game proposes is to defeat the different opponents against

whom the player plays. There can only be one winner in each power battle.

There is a global victories-defeats rank of players that will keep the players’ competitiveness

on each battle trying to keep his status.

2.2.4 Rules

TAJ presents a series of basic rules:

• A totem can only be inserted into a gap if it has enough charge to be used.

• The use of a totem in any gap or in the shrine will empty the charge of this totem. Each

totem has a certain recharge speed.

• The use of a totem in the shrine will give the player one spirit.

• The use of a totem in a gap will make it move towards the enemy’s riverbank.

• Each totem has certain units of life. If one totem faces another on the same path, both will

lose as many units of life as the enemy owns.

– Example: Totem A with 3 units of life versus totem B with two units of life. The result:

Totem B will die and totem A will continue moving towards the enemy’s riverbank

with 1 unit of life.

• Each power stone is related to a path and it can only be conquered by "the first" enemy

totem that reaches the riverbank using this related path.

10
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• If a totem reaches the riverbank of the enemy using a path "and it is not the first", it will

not conquer another power stone not related to its path.

• If a player achieves three enemy’s power stones (although he has previously lost two or

fewer stones), he will automatically win the power battle and the game will be over.

• A power-up can only be used if the player owns the needed spirits for that power-up.

2.2.5 Characters and Enemies

Nerta and Ittla are the two factions in the universe of TAJ. Both factions count with the same

kind of totems and the only difference between them are the color of their energy:

• Vasu (see Figure 2.2)

– Description: It symbolizes strength, endurance, and greatness.

– Features:

* Life: 6 life units

* Moving speed: 1 space unit per time unit

* Charging speed: 10 seconds for a full charge

FIGURE 2.2. Sketch of the Vasu character.
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• Kaapo (see Figure 2.3)

– Description: It symbolizes determination, balance, and serenity.

– Features:

* Life: 4 life units

* Moving speed: 2 space units per time unit

* Charging speed: 5 seconds for a full charge

FIGURE 2.3. Sketch of the Kaapo character.

• Rad (see Figure 2.4)

– Description: It symbolizes speed, cunning, and elegance.

– Features:

* Life: 2 life units

* Moving speed: 3 space units per time unit

* Charging speed: 2.5 seconds for a full charge

FIGURE 2.4. Sketch of the Rad character.
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2.3 Interface and controls

2.3.1 Screens’ flowchart

FIGURE 2.5. Screens’ flowchart of TAJ.

2.3.2 Start screen

The Start screen consists of the Play, Ranking, How to Play and Exit buttons.

• Play will take the player to the Faction and opponent selector screen and follow the usual

flow to play a power battle.

• Ranking will open a pop up which will contain a list of players, their victories, and their

defeats.

• How to Play will open a pop up which will contain a small text teaching the player how to

play TAJ.

• Exit will show the player a confirmation screen with two options:

– Yes will close the game and take it back to the operating system.

– No will close the dialog box and return to the Start screen.

2.3.3 Faction and opponent selector

The Faction and opponent selector screen let the player choose which faction to play with, Ittla or

Nerta. It also let him choose the opponent, human or NPC. It includes the button Back and Play.

• Play is also available if the faction and opponent have been previously chosen. Once clicked,

it will take the player to the Game screen.

• Back will take the player back to the Start screen.

13
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2.3.4 Game

The TAJ Game screen will be composed by:

• The decorative 3D environment of the game inspired by a tropical island. This topic is

further explained in Section 2.5.

• The playable scenario of the game. Two riverbanks, three paths connecting both riverbanks,

one gap on each side of each path, one shrine on each riverbank and three power stones.

• Head-Up Display (HUD) (see Figure 2.1):

– Several icons will be located on the top left corner representing the game status of the

player placed in the left riverbank. The icons will be seven, three for the totems and

its charge and four for the power-ups. A label to see how many available spirits the

player has will be also visible.

– Same information icons as in the top left corner will be located on the bottom right

corner, but these ones will represent the game status of the player placed in the right

riverbank.

• The pause pop up menu will be only visible if the Pause button is pressed and it will contain

two buttons:

– Exit that will finish the current game and take the player to the Start screen.

– Resume that will close the pause pop up menu and resume the current game.

• The game summary pop up will be only visible when the game is over. It will report the

players some game statistics and who has won. It will also contain an Exit button that will

take him to the Start screen.

2.3.5 Controls

The whole gameplay is controlled with the mouse.

• Using a totem:

– If the totem has a full charge, the player only has to left click the icon on the HUD

that represent the totem. Afterwards, he will see the four gaps where he can place it

highlighted (the three paths and the shrine path). The next step is to left click over

the gap he wants to place the totem at and the totem will start moving from them to

the enemy’s riverbank.

– If the totem has not a full charge, the player cannot left-click over its icon. If he

left-clicks on it, nothing will happen.
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• Using a power-up:

– If the player has enough spirits to use a power-up.

* If the player chooses The force of the faith, he will see all paths highlighted. He

will have to left-click on the path he wants to use the power-up over and the

power-up will take effect.

* If the player chooses a power-up different from The force of the faith, he only has

to left click the icon on the HUD and the power-up will take effect.

The Esc key will pause the game and show the Pause pop up.

Figure 2.6 helps to understand the actions the player has available during the gameplay.

FIGURE 2.6. Gameplay’s flowchart.
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2.4 Music and sounds

The music and sounds both of the game menu and gameplay wants to show freshness and

dynamism, involving the player inside the environment of a tropical island influenced by a battle

that will determine the future of the Earth.

There are two main kinds of sounds in TAJ:

• Environmental sounds: small decorative sounds that make the player go into the world

that is playing, such as the river water, the battles between totems, the acts of faiths, etc.

• Totem and power-up sounds: each action in the game will have a representative sound that

will warn the own and enemy’s actions. For instance, once a totem is placed, a sound will be

played.

2.5 Art

The art of TAJ is inspired in the Donkey Kong Country Returns (see Figure A.5(a)) video game

and in other artistry from anonymous artists of the same style (see Figure A.5(b)). The camera

perspective used will be "Top-down", although slightly tilted to highlight the shadows and depth

of the 3D models.

The environment will be composed of elements that are usually seen on tropical islands, such

as palm trees, shrubs or sand. In addition, the spiritual touch of TAJ will make the player see

elements such as magic lamps, chains with precious stones or skulls that will further enrich the

game’s scenario.

Totems, power stones, and every item seen in the gameplay will be modeled in low-poly 3D.

The treatment of color will abuse the use of flat, very saturated and attractive tones, just to

draw attention to the player. The idea is to show an ideal fantasy world able to offer a feeling of

freshness and freedom.

2.6 NPC and Artificial Intelligence

2.6.1 IA NPCs

In the case where the player decides to play against the machine, TAJ incorporates an NPC that

uses machine learning techniques to simulate the behavior of a human player and adapt it to the

different situations of inside a game. This NPC will improve its skills based on previous game

experiences by using neural networks.
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This neural networks will consider a lot of variables as proximity to the riverbank, number

of enemies on each path, level of charge of own and enemy’s totems, number of spirits, etc.

Depending on the state the NPC will try to choose the best action to defeat its enemy.

2.6.2 Technical aspects

2.6.2.1 Target device

The target devices are the Windows [17] personal computers and Android [18] devices.

2.6.2.2 Hardware and development software

The hardware needed:

• Computer with Windows 7 [19] or higher (only 64 bits) or Mac OS X 10.9+ [20] .

• Central Processing Unit (CPU) with SSE2 [21] instruction set support.

• Graphics Processing Unit (GPU) compatible with DX9 (shader 3.0) or DX11 with feature

level 9.3 capabilities [22].

The software needed:

• Unity3D 2017.3.1f1 [10] engine with the C# programming language, for the development of

video game and artificial intelligence techniques.

• Tensorflow 1.4 [23] open source software library for highperformance numerical computa-

tion.

• Machine Learning Agents (ML Agents) 0.3 [4] and TensorFlowSharp as the plugins to hold

reinforcement learning along with Unity.

• Anaconda 3 5.1.0 [24], which includes Python 3.6.4 [25], Conda 4.4.10 [26], Jupyter Notebook

4.4.0 [27] under which Tensorflow runs.

• NVIDIA CUDA 9 [28] and NVIDIA cuDNN 7.1 [29] to speed up the processes of Tensorflow.

• Blender 2.78.3 [30] for the modeling and animation of video game components.

• Photoshop CC 2017 [31] for the creation of sprites.

• Google Drive Slides [32] for the presentation slides

• Visual Studio [33] Ultimate 2012 4.7.03056 as integrated development environment IDE.

• Overleaf [34] to lay out the document.
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3
PROGRESS OF THE PROJECT

This section relates the development of the project from its beginning, the way things have

been done, the problems found on the way and how they have been solved.

3.1 Art of the video game

Five models (sand terrain, Rad, Vasu, Kaapo, shrine and gaps) have been modeled in low poly

3D with Blender [30]. The saturated and plain colors of the models have been added by directly

coloring faces with materials. Each one of these models has a material which refers to the color of

the faction. Once the character is inserted, the game replaces this material with the one that

corresponds to its faction. Go to Appendix A to see sketches and screenshots.

The skull [35] and the palm tree [36] models have been downloaded from the Unity Asset

Store [37] and positioned in the environment to enrich it.

Water was added to the game by using the scripts created by Blendcraft Solutions [38].

Sound effects has been downloaded from Freesound [39] and musics has been downloaded

from Youtube Audio Library [40]. Sound effects play whenever its related action is done and the

music is always in the background.

A Particle System pack [41] has been downloaded from Unity Asset Store as well. Four of

these particle systems have been modified to get a proper appearance for each one of the four

power-ups and two more have been edited just to decorate the environment (one for sand swirls

and another for a waterfall).
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FIGURE 3.1. TAJ Environment.

When the game screen loads, before the battle starts, a horizontal panoramic has been

programmed to the camera to show the playing field. In addition, Post Processing Stack [42] has

been used to add fog, Fast Approximate Anti-Aliasing FXAA [43], Ambient Occlusion [44] and a

vignette effect.

3.2 Neural networks research

Machine learning [7] is a branch of artificial intelligence [45] whose objective is to develop

techniques that allow computers to learn.

There are several ways of making machines learn. The one used in this project is the Rein-

forcement Learning [6] technique called Proximal Policy Optimization (PPO) [5] whose purpose is

to determine what better actions a software agent should choose in a given environment in order

to maximize some notion of reward or accumulated prize.

A clear example is teaching a dog how to sit. Since the dog is not able to understand human

language, if every time it does things well (for instance, it sits down after listening "Sit") it

receives a cookie, it will little by little link the action of sitting takes it to get the reward of eating.

This principle is basically how Reinforcement learning [6] works.

The main objective in this project is to get a neural network [3] composed by a lot of neurons
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FIGURE 3.2. Scheme of a neural network [46].

(or nodes) connected to each other able to give an output result (actions of the NPC, output layer

in Figure 3.2) after passing several input variables (environment state/observations, input layer

in Figure 3.2).

To get this neural network [3] it is needed to make a repetitive process called training that

will define which actions lead to have rewards or punishments.

The hidden layers between the input and the output layers (see Figure 3.2) are not human

understandable, but having a neural network [3] guarantees that the machine will always address

its behavior to get as much reward as possible. So, it is very important to think possible logic

gaps the machine could take to achieve its goal. For example, in a First Person Shooter (FPS) [47]

game [47], rewarding the machine every 5 seconds for staying alive will probably make it avoid

confrontations. It will maybe find a place on the game map where it is always safe and it will

stay still there forever. For sure, this is not the ideal behavior of an NPC that should entertain

the human player and be, somehow, competitive. Rewarding the machine for hurting an enemy

or continuing alive after a confrontation would be a much better option.

Therefore, it should be noted the importance of collecting the variables that best represent

the state of the game to facilitate the agent’s learning (observations).

More information about neural networks can be found in the free online book "Neural

Networks and Deep Learning" [48].

3.2.1 Software needed

Unity Machine Learning Agents (ML-Agents) [4] is an open-source Unity3D [10] plugin that

enables games and simulations to serve as environments for training intelligent agents. The

21



CHAPTER 3. PROGRESS OF THE PROJECT

implementations of ML-Agents PPO [49] algorithm are built on top of the open-source library

Tensorflow [23], originally developed within Google’s AI organization, which allows deployment

of computation across a variety of platforms such as CPUs, GPUs, and Tensor Processing Units

(TPUs) [50]. The training made by Tensorflow is executed in a separate Python process (communi-

cates with Unity over a socket) and it generates a model in a file with extension .bytes that can be

inserted into an Internal brain to make agents behave with the reached knowledge.

The use of Tensorflow along with Nvidia CUDA [28] and the CUDA Deep Neural Network

library (cuDNN) [29] speeds up in a remarkable way (up to 3x) the process of training an agent

in the current project, since the power of the CPU and GPU are better-exploited thanks to the

parallel processing. In cases where a GPU is not present, setting Tensorflow properly will make

it work only with the CPU [51].

A nice platform to install the complex Tensorflow environment and work with it is Anaconda

[24], which takes care of installing more than 250 data science packages, a Python [25] compiler,

the Conda [26] package to allow handling libraries outside the Python packages and the Jupyter

Notebook [27] to allow writing code with embedded visualizations.

Tensorboard [52] is installed along with Tensorflow and it allows the visualization of certain

agent attributes (e.g. learning rate or entropy) throughout training, which can be helpful in both

building intuitions for the different model attributes (called hyperparameters) and setting the

optimal values for the Unity environment.

Since Tensorflow does not provide a native C# Application Programming Interface (API),

Unity offers a third-party library called TensorFlowSharp which provides .NET [53] bindings to

TensorFlow, allowing the use of Internal brains. This add-on, currently marked as experimental,

allows to apply trained models into the Internal brains to see the learning progress of the agent

inside the Unity editor.

Summarizing, the software used for integrating machine learning with Unity is:

• Tensorflow 1.4 [23] open source software library for high-performance numerical computa-

tion.

• Machine Learning Agents (ML Agents) 0.3 [4] and TensorFlowSharp as the plugins to hold

reinforcement learning along with Unity.

• Anaconda 3 5.1.0 [24], which includes Python 3.6.4 [25], Conda 4.4.10 [26], Jupyter Notebook

4.4.0 [27] under which Tensorflow runs.

• NVIDIA CUDA 9 [28] and NVIDIA cuDNN 7.1 [29] to speed up the processes of Tensorflow.

The installation process of this software is described in Section 3.4.
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3.3 Programming the video game

From the beginning of the programming process, it has always been a priority to keep information

(actions and observations) easy to access to facilitate the subsequent integration of neural

networks.

Taking into account Section 3.2, the possible actions of the game have been clearly differenti-

ated in order to be able to easily add machine learning rewards.

3.3.1 Setting up the game scene

The first thing done was setting up the scene with GameObjects [54] positioned the proper way.

In the beginning, all of them were planes and cubes just to allow seeing the written code did what

it was supposed to do. Art would be done afterwards.

3.3.1.1 Controls and Head Up Display (HUD)

The intro screen menu contains the options seen in Figure A.2. Sketches have been used to layout

this screen.

Only one camera has been used, in perspective mode, rotated 45 degrees in order to see every

GameObject and to allow the user to click with the mouse on the screen buttons (gaps) without

trouble.

There is a Canvas [55] GameObject in the scene that contains the HUD. All buttons in the

HUD are disabled from the beginning of a game. Each one of them contains a script that manages

their status and enables them when required. Other types of buttons are the gaps at the edges of

each path, used to choose the place where the totem has to be inserted. These buttons are located

in the game world (not in the HUD), and they are GameObjects that contain Box Colliders [56].

Depending on the type of button, they are controlled by:

• The CharacterCharge script, that manages the speed of charge of each HUD character

button and enables them when are fully charged.

• The ForceButton script, that enables the HUD power-up buttons only when the player has

the minimum spirits that the button requires.

• The Gap script, that enables the game world buttons after clicking on a character or a faith

power-up enabled button. Enabling them allows the player to click on them to select the

path where the selected character has to be inserted or the faith power-up has to be used.
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3.3.2 Movement of characters

Totems in TAJ start from an edge of a path and they move towards the opposite edge of the same

path.

Location and sizes of TAJ paths are defined by the topology of several rectangular planes.

Unity owns a functionality which bakes a walkable mesh by reading the shape of every GameOb-

ject tagged as Static (in this case, the rectangular planes) and allows moving GameObjects with

pathfinding (it uses A* algorithm [57]) towards positions inside the baked mesh.

Each GameObject to be moved inside the NavMesh [58] must include a component called

NavMesh Agent [59]. Inside this NavMesh Agent component, the speed of the character can be

set.

NavMesh Agents avoid collisions by default, but this is not the behavior TAJ needs. It will be

needed to set Obstacle avoidance to None, in order to avoid totems to elude themselves (another

way never there would be deaths).

Something to keep in mind is that characters have different speeds and they can overtake

other totems of their same teams, so this "no collision" behavior is still useful for this case. It will

cause totems to cross each other, but this is a nice option for the little space the paths have. An

option to decorate these crossings is making both totems semitransparent when colliding.

3.3.3 Collision detection and life of characters

Whenever a Totem collides with another, life has to be updated. The Box Collider Unity component

has been used as a trigger for collisions. Each character has a script called Totem that stores

its life, speed and some other attributes as the faction to which it belongs. It also has a Unity

OnTriggerEnter(Collider other) method in charge of detecting collisions with that totem. The

Collider other variable stores the GameObject the totem has crashed with and, if it is an enemy,

life drops depending on the enemy’s life.

When a totem receives an impact, its life is damaged, but if it is still alive, it will continue

moving towards the enemy riverbank. If it dies, its movement stops and its 3D model will vanish.

So, collisions are only being detected for life management, but totems are not avoiding each other

and physics are affected by these collisions neither.

3.3.4 Power-ups

Ice Force, Wind Force, Sun Force and Faith Force are the four power-ups (or force buttons) that

makeup TAJ. All of their actions are implemented in the GameController script in separate

functions that are called when a HUD button is pressed.
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GameController maintains two lists of GameObjects that result really useful for the TAJ

power-ups needs. One of them maintains a list of the alive Ittla totems that are on the board. The

other keeps the same information for the Nerta totems.

• Ice Force power-up function takes all the totems of the enemy faction that are alive and on

the board. Then it gets their Nav Mesh Agents and stops their movement. Later, by adding

deltaTime to a variable, when a constant number of seconds is reached, the movement of

these Nav Mesh Agents is resumed.

• Wind Force takes the list of alive totems, but this time the ones of the own faction. For each

of them, the speed of their Nav Mesh Agent is updated (multiplied by a constant number).

As before, after a few seconds, the speed is again restored to the previous value.

• Sun Force power-up function fills up to the 100% the current charge of the character buttons,

so they will become active and the player will be able to insert those characters into the

board.

• The first action that the Faith Force power-up function takes is to enable all the gaps of the

own faction, just to make them clickable. Afterwards it keeps waiting for a click over a gap.

When a click over a gap is detected, it will look for the enemy totems located on the same

path as the clicked gap, and all of them will be instantly killed.

3.3.5 Class diagram

Unity allows to work with scripts (C# classes in this project) attached to GameObjects as Com-

ponents. Necessary references are passed to these Components so that, at runtime, the project

works correctly.

This project has been much more oriented to get a functional game where the ML Agents

plugin could be tested and a nice result in terms of machine learning could be obtained. Since this

is the main purpose of the project and because of the project timing, the game scripts structure is

all focused to easily pass information to ML Agents plugin, and it is quite improvable to make it

more maintainable for future changes. As an improvement proposal, if the game had to expand its

features and go on sale (outside this project), creating a class structure to separate the managing

of different entities would be a needed task.

Anyway, it is useful to have in hand the composition of the classes, their attributes, and

methods. A summarized class diagram can be seen in Figure 3.3, and the complete one [60] can

be accessed from the following url .

https://drive.google.com/open?id=1UXq8Opy5zAJARaXroWeZIMcMFPYY61UJ
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FIGURE 3.3. Class diagram of TAJ summarized.
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FIGURE 3.4. Learning Environment. Image from Introducing: Unity Machine Learning
Agents [61]

3.4 Adding neural networks into the video game

The first step was creating an NPC able to play the game taking always random actions. The

reason for this is that the ML agent will train playing against it, because the more different

situations shown to this agent, the more it will learn. This random NPC will also be used to get

results and see if the agent gets a great winning percentage playing against it.

It is a nice start to centralize the environment states and the available actions the player

can take for later adding rewards for machine learning. After finishing this step, the process

continued with the setup of the required software and the environment.

Figure 3.4 shows the big picture of the learning environment (Unity project) and how ML

Agents components are connected. An external communicator has the responsibility to connect

the learning environment with Tensorflow. The utility of each software that Tensorflow needs has

been justified in Section 3.2.1).

3.4.1 Setting up environment

The project has been developed in Windows 10 [62] and here it is described how to set up the

environment under this operating system. It is very advisable to read the ML Agents installation

documentation in its GitHub repository [4], and for the required dependencies is nice to lean on

the Unity 3D College tutorial [63] and its installation video [64].

First of all, it is necessary to download the CUDA toolkit executable from the NVIDIA CUDA

archive [28] and to follow the steps of till get it installed. Afterwards, is needed to download CUDA

Deep Neural Network library from the NVIDIA cuDNN website [29] for the chosen version of the

27



CHAPTER 3. PROGRESS OF THE PROJECT

installed CUDA toolkit. This installation is as easy as copying and replacing the downloaded

cuDNN files into the CUDA folder.

To allow Tensorflow to find CUDA in the computer, some Windows environment variables

must be set:

• The system variable CUDA_HOME must be added, and its value must be the CUDA instal-

lation path (something like C:/ProgramFiles/NVIDIAGPUComputingToolkit/cuda/v8.0)

• Two values must be added into the already existing Path system variable. These values are

the paths to the CUDA and cuDNN libraries (something like C:/Program Files/NVIDIA

GPU Computing Toolkit/CUDA/v8.0/lib/x64 and C:/Program Files/NVIDIA GPU Com-

puting Toolkit/CUDA/v8.0/extras/CUPTI/libx64 ).

The next step is configuring a Python [25] environment by downloading Anaconda from its

download page [24] and installing it.

Once Anaconda ends its installation, is time to open its prompt to create the Tensorflow

environment by using the conda command, activate it and finally installing tensorflow-gpu.

The exact process is:

• Openning Anaconda prompt

• Executing conda create -n tensorflow-gpu python=3.5.2

• Executing activate tensorflow-gpu

• Executing pip install tensorflow-gpu . This command installs the last version of TensorFlow.

Section 4.3 refers a compatibility problem between Unity and Tensorflow.

• Executing import tensorflow as tf

Subsequently, is needed to download the Unity’s sample project from Unity’s ML Agents repos-

itory [4] to get the Python files which would allow training Agents by using PPO Reinforcement

learning.

Last but not least, inside another Anaconda prompt it is needed to dive into the downloaded

Unity project to execute the command pip install.

That is everything for the environment setup.

3.4.1.1 Observations, actions and rewards for the video game

Reinforcement learning [6] tries to give the best action given several observations. The obser-

vations have to be enough representative of the game status. Every time the machine learning

Agent is asked to take a decision, it will take it based on these observations and the previous
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experiences. In TAJ, the 44 chosen observations are parsed to int [65] because of the needs of ML

Agents. All observations explained in Table 3.1 are considered twice, once for the agent and once

for the enemy. So, the agent observes its life and the enemy’s one, its conquered power stones and

the enemy’s ones, and so on.

Unity ML Agents team recommends in its Making a New Learning Environment document

[66] to set all observations and actions clamped to the range of [-1,1] if they are Continuous (types

of variables are explained in Section 3.4.2.2), for two reasons, to avoid numeric instability in

numerical calculations and to always limit actions to reasonable ranges.

Table 3.1: TAJ Game Observations

TAJ Game Observations

Observation Values (int) Description

Life [0,1,2,3]
Indicates the quantity of power stones

still conquered.

Power stone 1 is conquered [0,1]
0 if the power stone 1 is still intact. 1

if it has been conquered.

Power stone 2 is conquered [0,1]
0 if the power stone 2 is still intact. 1

if it has been conquered.

Power stone 3 is conquered [0,1]
0 if the power stone 3 is still intact. 1

if it has been conquered.

Spirits [0,1,...,n] The number of spirits.

Total life in path 1 [0,1,...,n]
The total life of the agent’s totems in

the path 1.

Total life in path 2 [0,1,...,n]
The total life of the agent’s totems in

the path 2.

Total life in path 3 [0,1,...,n]
The total life of the agent’s totems in

the path 3.

Total life in shrine path [0,1,...,n]
The total of life of the agent’s totems

in the shrine path.

Total life of totems near end of path 1 [0,1,...,n]
The total life of the agent’s totems who

have exceeded the 50% of the path in

the path 1.

Total life of totems near end of path 2 [0,1,...,n]
The total life of the agent’s totems who

have exceeded the 50% of the path in

the path 2.

Total life of totems near end of path 3 [0,1,...,n]
The total life of the agent’s totems who

have exceeded the 50% of the path in

the path 3.
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Continuation of Table 3.1

Observation Values (int) Description

Total life of totems near end of shrine [0,1,...,n]
The total life of the agent’s totems who

have exceeded the 50% of the path in

the shrine path.

Vasu enabled [0,1]
0 if the agent’s Vasu is not charged. 1

if the agent’s Vasu is charged and able

to be used.

Rad enabled [0,1]
0 if the agent’s Rad is not charged. 1 if

the agent’s Rad is charged and able to

be used.

Kaapo enabled [0,1]
0 if the agent’s Kaapo is not charged.

1 if the agent’s Kaapo is charged and

able to be used.

Ice Force Enabled [0,1]
0 if the agent does not have enough

spirits to use Ice Force power-up. 1 in-

stead.

Wind Force Enabled [0,1]
0 if the agent does not have enough

spirits to use Wind Force power-up. 1

instead.

Sun Force Enabled [0,1]
0 if the agent does not have enough

spirits to use the power-up. 1 instead.

Faith Force Enabled [0,1]
0 if the agent does not have enough

spirits to use the power-up. 1 instead.

Ice Force Is In Use [0,1] 0 if Ice Force is in use. 1 instead.

Wind Force Is In Use [0,1] 0 if Wind Force is in use. 1 instead.

TAJ Game actions

It is not that important to consider how many totems are in each path and their remaining

lives, because it increases a lot the number of observations and it is not that representative in

this game. It is preferable to reduce all that variables to the total life of totems in each path

because the goal is to kill all enemies.

Actions in TAJ are quite clear and they are defined in the Table 3.2.
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Table 3.2: TAJ Game Actions

TAJ Game Actions

Action ID Description Action ID Description
0 Insert Vasu in Path 1 9 Insert Kaapo in Path 2

1 Insert Vasu in Path 2 10 Insert Kaapo in Path 3

2 Insert Vasu in Path 3 11 Insert Kaapo in Shrine Path

3 Insert Vasu in Shrine Path 12 Use The Force of Ice power-up

4 Insert Rad in Path 1 13 Use The Force of Wind power-up

5 Insert Rad in Path 2 14 Use The Force of Sun power-up

6 Insert Rad in Path 3 15 Use The Force of Faith in Path 1

7 Insert Rad in Shrine Path 16 Use The Force of Faith in Path 2

8 Insert Kaapo in Path 1 17 Use The Force of Faith in Path 3

TAJ Game Actions

A lot of information is needed to allow machine learning Agents learn to play a game. Rewards

are the way to indicate the agent is doing well or not (given the current status).

The table 3.3 details the rewards used in the game. In Section 4.2, some mistakes made

with the values, and with the moment the agent was being rewarded in initial tests, will be

commented.

As rewards table 3.3 shows, constantly repeated good actions are not rewarded too much.

On the contrary, actions less repeated have much bigger values and nice actions are always

proportionally bigger than bad actions.

Something to keep in mind is that the agent (as further explained in Section 3.4.2.3) will take

one of all the actions previously declared (see Table 3.2) each time it requires for an action. The

game has to be programmed the way it only really does an action if the game status allows it. For

example, an agent cannot use a power-up if it has not enough spirits to use it. It is not needed to

penalize the agent for choosing not available actions or to reward it for choosing available ones,

since its experience in the training will lead it to choose the right actions.

Table 3.3: TAJ Final Rewards

TAJ Final Rewards

Reward Description
-0.05 If the agent loses life (enemy has conquered a power stone of the agent)

+0.3 If enemy loses life (the agent has conquered a power stone of the enemy)

-0.2 The agent dies (enemy has conquered all agent’s power stones)
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Continuation of Table 3.3

Reward Description
+1 The agent wins (agent has conquered all the enemy’s power stones)

+0.1
The agent inserts a totem (Vasu, Rad or Kaapo) in a path where the enemy’s

power stone is not yet conquered.

-0.002
The agent inserts a totem (Vasu, Rad or Kaapo) in a path where there are no

enemies and it has already conquered enemy’s power stone of this path.

+0.05
The agent inserts a totem (Vasu, Rad or Kaapo) in a path where the total life of

the enemies adds up the same or less life than the agent’s totems in this path

along with the totem the agent is inserting.

+0.05
The agent inserts a Vasu totem in a path where the total life of the enemies

adds up more than the Vasu initial life (since it is the better option to try to kill

enemies).

+0.1
The agent uses Ice Force when there is, at least, one enemy totem on any path (so,

the power-up can stop the movement of some enemy totem).

+0.1
The agent uses Wind Force when there is, at least, one of its totems on any path

(so, the power-up can speed up the movement of some of the agent’s totems).

+0.05
The agent uses Sun Force when, at least, one of its totems has less than 100%

charge.

+0.2
The agent uses Faith Force in a path where there was already, at least, one enemy

totem (so, the power-up can kill some enemy totem)

TAJ Final Rewards

In the process of setting up observations, actions, and rewards, paths have been reduced from

five (initial idea) to three, since observations and actions were considerably reduced and game

experience was attractive as well. This has helped the agent to learn faster because the problem

became easier.

3.4.2 Creating custom agents for the video game

After setting up the environment (explained in Section 3.4.1), next step is to create a custom

agent based on the observations, actions, and rewards of the Section 3.4.1.1.

It is advisable to keep an eye on the Getting Started with 3D Ball Environment from the Unity

ML Agents GitHub documentation [67] and run into the example to get used to ML Agents with

Unity. Afterwards, it is recommended to do an own simple project from scratch to dive a little

more into basics before entering fully into a bigger case. An idea for this simple project can be

one from the Unity’s examples [68]. The first contact with ML Agents in this project was training
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a lot of balls spawned in a random position between -1 and 1 in the x-axis till they learned to

move to the 0 x position.

The Step is an important term that should be well understood from the beginning to avoid

misunderstandings when working with ML Agents. There are two kind of steps:

• Steps of an academy or environment steps. A measure of time which actually corresponds

to a FixedUpdate, so it does not actually correspond to frames or framerate. In the case

the game uses physics, everything related to physics must be coded in FixedUpdate, since

Update could lead to weird behaviors. These steps are used to measure when the academy

environment has to be reset.

• Steps of an agent. A step of an agent is a decision. These steps are used to measure the

length of the training sessions.

3.4.2.1 Academy

The academy is a GameObject that has to live inside the scene where the training happens

(learning environment), and it includes a script (that inherits from the Academy Unity class)

which allows setting some parameters as the time scale (speed), the quality or the size of the

window of the game when training or inference. Inference allows using models without continuing

training them. It is used to manage the environment.

Python and Tensorflow are key components to work with ML Agents because Unity is not able

by itself to implement machine learning with so much efficiency. The most significant task the

academy has is to communicate (through the External Communicator that lives inside it) with

the Python API that manages the training .

The Academy class allows to override some methods:

• AcademyReset() is the function used to set up the environment at the beginning of each

episode. In TAJ, all variables are reset here to initials, and the game is also restarted. This

function is automatically called when Academy.Done() is executed.

• AcademyStep() executes every step. In TAJ it is used to check if a battle has ended (a boolean

is checked), just to call Academy.Done() and reset all the environment. This function could

also be used to update the environment by adding new objects to the problem incrementally.

Max Step variable of an academy specifies the max number of steps the academy can do before

calling AcademyReset() automatically. If set to 0, Academy.Done() has to be called manually from

code whenever is needed (it also runs AcademyReset()), otherwise, it is important to make sure

that the main sequence of actions of an agent fits inside the Max Step specified steps. When the

moment to reset is not that clear as in the TAJ project and it is wanted to do them manually, it
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is typically best practice to have the simulation reset every once in a while (by using Max Step

greater to 0).

3.4.2.2 Brain

A brain is a GameObject that lives as a child of an academy and includes a script (that inherits

from the Brain Unity class).

The main function of the brain is "thinking" which actions the agent has to do (encapsulates

decision making). The agent gives the brain the observation of the environment each time a

decision is required. The brain returns an action (depending on previous experiences). This action

produces a reward which the brain will consider for future decisions, leading the agent to the

best actions.

Brains work with two main types of spaces:

• Continuous means that the variables will be numbers (floats or integers) that will compose

the different (and sometimes countless) status in which agent can find itself. Most projects

use this type of space.

• Discrete means the variables are essentially id’s into tables of states. It is a less used type

of space. It can easily be related to projects which need few observations.

Main parameters of the brain are the Vector of Observations, the Visual Observations, the

Vector Action and the Brain Type.

The Vector of Observations stores the type (continuous or discrete) and size (quantity) of the

observations needed for the current project. It also allows selecting the number of stacked vectors

to keep within the training. Stacked Vectors means keeping in mind the last x vector observations

to decide actions, which can be useful for projects where memory is important for the agent. An

example that would need stacked vectors is an autonomous car traveling towards a fork that has

to remember if the previous traffic signal indicates its destination to the right or to the left.

Visual observations allow learning from the difference between several images along time.

Vector Action stores, as the Vector observations, the type (continuous or discrete) and the size.

The Brain Type defines the behavior of the brain and the way it chooses its decisions. Defining

a Brain type as External would make the brain to constantly expect orders from an external

application, Tensorflow in this case, through a socket. Setting it as Internal makes the brain to

look for an embedded graph previously trained (.bytes file) which contains the logic to choose

one action or another. To summarize, External will be used for training and Internal for using

a trained model. There are other Brain Types, Heuristic which allows overriding the default
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Decision behavior and Player which helps to check every coded action to see everything works as

expected (actions and their rewards).

So, after knowing a bit about how Brains work, TAJ Brain is set up this way (remember

Section 3.4.1.1 ):

• Vector of Observations with a continuous space type and a space size of 44 (number of

observations needed in TAJ, see table 3.1).

• Stacked Vector Observations with the value of 1. TAJ is a game in which all the actions are

taken depending on the observations of the current moment, without needing to remember

what has happened previously in order to win the game.

• Visual Observations to 0, since this is not needed for a project like a tower defense to learn

from images.

• Vector Action with a discrete space type and a space size of 18 (actions needed in TAJ).

Discrete is the better option because actions are clearly limited to the 18 seen in Table 3.2.

It is well to emphasize that, although the Brains define the type and size of the vectors of

observations and actions, is the agent which assign their values.

Another important thing is that there can be a lot of Brains learning independently, or several

Agents feeding the same brain to speed up the learning process. Only one brain and an agent has

been used in TAJ because of the project timing, but using several brains would have reduced the

time and the steps needed for the learning process.

3.4.2.3 Agent

An agent is a GameObject containing a script that inherits from the Agent Unity class and its

main function is giving observations and rewards to the brain at the same time as computing the

actions the brain returns to it.

Every agent must have a brain which will decide the actions the agent has to do. Visual

Observations can be added to the agent by using a camera to observe the environment.

The Max Step variable of the agent is different from the one later commented (in the Section

3.4.3) and from the Max Steps seen in Section 3.4.2.1. The Reset on Done boolean determines

whether an agent has to start over. , while the max_steps of the trainer_config.yaml determines

the steps to do in the current training and Max Steps of academy says when the environment has

to be reset. Do not confuse the three variables although their names are almost the same.

• Having Reset on Done to true makes the agent auto reset after reaching the agent’s Max

Step count. This Max Step is 0 in TAJ Agent because it is wanted to manually reset the
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agent (as did with the academy) every time a battle ends, and each battle can have different

time lengths.

• max_steps of the trainer_config.yaml determines the agent’s steps to do in the current

training. The trainer_config.yaml file is further explained in Section 3.4.4.

• Max Steps of academy says how many environment steps to do before the academy auto

resets. TAJ sets it to 0 because here the academy is reset at the same time as the agent

(whenever a battle ends).

The On Demand Decision check is quite important since it says if the agent has to do automatic

decisions every x steps (these steps are set in the Decision Frequency variable) or just every time

RequestDecision() is called. TAJ uses On Demand Decision to true and it is manually specified

when to ask for a decision. The main reason is that this game does not need decisions to be

constant and repeatedly made in very short spaces of time. Decisions and actions have to be

made at the same time in TAJ. The decision’s default behavior when On Demand Decision is

checked to false and a Decision Frequency is specified is performing an action every Academy

Step and requesting a decision every Decision Frequency steps. As this is completely not the

way decisions/actions have to work in this project, the use of coroutines is the adequate way of

measuring when decisions have to be requested in training.

The random NPC works under a coroutine that is executed every x seconds. To make the

game (and training) fairer, both the random NPC and the agent ask for a decision at the same

moment, the same number of times, otherwise the agent would make many more decisions and

that would provide it an advantage.

For the final generated models, it is not only wanted that the agent chooses the best action,

but also to make it play "as a human-like". The decision frequency is managed with coroutines

too, and it is commented in Section 3.5.

Reinforcement learning in ML Agents works following the Markov Decision Processes [69].

Within this context, the main functions within the learning loop are introduced. Calling the

agent’s RequestDecision() executes the following process, called Experience:

1. Seeing the environment with the CollectObservations() function.

2. Making an action AgentAction() function.

3. Get rewards returned from the AgentAction() function.
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The Agent class contains a few functions that can be overridden to adapt it to the current

project:

• InitializeAgent() is used to set the initial variables the agent needs to work properly. TAJ’s

InitializeAgent() function defines the initial life and spirits, which will then be useful to

check if the previous action took the Agent to win or lose a life or a spirit and to return

the corresponding reward. A lot of different variables can obtain value in this function,

allowing to adapt the agent to any custom project.

• CollectObservations() is executed every time a RequestDecision() is called. By using the

AddVectorObs() function and passing a number to it (integers in TAJ), the vector of obser-

vations get values. TAJ uses AddVectorObs() 44 times inside CollectObservations() because

it is needed to pass the 44 observations of Table 3.1.

• AgentAction() is executed every time a RequestDecision() is called, just after CollectObserva-

tions(). Here the rewards of Table 3.3 are specified by using the SetReward() as many times

as needed and passing it a float between -1 and 1. Another important function called here is

Done() which resets the agent for the next simulation, by using automatically AgentReset().

TAJ calls Done() every time a game is over (when agent win or loses).

• AgentReset() is executed whenever the agent is done. TAJ resets here all the variables

needed to calculate rewards (life, spirits, cleans totems inboard, resets charge, etc). In TAJ,

once the agent is reset, the boolean that AcademyStep() checks is set to true, which will

produce the academy to reset itself.

3.4.3 Training a model

The TensorFlowSharp Unity plugin is needed for Unity to be able to load generated models

and get comparatives between them. To accomplish this installation, its zip package has to be

downloaded from the installation docs of the Unity ML Agents repository [4]. Its content has to

be pasted into the Unity project files.

Some other requirements and considerations to make life easier for training a Unity Agent

are:

• Inside Unity game engine, go to Edit inside the toolbar, Project Settings, Player Settings.

– In the Resolution and Presentations tab, leave Run In Background checkbox enabled

to allow the game executable to be running although its window is not active. This is

completely useful while training, so computer can be used while it keeps working in

background.
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– In the Resolution and Presentations tab, leave Disabled the Display Resolution Dialog

to avoid the executable to pop up the resolution dialog before launching the game. It

prevents errors when connecting Tensorflow with the game environment since avoids

requiring user actions and the training can start automatically.

• Keep in mind setting the Brain Type variable to External before building the game, just to

let the brain learn through Tensorflow.

• Remember to set the Brain Type to Internal and pass the Graph Model (.bytes file) to let

the brain "play" with the reached knowledge.

• Leave Development Build checkbox enabled before building the game, since Unity recom-

mends it.

• Open Anaconda Prompt always as Administrator.

The process is:

1. Building the game inside the .\unity_project \python folder and remembering the exact

name given to the executable.

2. Editing the trainer_config.yaml file located in the .\unity_project \python folder which

allows customizing the trainer configuration for each brain. The most important thing

to modify is the max_steps variable, with the purpose of setting the number of steps the

training will have. The .bytes file (trained graph model) is saved once the max_steps count

is met. Other configuration hyperparameters are commented in Section 3.4.4.

3. Opening an Anaconda Prompt (as Administrator) and executing the training with Python

python/learn.py <env_file_path> –train –run-id=<run_id_name>. The parameter <env_file_path>

will be the name of the exact executable name (without its extension). With the property

–load, a previously calculated model can be loaded to start from its status (to continue teach-

ing it). Models are saved in the folder .\unity_project \python\models\<run_id_name>, so

using –load and passing a <run_id_name> to –run-id will try to load the previous model

inside the models folder with this exact <run_id_name>. Passing <run_id_name> is also

important to be able to see the progress of the training in Tensorboard, so an identifier

should be always passed here.

4. Executing tensorboard –logdir=summaries to see the progress of learning. Its information

will be now available from a web browser by default by accessing localhost:6006. Graphs in

this page are described in Section 3.4.5.

38



3.4. ADDING NEURAL NETWORKS INTO THE VIDEO GAME

5. Once the training ends and the .bytes file is generated, go to the Unity editor. Now set the

Brain Type to Internal and pass the .bytes file to the Graph Model variable to let the brain

"play" with the reached knowledge.

A TAJ training with 50,000 steps takes around 40 minutes to finish by using the NVIDIA

GTX 770 4GB GDDR5.

A boolean constant IS_TRAINING has been entered in TAJ just to avoid any required user

input for the training to be correctly executed (it also disables music and sounds). Another

constant called AVOID_RENDERERS controls if the Mesh Renderer components have to be

disabled, to speed up a little bit the training process and reduce the GPU load by avoiding to

draw scene 3D models.

The final Agents obtained were trained (external mode) with 50,000 and 200,000 steps,

respectively. All of them were trained against the random NPC, which gave a nice result.

Some previous training tests were made incrementally. So, an agent was first trained around

100,000 steps against the random NPC, this same agent was then trained against its own

generated model, and so on.

Another test was made by training new Agents against old and different ones which were

taking actions quite well but, due to the little mistakes they had in the code (with observations

and rewards), they were inconsistent. To train Agents against previously generated models has

returned an unsatisfactory result, while Agents only generated against the random NPC have a

vastly wider victory percentage. The main reason an agent has been trained against previous

ones was to provide it more different situations because they should have learned something and

they should be able to apply some kind of logic in their decisions. As just mentioned, result is

unsuccessful and the only thing that was achieved was limiting trained agent observations to the

ones these have learned so far.

From the project experience, when agent actions depend on the enemy’s ones (as in TAJ), a

previously generated model is not useful to train future improved Agents. The better way is to

train always against a random NPC. Bad results have been obtained this way.

Using several agents with the same brain would have been a nice option to accelerate the

learning process. The way of using several agents is doing a lot of battles at the same time, one

per agent. Every agent would learn from its NPC enemy, but a lot more decisions would be made

in the same period of time.

There is a training method called Imitation learning [70] which consists of letting the agent

learn from a human while he plays. This method has not been tried out in TAJ. A nice approach
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could be making the first training sessions with Imitation learning and the following incremental

ones, in External mode (random actions).

3.4.4 Understanding the trainer_config.yaml file

The configuration file is responsible for specifying the parameters (hyperparameters), the training

method and other values to be used during training.

By default, the values of the Default section of the trainer_config.yaml are taken, but for each

brain, these values can be specified to adapt the way the agent learns.

The main configuration parameters for training sessions with PPO [49] can be seen below:

• Gamma indicates if the agent has to act depending more on distant future rewards (larger

value) or depending on more immediate rewards (smaller value). The typical range of

values are between 0.8 and 0.995. The default value is 0.99 and 0.85 has been used in TAJ

because this game requires actions to be done depending a lot on the current observations.

• Lambda is the same lambda used when calculating the Generalized Advantage Estimate

(GAE) [71]. GAE first objective is reducing the variance of policy gradient estimates at the

cost of some bias, to better manage the incoming data. Low values make the agent rely

more on the current value estimate (higher bias), and higher to rely more on the actual

rewards received (high variance). The typical range is between 0.9 and 0.95. The default

value is 0.95 and 0.94 was appropriate for this project.

• Buffer Size indicates how many experiences (observation, action, rewards loop) should be

collected before updating the model. Larger buffer size corresponds to more stable training

updates. The typical range is between 2,048 and 409,600. The default value is 10,240, correct

for TAJ since a battle can easily fit into these number of steps.

• {Batch Size is the number of experiences used for one iteration of a gradient descent update,

which really tries to minimize the error of the predictions [72]. The typical range for continu-

ous action space is between 512 and 5,120, for discrete action space is between 32 and 512.

The default value is 1,024, used in TAJ because training gave nice results, although Unity

recommends 512 as the highest.

• Number of Epochs is the number of passes through the experience buffer during gradient

descent. The typical range is between 3 (more stable updates) and 10 (faster learning). The

default value is 3 and it worked fine in this project.
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• Learning Rate is the strength of each gradient descent. It should be decreased if training

is unstable and the reward does not consistently increase. The typical range is between

0.000001 and 0.0003. The default value is 0.0003 and 0.0005 has been used.

• Time Horizon is the number of steps to collect before adding them to the experience buffer.

The typical range is between 32 (in the case the agent receives frequent rewards or the

project has extremely large episodes) and 2,048 (or larger, to make sure all agent’s actions

in an experience are collected). The default is 64 and 128 was used.

• Max Steps indicates how many steps the current training process has to do. It has to be

increased when loading previous models from which it is wanted to continue learning. The

typical range is between 500,000 and 10,000,000 (more complex problems). The default is

50,000. The values 50,000 and 200,000 were used.

• Beta has the objective of regularizing the entropy, which ensures the agent properly explore

all the possible actions during training. Entropy should slowly decrease. The typical range

is between 0.0001 and 0.01. Beta should be increased if entropy drops too quickly and

decreased otherwise. The default is 0.005 and 0.0001 was used.

• Epsilon indicates the acceptable difference threshold between old and new policies during

gradient descent updating. The typical range is between 0.1 (more stable updates) and 0.3

(faster training). The default is 0.2 and it was used.

• Normalize is a boolean which indicates whether normalization is applied to the vector

observation inputs. Is useful for complex continuous observations problems and, maybe,

inadequate for discrete problems. The default is false and it was used.

• Number of Layers corresponds to how many hidden layers are present after the observation

input. More layers may be necessary for complex control problems. The typical range values

are between 1 and 3. The default is 2 and it was used.

• Hidden Units correspond to how many units are in each fully connected layer of the neural

network. For problems where the correct action is a simple combination of the observations,

this should be small. The typical range is between 32 and 512. The default is 128 and 64

was used.

Lots of tests are needed to find values which return a nice agent behavior result. There is not

a rule which determines exact values for each project and a lot of tests will be needed in most

cases.
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3.4.5 Understanding Tensorboard summaries

What Tensorboard does is to read the folders and files inside .\unity_project \python_summaries

that Tensorflow writes. Eight plots are displayed:

• Lesson Plot shows the progress from lesson to lesson in the case curriculum training is

used (a way of training an agent by increasing the hardness of the challenges little by little,

for example in a game with different environments and tasks). This plot is not relevant for

TAJ since the challenge of the agent is always the same (win the battle) and curriculum

training has not been used. As Figure 3.5(a) shows, only one lesson has been given in that

training.

• Cumulative Reward shows the mean cumulative reward for all agents involved in the

training. It should increase during a successful training session because the objective is to

make the agent find the highest reward possible. Figure 3.5(b) shows a bit of up and downs,

but the tendency is to increase the value.

• Entropy talks about the randomness of the model decisions. In other words, the higher the

entropy, the harder to draw any conclusions for the given information. So, a nice behavior

for a successful training is to see the entropy slowly decreasing, because conclusions have

to be more accurate during the training. In Figure 3.5(c) can be seen that the TAJ training

slowly decreases its entropy.

• Episode Length just reports the mean length of each episode in the environment for all

agents. It is related to the resets of the Academy and Agents, in the case of TAJ, made both

at the same time manually. In Figure 3.5(d) shows TAJ result.

• Learning Rate should decrease over time. It notifies how large a step the training algorithm

takes as it searches for the optimal policy. At the beginning of each training, the external

brain tries to do random actions so it learns from new statuses. As the training progresses,

it tries to choose the best action and it makes learning rate decrease. See Figure 3.5(e).

• Policy Loss values will oscillate while training. It refers to the changes in the process of

deciding an action. Figure 3.5(f) shows one obtained result.

• Value Estimate should increase during a successful training since it shows the mean value

estimate for all states already visited. Figure 3.5(g) shows values increasing as expected.

• Value Loss should decrease during a successful training (when reward becomes stable).

This plot tells how good the model is to predict the value for each state. Figure 3.5(h) shows

values decreasing as expected.
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(a) (b)

(c) (d)

(e) (f)

(g)
(h)

FIGURE 3.5. (a) Lesson Plot (b) Cumulative reward (c) Entropy (d) Episode length (e)
Learning rate (f) Policy loss (g) Value estimate (h) Value loss

Getting plots outside this guideline say the generated model graph has not consistently

trained.
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3.5 Levels of difficulty

50,000 steps have been required to get an agent which really knows how to play. This one

corresponds to the level "MEDIUM". There are other two levels which correspond to the random

not trained NPC ("EASY") and the 200,000 steps model graph ("HARD"). They can be selected by

using the faction and difficulty selector (see Figure A.3 in Appendix A ).

The way the different levels are managed in this project is having different agent GameObjects

disabled in the scene and, depending on the user selection, the corresponding ones are enabled.

By using the agent GiveBrain() function, the corresponding brain can be set (which has to include

its model graph predefined) but it was easier to make it by enabling and disabling previously

configured GameObjects.

Not only the brain changes between difficulties, but also the time between decisions. To create

a more realistic feeling, the frequency of the coroutine is not constant. The seconds before every

new call of the coroutine are calculated randomly within a pre-established range. This range

changes depending on the difficulty chosen when a trained model is used (while training every

NPC and agent have the same decision frequency) :

• EASY, Random NPC. The range of seconds to wait for new decision requests is between 1.5

and 2.5 seconds. This makes agent slow and it will be easier for the player to win.

• MEDIUM, 50,000 Steps agent. The range of seconds to wait for new decision requests is

between 1 and 2 seconds.

• HARD, 200,000 Steps agent. The range of seconds to wait for new decision requests is

between 0.5 and 2 seconds. Not only will make better actions, but also will make them

faster.

This decision frequency could also have been specified by disabling OnDemandDecisions

check of the agent and overriding the default Decision class. Remember that disabling it makes

the agent do an action every step and request decision every DecisionFrecuency steps, that’s why

overriding the Decision class would be needed. Doing it with coroutines also allows managing the

randomness of time between decision requests without editing the Decision class.

So, decision time-frequency (however it is managed) is also important for getting differentiated

levels of difficulty.
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3.6 Writing the report

In the beginning, Google Drive was the tool used to write the Technical Proposal and part of the

Game Design Document. Since then, LATEX has been used through the Overleaf online tool,

with the main purpose of giving a more formal and correct design to the document.

It was a little tough to start with LATEX but, after getting used to it, working with it is really

quicker than other tools because every design relative detail is determined by a template and

that allows the user to only focus on the content of the document.

3.7 Version control

The repository used for saving every modification made into the Unity project (scripts, images,

3D models, Unity component values, etc) is Collaborate [73], by Unity.

This tool is totally integrated into the Unity game engine, so it takes care of keeping a history

of changes enabling restoring old versions without losing any data.

The latest version of the project has been uploaded to GitHub [74] for allowing public access

since Unity Collaborate repository needs to be linked with a Unity account.
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RESULTS

Results have been measured by facing up several times different brains with TensorFlow-

Sharp and getting the mean percentage of victories of each one. Table 4.1 show these

clashes. To make this process faster, both brains has been set as Internal, its .bytes model

has been passed and delta-time has been increased.

Tensorflow allows to execute itself without training the model, in inference mode, if –train

variable is not passed to it. The problem is that only one generated model can be loaded (with

–load and passing the corresponding –run-id). Since is needed to compare two models each time,

it is a better option to use TensorflowSharp.

Table 4.1: Facing the Brains. Percentages of victories.

Facing the Brains

- Random 50,000 Steps 200,000 Steps
Random - 4% - 96% 0% - 100%

50,000 Steps 96% - 4% - 32% - 68%

200,000 Steps 100% - 0% 68% - 32% -

Facing the Brains

Clearly, the Table 4.1 shows that both agents have learned how to win the random NPC.

50,000 and 200,000 agents have trained well and their results are logic because they always

have better victory percentages with less trained NPCs. So, the more the agent trains, the better

the results. However, it should be considered that training too much can produce overfitting

and, therefore, models with unwanted behaviors. A lot of training data does not directly mean
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overfitting is going to happen, but as the data this project gives to the neural network comes

from random actions, sometimes it cannot be that relevant and scattered as wanted. Overfitting

appears when too much data information is inserted into a small region (and it is not in a wide

range of values), so the neural network is too much precise with known data and it is bad at

wandering best actions for a generalized problem (new data). In this project, an agent was trained

with 1.500.000 steps and it constantly repeated same actions (it inserted totems in the same

path). So, overfitting can lead the agent to exploit too much the best-known strategy and to avoid

looking for better options.

Playing against the agents is another way of checking they have learned as expected. The

experience changes depending on the tester (human player), but the result is that trained agents

are hard to defeat.

One detail to highlight is that the actions taken by the agents at the beginning of the battles

are always very similar because they always perform the best action given an observation. So, as

observations of the first seconds of battles will be quite similar in all cases, they would be similar,

but after that, every battle will be different and the agent will be more unpredictable.

4.1 Gameplay and executable

Two video gameplays of TAJ are published in Youtube [75].

The gameplay with comments [76] about the behavior of the Medium NPC can be found in

this link: https://www.youtube.com/watch?v=tzLsVMB_9tI

The gameplay without comments [77] can be seen in the following url: https://www.youtube.

com/watch?v=ZgA-_ekphI8

The executable [78] can be downloaded from the following url: https://drive.google.com/

file/d/1x3s695mTPUXNVycYMEdHF9AqzFCUomkZ/view?usp=sharing

4.2 Mistakes setting up observations and rewards

Section 3.4.1.1 incorporates information related to the TAJ video game, but is important being

aware that all of them have changed a lot from the first draft. This work requires a lot of try and

error tests. In the Unity’s ML Agents beginners guide [46] the next sentence can be found.

"This isn’t about compile-time errors or whether you are a good programmer or not, the agents

will find a way of exploiting your algorithm, so make sure that there is no logic gap.", Alessia

Nigretti, 11 December 2017 [46]
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4.2. MISTAKES SETTING UP OBSERVATIONS AND REWARDS

Maybe observations are the easiest part of machine learning in a game like TAJ because they

simply have to represent the game status in the current moment. Anyway, after first trainings,

the agent was not learning properly and it has been tried to modify them. The way to edit them

was to use fewer observations (from 44 to 28), trying to avoid passing not relevant information.

Simplifying or unifying these observations was not a nice option as they were already quite

simplified and they represented the game environment quite well. After all, they were reverted

to 44 again, because this was not the problem why the agent did not learn. So, the main problem

with observations has not been which ones to consider, but testing them and making sure they

were being passed correctly with a bit of debugging.

Mistakes made with actions were to treat them as continuous (instead of discrete). Another

fault was to consider two actions instead of one. At the beginning, these actions were understood

as the human plays. A human will first click the action to make (action 1, to select the totem or

power-up to use) and, afterwards, he/she will click the gap where this action has to be carried

out (action 2, where action 1 has to be carried out). So, the first approach was using two actions.

Once the machine takes a decision it needed to have a right combination of action 1 and action

2 to do something useful. It would have been surprising to see the machine coordinating itself

to select an available totem/power-up in the desired gap/path. After fighting a bit with the code

and making some tests, the best thing was to make things easier for the machine by turning

continuous actions into discrete and unifying the two actions into one (see 3.2).

Mistakes made with rewards were to penalize too much the agent, and to reward it for

constant acts with less relevance than initially could seem. For example, rewarding the agent for

getting a spirit or killing an enemy have no direct effect on the main objective which is to win

the battle. Another mistake later noticed was setting this constant rewards too high (although

it seemed low, but repeated a lot of times they get bigger and bigger). The key was reducing a

lot this constant rewards the way the agent will never find a hole to get rewards with unwanted

actions. In this case, "1" was assigned to win the battle, and "0.2" every time a totem was inserted.

It did not care to win the battle because just inserting 4 totems gave it the same reward as

winning a battle. After transforming this "0.2" to a maximum of "0.1", and only rewarding for

inserting totems in the appropriate situations, the change was drastic.

About resetting the academy (environment), another failure was not resetting it after each

battle. The agent learned quite well although only the agent was reset, but not the environment.

Having Academy Max Steps to 0 and not resetting manually the Academy produced an infinite

episode, and it is a much better practice to reset Academy. So, for this project, resetting the

environment after the agent (as seen in Section 3.4.2) improved the training results.

A little mistake that made me spend some more time was disabling On Demand Decisions.

This configuration makes the agent to do an action every step and a decision every DecisionFre-
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cuency, so, this way, actions were made that fast that made the game unplayable.

Some models have been generated with 1,500,000 steps and the result was not good because

of overfitting. Depending on the project, the ideal number of steps needed will change.

Main problems about learning have been getting the right hyperparameters in the trainer_config.yaml

file.

4.3 Unexpected problems

Setting up the environment gave some problems about permissions (remember executing pro-

grams with the right permissions) and about versions. Version 8 of CUDA was installed and an

update to version 9 had to be done because of incompatibility with CUDA 8.

Another incompatibility problem was found further in the progress, just when passing into

Unity the fist generated .bytes file which includes the model graph. It was necessary to downgrade

Tensorflow from 1.7 to version 1.4 (compatible with Unity).

The method of training the Unity build with Tensorflow changed the 15th of March of 2018

because of a major update to version 0.3. Early versions used Jupyter notebooks to guide the

process and allow stopping and generating the model from any step. Current versions (0.3 and

newer) use the learn.py Python script and getting used to this new way of executing trainings

took a bit of time. A little problem that appeared was that Ctrl+C, which should stop the training

and auto-generate the .bytes model, only stops the training but does not generate the .bytes

file in this current version. After some research, it has been noticed that modifying max_steps

hyperparameter in training_config.yaml is the answer (although from this moment, trainings

need to wait for the max_steps to be completed and to get a .bytes model). The positive thing in

the new version 0.3 of ML Agents is the option of making decisions On demand, which has been

required in TAJ.

These problems with versions made search alternative solutions to ML Agents. A little project

with the library of an anonymous youtuber [79] has been trained. Then, move back to ML Agents

was the taken decision, because of the efficiency and the facilities to get trained models Tensorflow

gives.

4.4 Project files

Unity files, class diagram, art images and 3D models, music and so on can be found in the project

repository [74] https://github.com/al291708/TFG_al291708.
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4.6. DEDICATED HOURS

4.5 Sections not developed

In terms of art, any animation has been done because the project has been much more focused

to get an optimal neural network. 3D Models have been created to give the game a beautiful

appearance but other animations (apart from the one that makes totems float and the one that

makes the water move) has not been done.

Another aspect not fully developed is the 2 player’s mode. Since the game is prepared to play

by clicking buttons of both teams on screen with the mouse, it is not the best way to make to

humans play in the same pc with the same mouse (or by using the keyboard). Tower defense

games are more directed to have online or NPC opponents. The ranking of winners has not been

developed either.

4.6 Dedicated hours

Table 4.2 shows the time this project has required. Initial planning was quite accurate, al-

though there are certain aspects that required more time than previously thought (art, where

hours have been exceeded and animations have not been done) and others that require less

(video game programming). The Google Spreadsheet [80] with the tasks and times break-

down can be found in the following url [81]: https://docs.google.com/spreadsheets/d/

1qqb8tHH7cPA0KcuFzqvrL8TuKzHOcIwq4Q5mlOyySp0/edit?usp=sharing.

Table 4.2: Planning of the Final Degree Project.

Dedicated hours

Dedicated(hours) Estimated(hours) Task
26.75 20 Neural networks algorithm’s research

27 20 Modeling and animating video game components

66.5 80
Video game programming (gameplay, mechanics,

HUD, insert 3D models and animations)

57 50 Adding neural networks into the video game

26.5 30 Creation of the analysis and design document

74 70 Report of the project

16.25 30 Prepare presentation

5 10
Creation of videos about the project and the game-

play

TOTAL
300

End of Dedicated Hours
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CONCLUSIONS

The purpose of the project was creating a Tower Defense video game and integrating

Neural Networks in it. The main objectives have been met:

• Creating a tower defense video game. This objective has been achieved since the game is

entertaining and fits into the Game Design Document (Section 2) requirements.

• Integrating neural networks to a tower defense video game. ML Agents Unity plugin

has been used to achieve this goal, and 2 game difficulties have been created by using

reinforcement learning.

• Create a hard NPC by using neural networks. The agents trained with neural networks are

hard to defeat, they behave correctly and they are competitive. The method presented in

this project shows a way to get different difficulty levels without hardcoded behaviors, as

rubber banding (commented in Section 1.1) does, making less evident the manipulation of

the difficulty in the attempt to keep users desire to keep playing.

• Giving the game a nice looking appearance. 3D models created with Blender, sprites made

with Photoshop, animations with Unity Particle Systems and camera movements offer a

great aspect to the video game.

• Learning about reinforcement learning. This project has allowed me to better understand

how reinforcement learning works and to face problems that appear in the process.

Making an agent learn in a quite wide game, with several different actions, has been a

challenge. About the time dedicated to the project, neural networks require a lot of tests and

perseverance and it has been sometimes frustrating to see that, despite making many changes,

poor results continued to be obtained. However, the time devoted to the project has been adjusted
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to the initial planning.

One of the main aspects demonstrated during this project is that the best way to train an

agent, at least in a game as the TAJ Tower Defense, is to face it up against an NPC which

makes it see as many observations as possible. Testing against previous models is not a good idea

because lots of possible new observations can be discarded.

This project has talked about training an agent, getting a model and keeping it as it is once

it plays in inference mode. Training the agent against a random NPC has the limitation that

its actions are made with a logic not comparable to the one of a human. As an improvement

proposal, it would be nice to make the best trained model learn from each game it plays against

humans (with Imitation Learning), so it becomes invincible because all observations and studied

strategies of experimented players would be given to the agent.

Playing against an invincible NPC is not challenging for any human player, so another field

which can be explored, after having an agent which always win, is to adapt the agent difficulty

during the game, depending on the way the human plays. This would ease the human how it

learns to play the video game, it would avoid players to leave because of a high initial hardness

and would allow to adapt online games to each player level or make them win/lose only when the

game wants to keep their desire to play.

In terms of game, leaving apart neural networks, an online or 2 players mode would be

interesting to launch the game and making it more addictive.

Summarizing, this project has been a nice experience for me since it has taught me many

things about neural networks and reinforcement learning, the correct way to layout a document

and the importance of setting goals and meeting them within the deadline.
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ART APPENDIX

This appendix shows inspiration art, captures during the gameplay, sketches of characters,

and particle animations of TAJ.

FIGURE A.1. TAJ logo.
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FIGURE A.2. Intro menu screenshot.

FIGURE A.3. Screenshot of faction and level difficulty selector.
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(a) (b)

(c) (d)

(e) (f)

FIGURE A.4. (a) Kaapo of Nerta faction. (b) Kaapo of Ittla faction. (c) Rad of Nerta
faction. (d) Rad of Ittla faction. (e) Vasu of Nerta faction. (f) Vasu of Ittla faction.
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(a) (b)

FIGURE A.5. (a) Donkey Kong Country Returns Bosses [82]. (b) Nastia Polska Magic
Stone [83].

FIGURE A.6. Vasu (Nerta faction), Kaapo (Nerta faction) and Rad (Ittla faction) models
(left to right).
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FIGURE A.7. Faith Force Power-up.

FIGURE A.8. Ice Force Power-up.
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FIGURE A.9. Sun Force Power-up.

FIGURE A.10. Wind Force Power-up.
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FIGURE A.11. Ittla Power Stones.

FIGURE A.12. Nerta Power Stones.
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FIGURE A.13. Ittla Shrine.
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