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Abstract. Given a nonautonomous discrete dynamical system (NDS)
(X, f1,∞) we show that transitivity and density of periodic points do
not imply sensitivity in general, i.e., in the definition of Devaney chaos
there are no redundant conditions for NDS. In addition, we show that if
we also assume uniform convergence of the sequence (fn) that induces
the NDS, then sensitivity follows. Furthermore, in contrast to the au-
tonomous case, we show that there exist minimal NDS which are neither
equicontinuous nor sensitive.

1. Introduction

Nonautonomous discrete dynamical systems (NDS for short) were intro-
duced by S. Kolyada and L. Snoha in [11]. A very readable account of some
recent developments on the theory of nonautonomous discrete dynamical
systems has been given in [3].

Let (X, d) a metric space. An NDS is a pair (X, f1,∞) where f1,∞ = (fn :
X → X)n∈N is a sequence of continuous functions. The composition

fn1 := fn ◦ fn−1 ◦ · · · ◦ f2 ◦ f1
is said to be the nth-iterate of f1,∞ for all n ∈ N and, as usual, the symbol
f01 will stand for IdX , the identity map on X. The orbit of a point x ∈ X is
the set

Of1,∞(x) := {x, f11 (x), f21 (x), · · · fn1 (x), · · · }
which can also be described by the difference equation x1 = x and xn+1 =
fn(xn) for each n ∈ N.

Recall that given a compact metric space (X, d) and a sequence of con-
tinuous functions (fn : X → X)n∈N, a general form of a nonautonomous
difference equation is the following:
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{
x0 = x,

xn+1 = fn(xn)

for each x ∈ X. This kind of nonautonomous difference equation has been
considered by several mathematicians (see for instance [17], [18] among oth-
ers). Classical examples deal with X = [0, 1] the unit interval endowed with
the usual metric.

NDS generalize autonomous discrete systems (ADS for short). An ADS is
given by (X, f), where (X, d) is a metric space and f : X → X is continuous.
These systems can be seen as a particular case of NDS just by considering
fn = f for all n ∈ N.

In this paper we address some questions related to transitivity and sensi-
tivity on NDS. Our motivation is Devaney’s definition of chaos [7]. Devaney
defined an ADS (X, f) to be chaotic if it satisfies the following three con-
ditions: (i) (X, f) is transitive, (ii) the set of periodic points of (X, f) is a
dense subset of X and (iii) (X, f) is sensitive. Banks et al. [5] proved that
conditions (i) and (ii) imply condition (iii) (to avoid degenerate cases X is
assumed to be infinite).

These results suggest the question whether the two former conditions, i.e.
transitivity and density of periodic points, in an NDS imply the last one,
i.e. sensitivity. This was proposed by Lan [14] in full generality:

In nonautonomous dynamical systems, does transitivity together with den-
sity of periodic points imply sensitivity?

Under additional conditions, considering the density of k−periodic points
of X, Zhu et al. [18, Theorems 3.1 and 3.2] answered this question positively.
However, in [16, Example 4.4] the authors provided a negative answer for
an NDS on the interval [0, 1]. In the papers by Zhu et al. [18], Lan [14]
and Sanchez et al. [16] the authors considered a periodic point for the NDS
to be x ∈ X satisfying fn1 (x) = x for some n ∈ N. In our paper we will
consider periodic points to be those x ∈ X satisfying that fnk1 (x) = x for
some n ∈ N and any k ∈ N. This definition coincides with the classical one
of periodic point in the ADS case.

The paper is organized as follows. Section 2 is devoted to Devaney’s chaos
for NDS. We will provide new examples which give a negative answer to the
question proposed by Lan [14]. Indeed, for each transitive non-sensitive ADS
we show the existence of an NDS (X, f1,∞) which is transitive, has a dense
subset of periodic points but fails to be sensitive.

The main result of this section gives a positive answer to Lan’s ques-
tion and states that if (X, d) is a metric space without isolated points and
(X, f1,∞) is an NDS such that fn : X → X converges to f uniformly, then
transitivity of the NDS and density of periodic points in X imply sensitivity.

In Section 3 we deal with equicontinuity and sensitivity. We show that if
a transitive NDS (X, f1,∞) is equicontinuous at x0, then x0 is a transitive
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point. As a consequence, if an NDS (X, f1,∞) is topologically transitive
and equicontinuous, then it is minimal. We finish with an example of a
minimal NDS which is neither equicontinuous nor sensitive. This fact is a
significant difference between the theory of ADS and the theory of NDS.
Further references in ADS can be found in [9]. In [2, 3] the reader can find
further information about NDS. The interested reader in chaos, transitivity
and sensitivity for NDS might consult [4, 8, 10, 15].

2. Devaney chaos on NDS

An NDS (X, f1,∞) is said to be topologically transitive (transitive for
short) if for any pair of non-empty open sets U, V ⊂ X there exists N > 0
such that fN1 (U)

⋂
V 6= ∅. It is said to have sensitive dependence on initial

conditions (sensitive for short) if there exists a constant δ > 0 such that
for any x ∈ X and ε > 0 there exists y ∈ X with d(x, y) < ε such that
d(fn1 (x), fn1 (y)) > δ for some n ≥ 0.

We will say that a point p is periodic for the NDS (X, f1,∞) if there exists

n ∈ N such that fnk1 (p) = p for any k ∈ N.

Definition 2.1. An NDS (X, f1,∞) is Devaney chaotic if it satisfies the
following conditions:

i) (X, f1,∞) is topologically transitive;
ii) (X, f1,∞) has a dense set of periodic points;

iii) (X, f1,∞) has sensitive dependence on initial conditions.

As we have mentioned in Section 1, ADS are particular cases of NDS.
Indeed, all these definitions can also be considered for ADS by considering
fn = f for all n ∈ N. In particular, x ∈ X is periodic for the ADS (X, f) if
fn(x) = x for some n ∈ N. This shows that the definition of a periodic point
for NDS coincides with the classical one for ADS. We will now show that
sensitivity for NDS does not follow from transitivity and density of periodic
points even if all the points are periodic. We first recall the following well-
known result.

Proposition 2.2. There exist ADS which are transitive but they fail to be
sensitive.

Proof. It is sufficient to consider the ADS (T, f) where T = {z ∈ C : |z| = 1}
and f is an irrational rotation, that is, f : T −→ T is given by f(z) = eiαz
for α ∈ R \ Q. It is well-known that the autonomous system (T, f) is
topologically transitive [9, Example 1.12] but it fails to be sensitive since
d(fn(z), fn(w)) = d(z, w). �

Hence we obtain the main result of this section.

Proposition 2.3. For any transitive non-sensitive ADS (X, f) there exists
an NDS (X, f1,∞) which is transitive, all its points are periodic but fails to
be sensitive.
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Proof. Let (X, f) be a topologically transitive ADS that fails to be sensitive
which exists by Proposition 2.2. Suppose that f has inverse f−1. Denote

by f−n the nth-iterate

n−fold︷ ︸︸ ︷
f−1 ◦ · · · ◦ f−1 and define the NDS (X, f1,∞) where

the sequence (fn) is given by

(f1, f2, f3, f4, f5, f6, f7, . . . ) = (f, f−1, f2, f−2, f3, f−3, . . . )

so that the sequence

(f11 , f
2
1 , f

3
1 , f

4
1 , f

5
1 , f

6
1 , f

7
1 , . . . ) = (f, IdX , f

2, IdX , f
3, IdX , . . . ).

It is clear that every x ∈ X is periodic since f2k1 = IdX for any k ∈ N.
We show that the NDS is topologically transitive. Indeed, let U, V 6= ∅ be

open sets of X. Since (X, f) is topologically transitive, there exists n such
that fn(U) ∩ V 6= ∅. It is clear that there exists m ∈ N such that fm1 = fn

and we are done.
Now we show that (X, f1,∞) is not sensitive. Since (X, f) is not sen-

sitive, for any k ∈ N, there exists xk ∈ X and 0 < εk < 1/k such that
supn∈N d(fn(xk), f

n(y)) < 1/k for all y ∈ X satisfying d(xk, y) < εk.
Notice that for any n ∈ N there exists mn ∈ N0 such that fmn

1 = fn. So
for any k ∈ N, we have that

sup
n∈N

d(fmn
1 (xk), f

mn
1 (y)) = sup

n∈N
d(fn(xk), f

n(y)) <
1

k

for any y ∈ X such that d(xk, y) < εk so (X, f1,∞) is not sensitive. �

Although we provide a negative answer for the question proposed in [14],
the answer becomes true if we assume an extra condition on the NDS.

Theorem 2.4. Let (X, d) be a metric space without isolated points. Suppose
that fn : X → X converges uniformly to f . If

a) (X, f1,∞) is topologically transitive and
b) there exists a dense subset P ⊂ X of periodic points for (X, f1,∞),

then (X, f1,∞) is sensitive.

In order to show this result we need the following lemmas.

Lemma 2.5. Let (X, d) be a metric space without isolated points. Suppose
that fn : X → X converges pointwise to f . Then,

a) If p is a periodic point for (X, f1,∞) then p is a periodic point for
(X, f).

b) If there exists an infinite set of periodic points of f , then there exists
η > 0 such that for any x ∈ X there is a periodic point p of f such
that d(x, fn(p)) ≥ η for all n ∈ N.

Proof. First we prove a). Since p is periodic, there exists N ∈ N such that

f jN1 (p) = p for all j ∈ N. Notice that for any 0 ≤ i ≤ N we have that

f jN+i
1 (p) = fjN+i ◦ · · · ◦ fjN+1(p) which is convergent to f i(p) when j →∞.
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In particular, for i = N , we have that f jN+N
1 (p) = p is convergent to fN (p)

so fN (p) = p and we are done.

Now we show b). Since X has no isolated points it is an infinite set, then
we can find two periodic points p1, p2 whose orbits are disjoint (since the
orbits are finite). Hence,

η := inf
m,n∈N0

d(fm(p1), f
n(p2))/2 > 0.

It then follows from the triangle inequality that, for any x ∈ X, either for
j = 1 or for j = 2 we have that d(x, fn(pj)) ≥ η for all n ∈ N0. �

For any pair of non-empty open sets U and V of X, let N(U, V ) = {n ∈
N : fn1 (U) ∩ V 6= ∅}.

Lemma 2.6. Let (X, d) be a metric space without isolated points. If (X, f1,∞)
is topologically transitive, then for any pair of non-empty open subsets U, V
of X, the set N(U, V ) is infinite.

Proof. Let U, V be non-empty open sets. Since the NDS is topologically
transitive, N(U, V ) is non-empty. Let us suppose that it is finite and let

m = max{n ∈ N : fn1 (U) ∩ V 6= ∅}.

Since X has no isolated points, V contains infinitely many points, thus we
can fix a collection Vj ⊂ V , j = 1, . . . ,m+ 1 of mutually disjoint open sets.
Since m ∈ N(U, V ), there exists x ∈ U such that fm1 (x) ∈ V. Now, there
is j0 ∈ {1, . . . ,m + 1} such that f i1(x) /∈ Vj0 for all i = 1, . . . ,m due to the

choice of (Vj)
m+1
j=1 . By continuity, there is an open neighbourhood U ′ of x

contained in U such that

(1) f i1(U) ∩ Vj0 = ∅, i = 1, . . . ,m.

Since (X, f1,∞) is transitive, there exists k ∈ N such that fk1 (U ′) ∩ Vj0 6= ∅.
By (1), we have k > m which is a contradiction because N(U ′, Vj0) ⊂
N(U, V ). �

We now provide the proof of our main theorem.

Proof of Theorem 2.4. We fix a metric d defining the topology of X.
Let x ∈ X and ε > 0. By Lemma 2.5, there is a periodic point p such

that

(2) d(x, fn(p)) ≥ η for n ∈ N0.

We now claim that (X, f1,∞) is sensitive with sensitivity constant δ := η/4.
By assumption there is a periodic point q such that

d(x, q) < min{ε, η
4
}.
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Let q have period N , that is, f jN1 (q) = q for any j ∈ N. Since the functions
f j are continuous for j = 1, 2, · · · , N , there is some neighbourhood V of p
such that

(3) d(f j(p), f j(y)) < δ/2 for j = 0, 1, . . . , N and y ∈ V.
Consider U = Bε(x) and V the neighbourhood of p. Since fn converges

to f uniformly, we find j0 ∈ N such that for any j ≥ j0 we have for any
0 ≤ l < N ,

d((fjN ◦ fjN−1 ◦ · · · ◦ f(j−1)N+l+1)(v), fN−l(v)) < δ/2 for any v ∈ V.
Since (X, f1,∞) is topologically transitive, there exists an infinite set of

positive integers m such that fm1 (U) ∩ V 6= ∅ by Lemma 2.6. Hence we can
consider k = (j−1)N + i for 0 ≤ i < N such that j ≥ j0 and fk1 (U)∩V 6= ∅.
Take z ∈ U (that is, d(x, z) < ε) such that fk1 (z) ∈ V .

Let S := fjN ◦ fjN−1 ◦ · · · ◦ f(j−1)N+i+1. By hypothesis we will obtain
that

d(S(fk1 (z)), fN−i(fk1 (z))) < δ/2.

By the triangle inequality we obtain using inequality (3) that

d(fN−i(p), S(fk1 (z))) ≤

d(S(fk1 (z)), fN−i(fk1 (z))) + d(fN−i(p), fN−i(fk1 (z))) < δ/2 + δ/2 = δ

and together with (2) then yields that

d(f jN1 (q), f jN1 (z)) = d(f jN1 (q), S(fk1 (z))) = d(q, S(fk1 (z))) ≥

d(x, fN−i(p))− d(fN−i(p), S(fk1 (z)))− d(x, q) > 4δ − δ − δ = 2δ.

Hence, either d(f jN1 (x), f jN1 (q)) > δ or d(f jN1 (x), f jN1 (z)) > δ and then the
theorem holds. �

3. Equicontinuity and sensitivity on NDS

An NDS (X, f1,∞) is said to be equicontinuous at the point x0 if for every
ε > 0 there exists δ > 0 such that d(fn1 (y), fn1 (x0)) < ε for all n ≥ 0
whenever d(y, x0) < δ. An NDS (X, f1,∞) is said to be equicontinuous if
it is equicontinuous at every point x0 ∈ X. It is a well-known fact that
an equicontinuous NDS (X, f1,∞) defined on a compact metric space X is
uniformly equicontinuous, that is, for every ε > 0 there is δ > 0 such that
d(fn1 (y), fn1 (x)) < ε for all n ≥ 0 whenever d(y, x) < δ. Recall also that a
point x0 ∈ X is called transitive if the orbit of x0 is dense in X. If all the
points of X are transitive, then the NDS is called minimal.

An interesting aspect of the theory of discrete dynamical systems lies
in the fact that if a topologically transitive ADS (X, f) is equicontinuous
at least at a point of X, then the set of equicontinuous points coincides
with the set of transitive points. In particular, a minimal ADS is either
equicontinuous or sensitive (see [1] for details and, for a generalization to
semigroup actions, see [12]). As the example below shows, the situation is



NDS 7

quite different if we replace ADS by NDS. We first prove an easy connection
between equicontinuity and transitive points.

Theorem 3.1. Let (X, f1,∞) be a topologically transitive NDS. If (X, f1,∞)
is equicontinuous at x0, then x0 is a transitive point.

Proof. Let y ∈ X and ε > 0. Since the NDS is equicontinuous at x0, there
exists an open ball Bδ(x0) such that d(fn1 (x0), f

n
1 (z)) < ε for any z ∈ Bδ(x0)

and all n ∈ N. Since (X, f1,∞) is topologically transitive, we can find n ≥ 0
such that fn1 (Bδ(x0)) ∩Bε(y) 6= ∅. Then, if fn1 (z) ∈ fn1 (Bδ(x0)) ∩Bε(y), we
have

d(fn1 (x0), y) ≤ d(fn1 (x0), f
n
1 (z)) + d(fn1 (z), y) < 2ε,

that is, fn1 (x0) belongs to B2ε(y). This completes the proof. �

A straightforward consequence of the previous result is the following corol-
lary.

Corollary 3.2. If an NDS (X, f1,∞) is topologically transitive and equicon-
tinuous, then (X, f1,∞) is minimal.

We now present the promised result. Recall that the Cantor set C has
minimal equicontinuous systems. Indeed, minimal equicontinuous systems
on the Cantor set C are conjugate to an odometer, that is, they are Kronecker
systems on C (see [13]) and, consequently, they are isometries. We will take
advantage of the following useful property of the Cantor set: two clopen
subsets of C are homeomorphic (this is a particular case of the well-known
Brower’s theorem [6] which states that every non-empty, perfect, compact,
totally disconnected and metrizable space is homeomorphic to the Cantor
set).

Theorem 3.3. There exists a minimal NDS which is neither equicontinuous
nor sensitive.

Proof. Let {M1,M2} be a partition of the Cantor set with Mi a clopen
subset for each i = 1, 2 and consider a minimal equicontinuous isometry T
on C. Now, given the clopen sets Ci = T (Mi) for each i = 1, 2, our first
step is to define a sequence of homeomorphisms {fn : n ∈ N} on C that will
allow us to construct a non-equicontinuous NDS. For this, choose a point x1
in C2 and consider a sequence {Fn : n ∈ N} which satisfies, for each n ∈ N,
the following properties:

(1) Fn is a clopen subset of C whose diameter is 1/n;
(2) Fn+1 ( Fn;
(3) x1 ∈ Fn+1.

Now, choose clopen subsets S1, S2 of C2 such that d(S1, S2) = ε0 > 0.
Select, for each n ∈ N, homeomorphisms gn : C2 \ Fn → C2 \ (S1 ∪ S2),
hn : Fn \ Fn+1 → S1 and qn : Fn+1 → S2. Given n ∈ N, we define fn as
follows:
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fn(x) =


x if x ∈ C1,

gn(x) if x ∈ C2 \ Fn,
hn(x) if x ∈ Fn \ Fn+1,

qn(x) if x ∈ Fn+1.

Now let (C, f1,∞) be the NDS defined by the sequence

{
T, f1, f

−1
1 , T, T−1, f2, f

−1
2 , T 2, T−2, f3, f

−1
3 , T 3, T−3, . . .

}
.

It is an easy matter to check that

f11 = T, f21 = f1 ◦ T
f31 = T, f41 = T 2

f51 = T, f61 = f2 ◦ T
f71 = T, f81 = T 3

f91 = T, f101 = f3 ◦ T
...

...

Notice that the sequence {Tn : n ∈ N} is a subsequence of {fn1 : n ∈ N}.
Thus, transitivity and minimality of (C, f1,∞) follow from transitivity and
minimality of (C, T ). Moreover, since the restriction of fn to C1 is the iden-
tity for all n ∈ N, the NDS (C, f1,∞) is equicontinuous at every x ∈ C1 (since
T is equicontinuous). Thus, (C, f1,∞) is nonsensitive.

We will prove that (C, f1,∞) is nonequicontinuous. Indeed, for fixed δ > 0,
we can choose n ∈ N with 1/n < δ. If x ∈ Fn \ Fn+1, then fn(x) = hn(x) ∈
S1. Since fn(x1) = qn(x1) ∈ S2, we have

d((fn ◦ T )(T−1(x), (fn ◦ T )(T−1(x1)) ≥ ε0.

Since T−1 is an isometry, this proves that (C, f1,∞) is not equicontinuous
at T−1(x1). �

Remark 3.4. As the point T−1(x0) of Theorem 3.3 shows, for transitive
NDS the existence of equicontinuous points does not imply that every tran-
sitive point is equicontinuous. This is an important difference with the case
of ADS [1].
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