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On the complete integrability of the Raychaudhuri
differential system in R4 and of a CRNT model in R5

Antoni Ferragut, Claudia Valls

Abstract

We study the Darboux integrability of two differential systems with parameters: a rela-
tivistic model in R4 called the Raychaudhuri equation and a chemical reaction model in R5.
For the first one we prove that it is completely integrable and that the first integrals are of Dar-
boux type. This is the first four-dimensional realistic non-trivial model which is completely
integrable with first integrals of Darboux type and for which for a full Lebesgue measure set
of the values of the parameters the three linearly independent first integrals are rational. For
the second one, we find all its Darboux polynomials and exponential factors and we prove that
it is not Darboux integrable.

Keywords. Darboux polynomial; exponential factor; Darboux integrability; Raychaudhuri
equation; chemical reaction network

1 Introduction and presentation of the systems

Consider a polynomial differential system of degree d ∈ N

ẋ = P (x), x ∈ Rn, (1.1)

where P (x) = (P1(x), . . . , Pn(x)) ∈ C[x] and the dot denotes derivative with respect to the

independent variable t.

A function H(x) is a first integral of system (1.1) if it is continuous and defined in a full

Lebesgue measure subset Ω ⊆ Rn, is not locally constant on any positive Lebesgue measure

subset of Ω and moreover is constant along each orbit of system (1.1) in Ω. If H is C1, then if X
is the vector field associated to system (1.1), we have

X (H) = P1
∂H

∂x1
+ · · ·+ Pn

∂H

∂xn
= 0.
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System (1.1) is Ck-completely integrable in Ω if it has n− 1 functionally independent Ck first

integrals in Ω. Recall that k functions H1(x), . . . ,Hk(x) are functionally independent in Ω if the

matrix of gradients (∇H1, . . . ,∇Hk) has rank k in a full Lebesgue measure subset of Ω.

For an n-dimensional system of differential equations the existence of some first integrals

reduces the complexity of its dynamics and the existence of n − 1 functionally independent first

integrals solves completely the problem (at least theoretically) of determining its phase portrait.

In general for a given differential system it is a difficult problem to determine the existence or

non-existence of first integrals.

During recent years the interest in the study of the integrability of differential equations has

attracted much attention from the mathematical community. Darboux theory of integrability plays

a central role in the integrability of the polynomial differential systems since it gives a sufficient

condition for the integrability inside the family of rational functions. We highlight that it works for

real or complex polynomial ordinary differential equations and that the study of complex algebraic

solutions is necessary for obtaining all the real first integrals of a real polynomial differential

equation.

A Darboux polynomial of (1.1) is a polynomial f ∈ C[x] such that

X (f) = P1
∂f

∂x1
+ · · ·+ Pn

∂f

∂xn
= kf, (1.2)

where x = (x1, . . . , xn) and k ∈ C[x], which is called the cofactor of f , has degree at most d−1.

An exponential factor of (1.1) is a function F = exp(g/f), with f, g ∈ C[x], such that

X (F ) = P1
∂F

∂x1
+ · · ·+ Pn

∂F

∂xn
= LF, (1.3)

where x = (x1, . . . , xn) and L ∈ C[x], which is called the cofactor of F , has degree at most d−1.

We note that in this case f is a Darboux polynomial of (1.1) and that

X (g) = kg + Lf, (1.4)

where k is the cofactor of f .

The Darboux theory of integrability relates the number of Darboux polynomials and exponen-

tials factors with the existence of a Darboux first integral, see for example [13]. We recall that a

Darboux first integral is a product of complex powers of Darboux polynomials and exponentials

factors.

The main aim in this paper is to study the Darboux integrability of two differential systems.

The first one belongs to R4 and plays an important role in relativity theory; the second one belongs

to R5 and has an important contribution in the chemical reaction network.

Our first system is the so-called Raychaudhuri equation for a two dimensional curved surface
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of constant curvature:

ẋ1 = −x
2
1

2
− αx1 − 2(x2

2 + x2
3 − x2

4)− 2β,

ẋ2 = −(α+ x1)x2 − γ,
ẋ3 = −(α+ x1)x3 − δ,
ẋ4 = −(α+ x1)x4,

(1.5)

where α, β, δ, γ are real parameters. See [14, 1, 12] and the references therein. In general relativity,

the Raychaudhuri equation is a fundamental result describing the motion of nearby bits of matter.

It is quite relevant since it is used as a fundamental lemma for the Penrose-Hawking singularity

theorems (see [12] for details) and for the study of exact solutions in general relativity. However,

it has an independent interest since it offers a simple and general validation of our intuitive expec-

tation that gravitation should be a universal attractive force between any two bits of mass-energy

in general relativity, as it is in Newton’s theory of gravitation.

Here we further contribute to the understanding of the complexity, or more precisely of the

topological structure of the dynamics of system (1.5) by studying its integrability. Darboux poly-

nomials, analytic integrability and Darboux first integrals of this system were partially studied in

[15, 16, 17]. We prove here that Raychaudhuri equation is completely Darboux integrable, and

moreover that the three first integrals are, for almost all of the values of the parameters, rational.

As far as the authors know, this is the first four-dimensional realistic non-trivial model which is

completely integrable with first integrals of Darboux type for which for a full Lebesgue measure

set of the values of the parameters the three linearly independent first integrals are rational.

Our second differential system comes from a chemical reaction model in R5. In Chemical Re-

action Network Theory (CRNT), a reaction network N = (S, C,R) is defined as a set of species

S, a set of complexes C and a set of reactions R between complexes. Each complex is a combi-

nation of species. It is assumed that a reaction occurs according to mass-action kinetics, that is,

at a rate proportional to the product of the species concentrations in the reactant or source com-

plex. The set of reactions together with a rate vector give rise to a polynomial system of ordinary

differential equations. We refer the reader to [9, 10] for more information about CRNT. For a con-

crete system of chemical reactions the parameter and state spaces are typically high-dimensional

and one uses numerical methods to analyze the solutions. Due to high computational complexity

this can be done only for a small set of values of system’s parameters. Thus instead of studying

quantitative aspects of the dynamics, recently there has been an increasing interest in studying

qualitative properties of the CRN. For example in [2, 3, 4, 5, 6, 7] the authors considered the ques-

tion of existence of single versus multiple steady states (also referred to as multistationary). The

existence of first integrals of a polynomial differential system describing a CRN often provides

essential qualitative information (the level sets are invariant under the flow) about the solution or

can be used, as explained in the introduction, to reduce the dimension of the total state space.

Since the computation of nonlinear conservation laws (i.e., first integrals) is highly nontrivial most
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of the results known by now related to the CRN dynamics provide only trivial linear first integrals.

Hence, in this paper, our purpose is to show, by following an example (see system (1.6)), how to

apply Darboux theory of integrability to obtain nontrivial and nonlinear algebraic and Darboux

type first integrals.

More concretely, we deal with a particular system appearing in [9] coming from an enzymatic

mechanism:

ẋ1 = −c1x1x4,

ẋ2 = −c3x2x4 + c2x5,

ẋ3 = c4x5,

ẋ4 = −c1x1x4 − c3x2x4 + (c2 + c4)x5,

ẋ5 = c1x1x4 + c3x2x4 − (c2 + c4)x5,

(1.6)

where c1, c2, c3, c4 are positive constants. We study the Darboux integrability of this system by

characterizing its Darboux polynomials and its exponential factors.

2 Main results

In this section we provide the main results of the paper. Concerning system (1.5), we shall prove

that it is completely integrable, and moreover we shall provide three functionally independent

Darboux first integrals, distinguishing several cases depending on the parameters. We note that for

almost all of the cases, these first integrals are rational functions, as we explained above. It is a

nicely surprising result for a four-dimensional non-trivial system.

For system (1.6) we shall prove that there only exist two first integrals (already found in [9]),

which are polynomial, one irreducible Darboux polynomial and one exponential factor. With this

situation, we shall prove that the system is not Darboux integrable.

2.1 The Raychaudhuri equation

We can remove the parameter α in system (1.5) by the change x1 + α 7→ x1:

ẋ1 = −x
2
1

2
− 2(x2

2 + x2
3 − x2

4)− γ0,

ẋ2 = −x1x2 − γ,
ẋ3 = −x1x3 − δ,
ẋ4 = −x1x4,

(2.1)

where γ0 = 2β−α2/2 ∈ R. It is clear that x4 is a Darboux polynomial of systems (1.5) and (2.1)

with cofactor −x1, for all values of the parameters.
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Depending on the values of γ and δ we distinguish three different systems. If γ = δ = 0 then

(2.1) becomes

ẋ1 = −x
2
1

2
− 2(x2

2 + x2
3 − x2

4)− γ0,

ẋ2 = −x1x2,

ẋ3 = −x1x3,

ẋ4 = −x1x4.

(2.2)

A first result about the Raychaudhuri equation is the following theorem concerning system

(2.2). Its proof was given in [15].

Theorem 2.1. System (2.2) is rationally completely integrable with the rational first integrals

H1 =
x2

x3
, H2 =

x3

x4
, H3 =

x2
1 − 4(x2

2 + x2
3 − x2

4) + 2γ0

x4
.

If γ 6= 0 and δ = 0 then we can apply the change x2 7→ x2γ to obtain

ẋ1 = −x
2
1

2
− 2(γ2x2

2 + x2
3 − x2

4)− γ0,

ẋ2 = −x1x2 − 1,

ẋ3 = −x1x3,

ẋ4 = −x1x4.

(2.3)

If γ = 0 and δ 6= 0, then applying the change x3 7→ x3δ and swapping x2 and x3, and δ and γ

we obtain system (2.3) again.

Finally, if γ, δ 6= 0 then the changes x2 7→ x2γ and x3 7→ x3δ first and (x2, x3) 7→ (x2 +

x3/2, x2 − x3/2) afterwards lead to

ẋ1 = −x
2
1

2
− 2

(
γ2

1x
2
2 +

γ2
1

4
x2

3 + γ2x2x3 − x2
4

)
− γ0,

ẋ2 = −x1x2 − 1,

ẋ3 = −x1x3,

ẋ4 = −x1x4,

(2.4)

where γ2
1 = γ2 + δ2 > 0 and γ2 = γ2 − δ2 ∈ R.

We note that after the change x3 7→ 2x3/γ1 and setting γ2 = 0, γ1 = γ, system (2.4) is system

(2.3). Therefore the cases δ = 0, γ 6= 0 and δ 6= 0, γ = 0 can be obtained from the case δ, γ 6= 0.

In short, from now on we shall only study system (2.4).

The following theorem is our first main result. It completes the study of the integrability of the

Raychaudhuri equation by characterizing completely the existence of first integrals for any value

of the parameters γ, δ 6= 0.
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Theorem 2.2. System (2.4) is completely integrable, with at least two of the three first integrals

being rational. Indeed:

(a) If 4γ2
1 −γ2

0 6= 0 then we have the following functionally independent rational first integrals:

H1 =
x3

x4
, H2 =

F

x3 x4
, H3 =

T1 T2

T3 T4
,

where F and Ti are Darboux polynomials.

(b) If 4γ2
1−γ2

0 = 0 then we have the following functionally independent Darboux first integrals:

H1 =
x3

x4
, H2 =

T̄1 T̄2

x3 x4
, H3 =

T̄2G
4
√−γ0

T̄1
.

where T̄1 and T̄2 are Darboux polynomials and G is an exponential factor.

The expressions of the Darboux polynomials and of the exponential factor appearing in Theo-

rem 2.2 are provided in the proof of Theorem 2.2, see Subsection 3.1.

2.2 The chemical reaction model

The second main result of this paper deals with system (1.6).

Theorem 2.3. The following results hold for system (1.6).

(a) It has the polynomial first integrals

H1 = x1 + x2 + x3 + x5, H2 = x4 + x5.

Any other polynomial first integral is a polynomial function of H1, H2.

(b) The unique irreducible Darboux polynomial is x1.

(c) The unique exponential factors are of the form eµx3 for any µ ∈ C and exp(f − λ/c4x3)

where f − λ/c4x3 is a rational function of H1, H2 for any λ ∈ C.

(d) It is not Darboux integrable.

3 Proof of the main results

We consider two subsections. The first one deals with the main result related to the Raychaudhuri

equation, while the second one deals with the main result related to the Chemical reaction system.
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3.1 The Raychaudhuri equation: proof of Theorem 2.2

To prove Theorem 2.2 we first state and prove some auxiliary results. The first one simplifies the

expression of the general cofactor of a Darboux polynomial of system (2.1). We denote by fi the

homogeneous part of degree i of a polynomial f .

Proposition 3.1. Let f be a Darboux polynomial of degree m ∈ N of system (2.1) with cofactor

k. Then k = k0 + k1x1, with k1 ∈ [−m,−m/2] ∩ Z.

Proof. Let k = k0 + k1x1 + k2x2 + k3x3 + k4x4 be the cofactor of f . Taking the homogeneous

part of degree m + 1 of the equation X (f) = kf and using the Euler theorem of homogeneous

functions for fm we get the equation
(
2k1x

2
1 + 2x1(k2x2 + k3x3 + k4x4) +m(x2

1 + 4(x2
2 + x2

3 − x2
4))
)
fm

+ (x2
1 − 4(x2

2 + x2
3 − x2

4))

(
x2
∂fm
∂x2

+ x3
∂fm
∂x3

+ x4
∂fm
∂x4

)
= 0.

The general solution of this equation is

fm(x1, x2, x3, x4) =x−2k1−m
2

(
x1 − 2

√
x2

2 + x2
3 − x2

4

)k1+m+
k2x2+k3x3+k4x4

2
√

x22+x23−x24

(
x1 + 2

√
x2

2 + x2
3 − x2

4

)k1+m− k2x2+k3x3+k4x4

2
√

x22+x23−x24 Cm(x1, x3/x2, x4/x2),

where Cm is an arbitrary function. Since this is to be a polynomial of degree m, we must take

k2 = k3 = k4 = 0. Moreover Cm cannot depend on x1. Then

fm(x1, x2, x3, x4) = x−2k1−m
2 (x2

1 − 4(x2
2 + x2

3 − x2
4))k1+mCm(x3/x2, x4/x2).

Since the exponents must be non-negative, the proposition follows.

Lemma 3.2. The following statements hold concerning system (2.4).

1. It has two Darboux polynomials of degree one.

2. If 4γ2
1 − γ2

0 6= 0, then it has four Darboux polynomials of degree two and one Darboux

polynomial of degree four.

3. If 4γ2
1 − γ2

0 = 0, then it has two Darboux polynomials of degree two and an exponential

factor.

Proof. Clearly x3 and x4 are Darboux polynomials. Both have cofactor −x1. In particular x3/x4

is a rational first integral of (2.4).

Straightforward computations show that

T = k4
0−4γ2

1 + 2k3
0x1 +k2

0x
2
1−4γ2

1k
2
0x

2
2 + 4γ2k0x3−γ2

1k
2
0x

2
3 + 8γ2

1k0x2−4γ2k
2
0x2x3 + 4k2

0x
2
4
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is a Darboux polynomial of degree two of (2.4) with cofactor k0 − x1, with k0 a solution of

K0 := 4γ2
1 + 2γ0k

2
0 + k4

0 = 0. These Darboux polynomials were already found in [11]. The

discriminant of K0 is 210γ2
1(4γ2

1 − γ2
0). We recall that γ1 6= 0. If 4γ2

1 − γ2
0 6= 0 then we have four

Darboux polynomials, say T1, T2, T3, T4, one for each solution ofK0 = 0. Otherwise we have just

two, say T̄1, T̄2, as K0 = 0 has two double solutions.

The polynomial

F =
(
x2

1 + 2γ0 − 4γ2
1x

2
2 − 4γ2x2x3 − γ2

1x
2
3 + 4x2

4

)2

+ 4
(
γ2

1(−4− 8x1x2 + 8γ0x
2
2 + γ0x

2
3)− 4(γ2(x1 − 2γ0x2)x3 + γ0x

2
4)
)

is a Darboux polynomial of degree four of system (2.4) with cofactor −2x1. We note that it coin-

cides with T̄1T̄2 in the case 4γ2
1 − γ2

0 = 0, for which we have the exponential factor

G = exp

{
2(−γ0)3/2 + γ0x1 + γ2

0x2 + 2γ2x3

T̄1

}
.

We notice that the cofactor of G is −1/2.

Proof of Theorem 2.2. It follows immediately from Lemma 3.2 and from the fact that the corres-

ponding linear combination of the cofactors of the Darboux polynomials and of the exponential

factor in the expressions of the functions in Theorem 2.2 is zero.

3.2 The Chemical reaction: proof of Theorem 2.3

Statement (d) follows immediately from statements (a), (b) and (c), since there is no way to con-

struct two Darboux first integrals functionally independent of H1, H2. In particular, it is clear that

the unique rational first integrals of system (1.6) are the rational functions in the variables H1, H2.

Hence, we need to prove only statements (a), (b) and (c).

As in the proof of Theorem 2.2, we start the study of system (1.6) simplifying the general

expression of the cofactor of a Darboux polynomial.

Proposition 3.3. Let f be a Darboux polynomial of degree m ∈ N of system (1.6) with cofactor

k. Then k = k0 + k4x4.

Proof. Let k = k0 + k1x1 + k2x2 + k3x3 + k4x4 + k5x5 be the cofactor of f . Taking the

homogeneous part of degree m + 1 of the equation X (f) = kf and using the Euler theorem of

homogeneous functions for fm we get the equation

−(k1x1 + k2x2+k3x3 + (k4 + c1m)x4 + k5x5)fm + (c1 − c3)x2x4
∂fm
∂x2

+ c1x3x4
∂fm
∂x3

+ x4(−c1x2 − c3x2 + c1x4)
∂fm
∂x4

+ x4(c1x1 + c3x2 + c1x5)
∂fm
∂x5

= 0.

(3.1)
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The general solution of this equation is

fm(x1, x2, x3, x4, x5) = e
k2x2

(c1−c3)x4 x
k1x1+k3x3+(k4+c1m)x4+k5x5

(c1−c3)x4
2

Cm

(
x1, x

− c1
c1−c3

2 x3, x
− c1

c1−c3
2 (x1 + x2 − x4), x

− c1
c1−c3

2 (x1 + x2 + x5)

)
,

where Cm is an arbitrary function. We must take k2 = 0; moreover the exponent of x2 cannot

depend on the variables, hence k1 = k3 = k5 = 0. Then the proposition follows.

We prove the statements of Theorem 2.3 separately.

3.2.1 Proof of statement (a)

Lemma 3.4. The polynomial functions H1 = x1 + x2 + x3 + x5 and H2 = x4 + x5 are first

integrals of system (1.6).

Proof. It follows after direct computations.

Statement (a) follows after next proposition.

Proposition 3.5. Any polynomial first integral of system (1.6) is a polynomial function of H1, H2.

Proof. Let f be a polynomial first integral of (1.6). Then f satisfies the equation X (f) = 0; that

is,

− c1x1x4
∂f

∂x1
+ (−c3x2x4 + c2x5)

∂f

∂x2
+ c4x5

∂f

∂x3

+ (−c1x1x4 − c3x2x4 + (c2 + c4)x5)

(
∂f

∂x4
− ∂f

∂x5

)
= 0.

Write f = g(x1, x2, x3, x4) + Hj
2h(x1, x2, x3, x4, x5), with H2 - h and j ∈ N. Then on

H2 = 0 we have, after some simplifications,

c1x1
∂g

∂x1
+ (c2 + c3x2)

∂g

∂x2
+ c4

∂g

∂x3
+ (c1x1 + c3x2 + c2 + c4)

∂g

∂x4
= 0,

taking into account that g = f |H2=0. The solution of this equation is

g(x1, x2, x3, x4) = F

(
xc31

(c2 + c3x2)c1
, x3 −

c4

c1
log x1, x1 + x2 − x4 +

c4

c1
log x1

)
,

with F an arbitrary function. Then g = g(xc31 (c2 + c3x2)−c1 , H1). Since c1c3 > 0 and we want g

to be a polynomial, we have g = g(H1).

At this time we have f = g(H1) + Hj
2h, thus h is either a polynomial first integral or a

constant, since

0 = X (f) = X (g(H1)) + X (Hj
2)h+Hj

2X (h) = Hj
2X (h).

Indeed we can assume it is a constant, otherwise we apply the above arguments repeatedly until

we obtain a constant. So f is a function of H1 and H2 and thus the proposition follows.
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Remark 3.6. We note that from the proof of Proposition 3.5 we get that any polynomial first

integral of system (1.6) restricted to H2 = 0 is a polynomial function of H1.

Remark 3.7. We notice that x−c31 (c2+c3x2)c1 is a Darboux first integral of system (1.6) restricted

to H2 = 0.

3.2.2 Proof of statement (b)

We need two lemmas and one proposition to prove statement (b).

Lemma 3.8. The unique Darboux polynomial of degree one of system (1.6) is x1. Its cofactor is

k = −c1x4.

Proof. It follows after easy computations.

Lemma 3.9. Let f be an irreducible Darboux polynomial of system (1.6) of degree greater than

one with cofactor k. Then k = k4x4.

Proof. From Proposition 3.3 we have k = k0 + k4x4. We want to prove that k0 = 0.

Suppose that k0 6= 0. Let f̄ = f |x1=0. Since f is irreducible it is clear that x1 - f , hence

f̄ 6≡ 0. Moreover f̄ satisfies

(−c3x2x4 + c2x5)
∂f̄

∂x2
+ c4x5

∂f̄

∂x3

+ (−c3x2x4 + (c2 + c4)x5)

(
∂f̄

∂x4
− ∂f̄

∂x5

)
= (k0 + k4x4)f̄ . (3.2)

We first suppose that H2 - f̄ . Let f̃ = f̄ |H2=0 6≡ 0. We note that ∂f̃
∂x4

= ∂f̄
∂x4
− ∂f̄

∂x5
. Then f̃

satisfies equation (3.2) on H2 = 0, that is

−x4

(
(c3x2 + c2)

∂f̃

∂x2
+ c4

∂f̃

∂x3
+ (c3x2 + c2 + c4)

∂f̃

∂x4

)
= (k0 + k4x4)f̃ . (3.3)

Since we are assuming that k0 6= 0, we have x4|f̃ . Hence f̃ = x`4g 6≡ 0, where ` ∈ N and

g ∈ C[x2, x3, x4] is such that x4 - g. Moreover, g satisfies the equation

−x4

(
(c3x2 + c2)

∂g

∂x2
+ c4

∂g

∂x3
+ (c2 + c4 + c3x2)

∂g

∂x4

)
=
(
k0 +`(c2 +c4)+`c3x2 +k4x4

)
g.

Since `c3 6= 0 and x4 - g, we have g ≡ 0, which is a contradiction.

Thus the case H2 - f̄ cannot happen. We write f̄ = H`
2f̃ , with ` ∈ N, H2 - f̃ and f̃ 6≡ 0. Let

f̂ = f̃ |H2=0 6≡ 0. We notice that f̂ satisfies (3.3). Then, proceeding as above, we conclude that

f̂ = 0, which is again a contradiction. This concludes the proof of the lemma, since the assumption

k0 6= 0 leads to contradiction.
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In view of Lemma 3.9 the cofactor of any Darboux polynomial of (1.6) has the form k = k4x4.

Proposition 3.10. System (1.6) has no irreducible Darboux polynomials other than x1.

Proof. Suppose that f is an irreducible Darboux polynomial of system (1.6) of degree greater than

one and cofactor k = k4x4, see Lemma 3.9. Since x1 - f , we can write

f = f0(x2, x3, x4, x5) + xj1g1(x1, x2, x3, x4, x5),

with j ∈ N and f0 6≡ 0. From the equation X (f)− kf = 0 restricted to x1 = 0 we have

(−c3x2x4 +c2x5)
∂f0

∂x2
+c4x5

∂f0

∂x3
−(c3x2x4−(c2 +c4)x5)

(
∂f0

∂x4
− ∂f0

∂x5

)
−k4x4f0 = 0. (3.4)

We first suppose that H2 - f0. Let f̄ = f0|H2=0 6≡ 0. Notice that ∂f̄
∂x4

= ∂f0
∂x4
− ∂f0

∂x5
. We have

f0 = f̄(x2, x3, x4) +H`
2g0(x2, x3, x4, x5), with ` ∈ N, H2 - g0 and g0 6≡ 0. On H2 = 0 equation

(3.4) becomes

(c3x2 + c2)
∂f̄

∂x2
+ c4

∂f̄

∂x3
+ (c3x2 + c2 + c4)

∂f̄

∂x4
+ k4f̄ = 0, (3.5)

from which we obtain

f̄(x2, x3, x4) = (c3x2 + c2)−k4/c3F (x2 + x3 − x4),

where F 6≡ 0 is an arbitrary function such that f̄ is a polynomial. We must take k4 = −c3n, with

n ∈ N. We note that n 6= 0 since f is not a first integral.

Now equation (3.4) writes as

H`
2

[
(−c3x2x4 + c2x5)

∂g0

∂x2
+ c4x5

∂g0

∂x3

−(c3x2x4 − (c2 + c4)x5)

(
∂g0

∂x4
− ∂g0

∂x5

)
+ c3nx4g0

]

− c3n(c3x2 + c2)n−1(c2x4 + 2c3x2x4 − c2x5)F = 0.

Since ` > 0 we take H2 = 0 to obtain F ≡ 0, and hence f̄ ≡ 0, a contradiction.

Thus the caseH2 - f̄0 cannot happen and we have f0 = H`
2f1 6≡ 0 with ` ∈ N andH2 - f1. Let

f̃ = f1|H2=0 6≡ 0. We notice that f̃ satisfies (3.5). Therefore f̃ ≡ 0, which is again a contradiction.

This concludes the proof of the lemma.

After Lemma 3.8 and Proposition 3.10, statement (b) of Theorem 2.3 follows.

3.2.3 Proof of statement (c)

We divide the proof of statement (c) into different partial results.

Lemma 3.11. The function ex3 is an exponential factor of system (1.6). It has cofactor c4x5.
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Proof. It follows from direct computations.

We notice that, since system (1.6) has only one Darboux polynomial and two polynomial first

integrals, if (1.6) has an exponential factor, then it must be of the form

exp(g/(xn1Q(H1, H2))), (3.6)

with n ∈ N ∪ {0} and Q ∈ C[H1, H2]. Next lemma will be useful later on to finish the proof of

statement (c).

Lemma 3.12. System (1.6) on x1 = 0 has no Darboux polynomials.

Proof. Let g ∈ C[x2, x3, x4, x5] be a Darboux polynomial of degree m ∈ N of system (1.6)

restricted to x1 = 0, which will be called Y in this proof. Let k = k0 +k2x2 +k3x3 +k4x4 +k5x5

be its cofactor. We write g =
∑m

i=0 gi, where gi is a homogeneous polynomial of degree i in

the variables. From the terms of degree m + 1 of equation Y(g) = kg we have, using the Euler

Theorem of homogeneous functions for gm,

gm(x2, x3, x4, x5) = x
k2+k4+k5

c3
+m

3 x
− k2

c3
− k3x3+k5(x4+x5)

c3(x2−x4)

4 Cm

(
x2,

x2 − x4

x3
,
x2 + x5

x3

)
,

where Cm is an arbitrary function. Since gm is a homogeneous polynomial of degree m we must

take k3 = k5 = 0 and thus

gm(x2, x3, x4, x5) = x
− k4

c3
2 x

k2+k4
c3

+m

3 x
− k2

c3
4 Cm

(
x2 − x4

x3
,
x2 + x5

x3

)
,

which rewrites as

gm(x2, x3, x4, x5) = xm1
2 xm−m1−m2−m3−m4

3 xm2
4 (x2 − x4)m3(x2 + x5)m4 ,

with mi ∈ N ∪ {0} and k4 = −m1c3, k2 = −m2c3.

From the homogeneous equation of degree m we obtain

gm−1(x2, x3, x4, x5) =
1

c3
xm1−1

2 xm−m1−m2−m3−m4−1
3 xm2−1

4 (x2 − x4)m3−2(x2 + x5)m4−1

×
[
L1 log x2 + L2 log x4 + x3(x2 − x4)(x2 + x5)(c2m1x4(x2 + x5)

− (c2 + c4)m2x2(x4 + x5))

]
+ xm1

2 xm2
4 Cm−1(x2 − x4, x2 + x5, x3),

where Cm−1 is an arbitrary function and L1, L2 are some homogeneous polynomials of degree 5.

We must take L1 = L2 = 0. The equations corresponding to the coefficients of L1 and L2 equaled

to zero lead to

k0 = −c2(c2 + c4)

2c2 + c4
m, m1 =

c2 + c4

2c2 + c4
m, m2 =

c2

2c2 + c4
m, m3 = m4 = 0.
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We notice that m|k. Moreover,

gm−1(x2, x3, x4, x5) = − c2(c2 + c4)

c3(2c2 + c4)
mx

c2+c4
2c2+c4

m−1

2 x
c2

2c2+c4
m−1

4 x5

+ x
c2+c4
2c2+c4

m

2 x
c2

2c2+c4
m

4 Cm−1(x2 − x4, x2 + x5, x3).

Since gm−1 has degree m− 1, we must take Cm−1 = 0.

From the homogeneous equation of degree m− 1 we obtain

gm−2(x2, x3, x4, x5) = x
c2+c4
2c2+c4

m−2

2 x
c2

2c2+c4
m−2

4

(
x2

2x
2
4Cm−2(x2 − x4, x2 + x5, x3)

+
Pm−2

(x2 − x4)3
− c2c4(c2 + c4)m(x4 + x5)(2x2 + x4 + 3x5)

c2
3(2c2 + c4)(x2 − x4)4

x2
2x

2
4 log

x2

x4

)
,

where Cm−2 is an arbitrary function and Pm−2 is some homogeneous polynomial. Since gm−2 is

to be a polynomial, we must take m = 0 to remove the logarithm, and hence no such g can exist.

This ends the proof of the lemma.

Next we prove that the expression of an exponential factor (3.6) cannot contain a power of x1

in the denominator of the exponent.

Lemma 3.13. Suppose system (1.6) has the exponential factor E = exp(g/(xn1Q(H1, H2)), with

g ∈ C[x1, x2, x3, x4, x5], n ∈ N ∪ {0}, x1 - g and Q ∈ C[H1, H2]. Then n = 0.

Proof. Suppose that n > 0. Let L be the cofactor of E. Since X (Q(H1, H2)) = 0, we have

LE = X (E) =
X (g) · xn1 − g · X (xn1 )

x2n
1 Q(H1, H2)

E.

Hence

X (g)xn1 + nc1x4gx
n
1 = Lx2n

1 Q(H1, H2),

see Lemma 3.8. Therefore

X (g) + nc1x4g = Lxn1Q(H1, H2). (3.7)

Let ḡ = g|x1=0 6≡ 0. Since n > 0, equation (3.7) on x1 = 0 writes

(−c3x2x4 + c2x5)
∂ḡ

∂x2
+ c4x5

∂ḡ

∂x3
− (c3x2x4 − (c2 + c4)x5)

(
∂ḡ

∂x4
− ∂ḡ

∂x5

)
= −nc1x4ḡ,

which means that ḡ is a Darboux polynomial of system (1.6) restricted to x1 = 0. In view of

Lemma 3.12, this is a contradiction, which comes from the assumption n 6= 0. Therefore n = 0

and the lemma follows.

The following result completes the proof of statement (c).
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Proposition 3.14. Let E = exp(g/Q(H1, H2)), with Q ∈ C[H1, H2], be an exponential factor

of system (1.6), where g ∈ C[x1, x2, x3, x4, x5]. Then g − k5/c4x3Q(H1, H2) is a polynomial

function in the variables H1, H2, where k5 is the coefficient of x5 in the expression of the cofactor

of E.

Proof. Let k0 + k1x1 + k2x2 + k3x3 + k4x4 + k5x5 be the cofactor of exp(g/Q(H1, H2)).

Consider the alternative exponential factor exp(h/Q(H1, H2)), with h = g−k5/c4x3Q(H1, H2),

see Lemma 3.11. We notice that its cofactor is k0 + k1x1 + k2x2 + k3x3 + k4x4. We shall prove

that h is a polynomial function of H1, H2.

Since exp(h/Q(H1, H2)) is an exponential factor, h satisfies

X (h) = (k0 + k1x1 + k2x2 + k3x3 + k4x4)Q(H1, H2), (3.8)

see (1.4). Evaluating (3.8) on x1 = x2 = x5 = 0, we get

0 = (k0 + k3x3 + k4x4)Q(x3, x4).

Since Q 6≡ 0 we get that k0 = k3 = k4 = 0. Now evaluating (3.8) on x4 = x5 = 0, we obtain

0 = (k1x1 + k2x2)Q(x1 + x2 + x3, 0).

If H2 - Q, then from the relation above we get k1 = k2 = 0. Thus from (3.8) we get that h is

a polynomial first integral. Hence h = h(H1, H2) in view of Lemma 3.5 and thus the proposition

follows.

We are left with the case Q(x1 + x2 + x3, 0) = 0. In this case H2|Q(H1, H2), hence we write

Q(H1, H2) = H`
2Q̄(H1, H2), for some ` > 0 and Q̄ a polynomial such that H2 - Q̄(H1, H2).

From (3.8) we have

X (h) = (k1x1 + k2x2)H`
2Q̄(H1, H2). (3.9)

Let h̄ = h|H2=0. Evaluating (3.9) on H2 = 0 we get that h̄ is a polynomial first integral of

system (1.6) restricted to H2 = 0. By Remark 3.6 we conclude that h̄ = h̄(H1). Hence, we can

write h = h̄(H1) +Hj
2 h̃, where j > 0 and h̃ ∈ C[x1, x2, x3, x4, x5] is such that H2 - h̃. Since H1

and H2 are first integrals of (1.6), from (3.9) we get

X (h̃) = (k1x1 + k2x2)H`−j
2 Q̄(H1, H2). (3.10)

Since X (h̃) is a polynomial and H2 - Q̄ we have j ≤ `. We consider two different cases.

Case 1: j = `. Evaluating (3.10) on x4 = x5 = 0 we get

(k1x1 + k2x2)Q̄(x1 + x2 + x3, 0) = 0.

Since Q̄(H1, 0) 6≡ 0 we have k1 = k2 = 0. Then, from (3.8) h is a polynomial first integral. Hence

h = h(H1, H2) in view of Lemma 3.5 and thus the proposition follows.
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Case 2: j < `. Let ĥ = h̃|H2=0. From (3.10), ĥ is a polynomial first integral of system (1.6)

restricted to H2 = 0. Regarding Remark 3.6 we have ĥ = ĥ(H1). Hence h̃ = ĥ(H1) + Hm
2 ȟ

where m ∈ N and ȟ ∈ C[x1, x2, x3, x4, x5] satisfies (3.10) with j − ` − m. Now proceeding

inductively we can repeat this process until we obtain a polynomial h̆ such that X (h̆) = (k1x1 +

k2x2)Q̄(H1, H2), and hence proceeding as in Case 1 we conclude that h = h(H1, H2), as we

wanted to prove. Hence the proposition follows also in this case.

After these results, statement (c) follows.
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