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Abstract

Abstract

The quality of life in a particular city might be affected by the rate of commit-

ting crimes in which citizens always like to live in a safe neighborhood. One

type of crime that can have a negative impact on the society and also victim’s

personal life is sex-based crimes.

In this thesis, we aim at studying the spatial behavior of a sex-based crime

dataset from Chicago (US). This dataset contains two types of sex-based crimes:

1) sexual assault, 2) sex offense. The dataset contains 11627 assaults and 9275

offenses in the period of [2007-2017]. Results show that Sexual Assault and

Sex Offenses are distributed inhomogeneously on space, creating clusters in

some zones of Chicago. Also, we noticed that there space where we found

one event of Sexual Assault the probability of finding near one event of Sex

Offense is really high. We also did a basic temporal analysis where we found

that sex-based crimes have a higher rate during summer months and based on

days of the week, sexual assault tend to be committed more during weekends.

Keywords: Crime, Sex-based Crimes, Sexual Assault, Sex Offense, Spatio-

temporal, Offender
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Resumen

La calidad de vida en una ciudad puede verse afectada por la tasa de delitos

ya que lo ciudadanos prefieren vivir en barrios donde sientan cierta seguridad.

Uno de los tipos delictivos que puede ser ms gravaso, no solo para la sociedad,

sino para la vida personal de la vctima, son los delitos sexuales.

El propsito de esta tesis es estudiar el comportamiento espacial de los deli-

tos sexuales cometidos en la ciudad de Chicago. La base de datos contiene

dos tipos delictivos: 1) Asalto sexual, 2) Ofensa sexual, existiendo un total de

11627 delitos para el asalto sexual y 9275 delitos de ofensa sexual recogidos

durante un periodo de 10 aos; 2007-2017. El analisis realizado describe que

los dos tipos de delitos analizados se distribuyen se forma no homognea en el

espacio, creando clusters en ciertas zonas de Chicago. Tambin se encontr que

all donde se encuentra un delito tipo 1, es muy frecuente encontrar un delito

del tipo 2. Tambin se realiz un estudio temporal bsico donde se encontr que los

delitos sexuales son comunmente ms cometidos en los meses de verano y que

el asalto sexual tienda a ser producido ms durante los fines de semana.

Palabras Clave: Delito, Delitos Sexuales, Asalto sexual, Ofensa Sexual,

Espacio-temporal, Agresor
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Acronyms

• BW – Bandwidth

• CPS – Chicago Public Schools

• CRS – Coordinate Reference System

• CSR – Complete spatial randomness

• EPSG – European Petroleum Survey Group
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• IPP – Inhomogeneous Poisson Process

• PPP – Planar Point Pattern
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Chapter 1

Introduction

1.1 Background and Motivation

In this research, we analyzed two types of sex-based crimes; sexual assault and sex offense,

between 2007 and 2017 in Chicago, Il, US. Although patterns in some types of crimes are

known, but it is not clear what spatio-temporal patterns exist on sexual assault and sex of-

fenses right now and analyzing that, can be used to more accurately predict and prevent

future incidents. Based on related researches, it is plausible that such spatio-temporal pat-

terns do indeed exist, for example, in one research did on 2004 at Institute of Criminology

Jill Dando in UK, realized that the burglary distribution in Merseyside, UK, was following

a cluster distribution and once one crime happened, the probability that nearby and in a

short period of time, another crime of the same type happens will increase, as we can see

in Johnson and Bowers (2004). After that research, University College of London, UK, in

2007 analyzed two types of crimes, object subtraction from inside vehicle and car robbery,

on Derbyshire and Dorset, UK, and they found that robbery of objects from inside vehicles

are following a spatio-temporal clustering as study did in 2004 but this spatial pattern was

not occurring for car thefts crimes (Summers et al.; 2007). The motivation of this study

is analyzing if sexual assault and sex offenses crimes are distributing forming clusters and

also to analyze if the probabilities when one of these types of crime has occurred increases

the probability of a new one of the same type happens in a short term. Analyzing these two

types of crime will help to understand how these crimes are distributing in the city, if there

is some spatial distribution pattern which allows us to identify attractors and inhibitors fo-
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cus. The result of the analysis could help police officers, criminologist and the government

to create strategies to prevent and reduce futures crimes. Note that this research is focused

more on the application of these spatial analysis on crime data rather than improving or

creating new methodology within maths field.

1.2 Objective and Research Question

The aim of this research is to analyze a crime dataset from Chicago City during the years

2007 to 2017, specifically to perform a spatial analysis distribution of sexual assault and

sex offenses crimes. We have three research questions:

1. Sex-based crimes have a spatially varying distribution?

2. For an individual data pattern, is there any interaction between events?

3. Is there any interaction between different types of crimes?

Therefore, the objectives to study that are:

A. To describe the behavior:

- To analyze with R software, performing a process point pattern analysis, to see if the

distribution of sex-based crimes data set is distributed as an aggregation, inhibition or

randomness pattern.

- Finding hot spots by using intensity function.

- To analyze the interaction between the events using K-function and G-function.

- To analyze the distance between points of the same type of crime.

B. To describe the clusters:

- Analyze without external causes, just observing crime points, if the probability to

observe another one close increase.

- Analyze the space and time where crime is committing to obtain more information

about these two types of crimes.
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1.3 Research Structure

We structured the research into four parts. The first part, is an introduction were we can find

a small brief of the motivation, objective and the research questions. Also, we included in

the first part, a section entitled Data & Study area, where we can found relevant informa-

tion about the data we used in our analysis, the area we selected and why we have chosen

it, how we prepared and cleaned the data to start analyzing and which software do we used.

The second part is more specific, showing the principal criminology theories about sex-

based crimes and literature about how these types of crimes are distributed on space in

other cities.

The third part entitled ”Spatio-temporal Analysis” is more technical. Here is where we

did all the analysis part. First of all, we started with an Exploratory Spatial Analysis, where

we explained a bit of statistical theory, which kind of analysis we are going to use and we

showed the results of these analysis. We also included a small part of temporal analysis

section where we analyzed how sex-based crimes were distributed by years, by seasons,

by months and by weekday for the last 10 years in Chicago. Note that our research focus

is not to introduce new mathematical methodology but using the existing one to analyze

crime data.

The part number four are the conclusions that we reach after analyzing all the data,

limitations and futures lines of research.

Also, we can find in the Appendix, all the code in R used in this analysis to facilitate

the reproducibility of the study.
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Chapter 2

Study area & Data

2.1 Study Area

In this thesis, we are going analyze the crime dataset of Chicago. This city, located in

Illinois state (U.S), has a Open data portal which publishes the collected crime data. It has

a Data Portal where is easy to find and download open data in order to do analysis or to get

more information about the city.

Chicago is also known as “the windy city”. It covers 60,000 hectares and it is the third

largest city in the United States. Total population in this city is over 2.5 million of people,

where approximately 48.5% are males and only 10.9% are senior citizens. The average

of population age is 34 years old, so we can consider Chicago as a young city. About

education, 35.6% of people hold a bachelor degree or higher. 22.3% of citizens are below

of poverty level 1. We point out, in Chicago, July is the hottest month with averages varying

on temperatures from 26 Celsius degrees to 33 Celsius degrees 2.

We selected 4 neighborhood of Chicago in order to perform “Distance to Focus” anal-

ysis. More information will be found in chapter 4, section 4.6. The selected neighbor-

hood were; “Chatham” (Focus 1), “Little Village” (Focus 2), “Austin” (Focus 3) and “West

Ridge” (Focus 4) (see Figure 4.11.) 3.

1https://www.citytowninfo.com
2https://www.choosechicago.com
3https://www.neighborhoodscout.com/
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The population of Chantham is 12351 people. 13% of the civilians are working as

managers or Administrative support. We can find here someone who works in a maths or

computers fields 95% times more than other places of United States. This neighborhood

has good schools and the educational level is one of the highest in the nation. Crime rate is

lower than the average for the country.

Little Village is approximately 50% less expensive to live compared with the rest of

Chicago neighborhoods. 93% of the residents in this neighbor have Mexican ancestry.

94.8% speak Spanish. This neighborhood is very dense because 36,643 persons per square

mile are living there. Most people here work in manufacturing. Only 5.3% of adults have

a bachelor degree.

Austin is one of the most populated neighborhoods in Chicago and also is 51.5% more

expensive than other neighborhoods. People living here have African and Sub-Saharan

African ancestry. The rate of childhood poverty is one of the highest of U.S, 36.6% of chil-

dren here are below the poverty line. Most of the people here work on services or sales jobs.

West Ridge is 87.3% more expensive than other neighborhoods in Illinois. In West

Ridge, there are 22,845 persons per square meter, what means that it is also one of the

most densely populated in the U.S. The ancestry of this neighborhood are from Iran and

Asia. Here, 50.1% of children are below the federal line of poverty. People here work as

executive and professional occupations.

2.2 Data

The data used for this study is open data and it can be easily found in the Chicago Data

Portal4. We downloaded different files of data to do the analysis, for example; crime data,

public schools locations, liquor shops, police stations, and parks.

4https://data.cityofchicago.org/
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We selected sexual assault and sex offense crimes because they are serious crimes and

they have a big impact on the victim’s life as well on offender’s life. Usually, the victims

will need psychological treatment to come back to the normal life. These types of crime

also affect to offender’s life because once they commit one, they are registered in the ”Sex-

ual Offender”5 database. That database is online and public and anyone can check it and

download the data. It contains the name and surname of the offender, sex, age, ethnic, and

the block where they are living now so we can conclude that committing these types of

crimes are going to generate a big impact in their life too. To know the requirements to be

on the sex offenders list, we can check the ”730 ILCS 150 Sex Offender Registration Act.”

on the website of Illinois General Assembly6.

For the Sexual assault crimes, we are taking into account the different types and grades

of sexual assault reflected on the penal code (720 ILCS 5/Sec. 11-1.20 et seq.) of Illinois

and also on the Illinois General Assembly website 7; Aggravated, Non-Aggravated, Preda-

tory, etcetera. Sexual Assault or rape is a “serious crime with serious consequences. The

crime is committed when an individual commits a penetrative sexual act against another

without their consent or ability to give consent. This includes sexual acts against victims

who are underage, mentally disabled, or otherwise incapable of giving consent, in addi-

tion to rape through the use or threat of force”. 8. For the Sex Offense9 crimes also were

recorded the different types existing as: Public Indecency, Indecent solicitation, Sexual

Exploitation, etcetera.

It is important to say that we are not taking just crimes committed on street networks,

instead of that, we are using all dataset where crimes were committed in different places as

streets, parks, apartments, hotels among others. This is really important in order to choose

the best analysis for our data.

The crime dataset are the reported incidents extracted from the Citizen Law Enforce-

ment Analysis and Reporting (CLEAR), recorded by the Chicago Police Department.

5https://data.cityofchicago.org/Public-Safety/Police-Stations/z8bn-74gv/data
6http://www.ilga.gov/legislation/ilcs/ilcs3.asp?ActID=2009&ChapterID=55
7https://goo.gl/LSFTr9
8http://statelaws.findlaw.com/illinois-law/illinois-sexual-assault-laws.html
9http://www.ilga.gov/legislation/ilcs/ilcs3.asp?ActID=2009&ChapterID=55
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This dataset does not show the name or any type of personal data about the victims in order

to protect their privacy, either data of offenders. This dataset contains the ID, Case Number,

Date, Block, Primary Type, Description, Location Description and Latitude and Longitude

among others. For the rest of the data (parks, schools, police offices and liquor shops) that

we are using for this analysis, we have the location.

For the crime data, we applied two types of filters before downloading. The first one

was for selecting the range of years that we wanted to download, and the second filter was

to define the types of crimes. For this study we decided to select crimes from 9th January

2007 to 8th January 2017. After applying this, we selected one more filter to determine

which type of crimes we are going to work with. We selected the types of crimes contain-

ing “sex” word and we got two types of sex crimes; sexual assault and sex offense. Finally,

after downloading and cleaning some data, the amount of inputs were 11645 points for

sexual assault ; Figure 2.1 (a), and 9301 points for sex offenses; Figure 2.1 (b).

The inputs of the rest of the data were; 680 for schools; Figure 2.2 (a), 23 for police

stations; Figure 2.2 (b), 567 for liquor shops; Figure 2.2 (c) and 583 for parks; Figure

2.2 (d). In particular, it is important to know that we are only taking into account the

Chicago Public Schools (CPS) and not all the types of schools. Apart of CPS there are as

well private schools 10 and home schools (in Chicago is allowed teaching at home or with

online resources). However, the majority of children in Chicago are in a CPS11.

For liquor stores, we download a shapefile with 571 inputs from “GeoDa Data and

Lab”12. This data are prepared by “The Center for Spatial Data Science”13. After cleaning

them we keep 567 points.

2.3 Data Preparation

Data preparation is very important before starting the analysis. Preparation consists of sev-

eral steps and this first step is the longest part in the data analysis. For the crime dataset, it

10https://goo.gl/13JX1V
11https://goo.gl/BK2v5g
12https://geodacenter.github.io/data-and-lab//liq chicago/
13https://spatial.uchicago.edu/
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(a) Sexual Assault

(b) Sex Offense

Figure 2.1: Observed Point Pattern Data in Chicago (US). (a) Sexual Assault. (b) Sex

Offense [2007-2017]
10



(a) Schools (b) Police Offices

(c) Liquor Stores (d) Parks

Figure 2.2: Locations of interest (colors) and Crimes (black)
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was necessary to extract extra information from the data. One important change on dataset

was to duplicate the long-date and split it into several columns as “Day”, “Month”, “Year”

and “Day of the week” to have the long-date (09/01/2007) and the same data split it into 4

extra columns required to do some summaries; “Month” (01), “Day” (09), “Year” (2007),

“Day of the week” (Tuesday). As well in the crime dataset, we deleted some columns no

needed for our analysis, as IUCR (The Illinois Uniform Crime Reporting code).

About the formats, the data in the Chicago Data Portal are available in different for-

mats. For example Crime, Schools and Police Stations were downloaded as CSV (comma-

separated values) format but Liquor shops and Parks only were available in SHP (Shape

File). It is possible to work in R-Studio with different formats of data with any problem.

About the features, data could be a point, a line or a polygon. In this case, Parks were poly-

gons, therefore it was necessary to extract the centroid of each polygon in order to compute

the distance analysis.

One really important thing is that data could overlap itself with other data. Sometimes

that is not possible because they have different Coordinate Reference System or one of them

are projected and the rest are not. The problem faced on that data was about the ESPG. The

shapefiles (Liquor shops and Parks) were EPSG:3435 and others were EPS:4269. That is

important to know in order to do a projection. The locations of some of the files were

in degrees (latitude and longitude) and others were in feet (X,Y), what means that some

file were already projected and others were not. Therefore we need to know the ESPG of

both formats in order to select the same projection for both cases (projected ones and not

projected). In this case, we projected and changed the CRS into EPSG:3435. Note that all

the distances measured in this study are in feet.
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Chapter 3

Opportunity and Distribution of Crime

3.1 Opportunity Theories

Bottoms and Wiles (1997) described Environmental Criminology as “the study of crime,

criminality, and victimization as they relate, first, to particular places, and secondly, to the

way that individuals and organizations shape their activities spatially, and in so doing are

in turn influenced by place-based or spatial factors”. There are three important approaches

in Environmental Criminology; Crime pattern theory, Rational Choice and the Routine

Activity, that are within the “Opportunity Theory”. We are going to do a brief introduction

to them in this section.

3.1.1 Crime Pattern

Brantingham and Brantingham (1993) explain that crimes are not distributed randomly and

that the criminal behaviors are influenced by space. The knowledge of these patterns could

offer us extra information about how physical environment and people interact with each

other (Clarke and Felson; 1998).

They explain the crime as a part of our daily routine. Criminals also have routines and

they commit crimes based on their daily routines. These daily routines allow offenders to

perceive the distribution of space, persons and objects and this helps to create a cognitive

map, knowing which surroundings are more appropriate to commit a crime. Some crime

patterns could be produced by the location of schools, parks or stores, that creates some

spots of generators of crimes, like activity nodes.
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The daily routine allows people to create a shape of known places and unknown places

which permit to have this cognitive map. Usually, the places that are known to us are spaces

that we recognize as places where we can be safe in. The most part of the time people who

commit crime has a normal life (“time in non-criminal activities”), but once he or she wants

to commit a crime, they think on the right victim and best place for that type of crime, that

usually are routes or places known because their routine activities, instead of places outside

these routines which could have an acknowledgment lack (Brantingham and Brantingham;

1993).

We need to take into account that demographic, major population and socio-economic

factor can be related to the distribution of crimes. Just one single cause could not be at-

tributable to the occurrence of crime, because crime is a complex event (Brantingham and

Brantingham; 1993). In our study we had not demographic, socio-economic or population

data available to use it.

Clarke and Felson (1998) explain three concepts in this paper; “Nodes”, “Paths” and

“Edges”, where the nodes are places where people travel from and to. In our case of study

the nodes could be parks or schools for example. These nodes are related to the personal

nodes within daily routines. Between the nodes, we find the paths which link one node

with another. Usually, the offenders search for a victim around these known nodes and

paths because is where the offender does its personal daily activity. “Edges” refers to the

boundaries of known places as areas where they work or live.

Johnson and Summers (2015) explain that the nodes are as the awareness spaces. These

are the places known for offenders and where they build their cognitive map, and when their

awareness spaces join with suitable opportunities for crime is more expected to find crimes.

In a city, we could found some hotspots which “...it is where the awareness spaces of nu-

merous offenders overlap with suitable opportunities...” (Johnson and Summers; 2015).

3.1.2 Rational Choice

Within Opportunity Theories, we can find the Rational Choice Theory. Cornish and Clarke

(2008) believe on the commission of a crime after a rational choice. This theory explains

that criminals also have preferences and motivations as other persons who are not criminal.
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In this case, the person who is planning to commit a crime put in a balance the benefit

against the risk of being trapped. These benefits could be not an economic benefit, here is

included also psychological benefits.

3.1.3 Routine Activity

Cohen and Felson (1979) cite that “the probability that a violation will occur at any specific

time and place might be taken as a function of the convergence of likely offenders and

suitable targets in the absence of capable guardians”. Clarke and Felson (1998) assume

that for one crime occur must exist at least, three elements, in that space and time; “a likely

offender, a suitable target, and the absence of a capable guardian against crime”. When

Felson say “guardian” he is not referring exactly to a police officer, a guardian could be

anyone as a neighbor or any citizen.

3.2 Spatio-Temporal Crime Distribution Researches

Beauregard et al. (2005) made a literature review and found that even some sex offenders

use to travel far away to commit their crimes, because they want to keep their anonymity

(Amir; 1971), but in general, for rapes, they use to commit crimes near to their homes

because their neighborhood is a familiar place for them (Beauregard et al.; 2007). Brant-

ingham and Brantingham (1984) explain that offenders use to look for their victims within

their awareness space, and they select the place where committing crime based on the num-

ber of the potential victim that they could find in that place (Bernasco and Nieuwbeerta;

2004). It is on weekends when offenders use to travel further to find a target (Warren et al.;

1998). The rape usually happens on hot months or weekends or time that people has holi-

day or time to spent in leisure, and more in evenings and nights (Ceccato; 2014).

In our dataset of sex-based crimes, we found crimes that had occurred at home and

others in the streets. Also, we found that victim was sometimes a child. Clarke and Felson

(1998) explain that sometimes burglaries give the opportunities for another type of crime,

as sexual offenses, which often are not planned and they just occur when the burglary starts.

Also explains that when the victim is a child “likely to be abused by adults who have access
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to them through everyday roles, and these adults need times and settings where guardians

will not interfere with their crimes.”

Block and Block (1995) analyzed the relation of liquor stores distribution and homi-

cides between 1988 and 1992 in Chicago. First of all, the author analyzed the location

of tavern and liquor store and the police incidents from January to June in 1993. In the

analysis, the authors concluded that not in that places where we could found a high-density

liquor store locations, must exist as well a high density of crimes.

(a) Liquor License Locations 1993 (b) Liquor-Involved Homicides 1988-1992 Aggra-

vated Battery, Robbery, Tavern Incidents January-

June 1993

Figure 3.1: Extracted from (Block and Block; 1995)

If we focus on Figure 3.1 (a), we can observe that license locations on 1993 are located

in the same area as nowadays in 2017 (Figure 4.5), in the northeast of Chicago. Also, in

the Figure 3.1 (b) we can observe that the most part of incidents was not occurring where

the higher density of liquor store where recorded. This distribution of incidents on Taverns;

homicide, aggravated battery and robbery are so similar to the distribution of sexual assault

that we analyzed on Figure 4.5. Some studies as Budd et al. (2003) done in England and
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Wales show that we can find more disorders and violent crimes where alcohol licenses are

existing, but in our case, as we will see later, it is not the case of sexual assault and sex

offense because the intensity distribution of liquor stores, in this case, is not matching with

the intensity of both types of crimes. Maybe we need to repeat the analysis adding bars and

discos in order to get a more extended view.

Not many studies have focused on space context where rapes have committed. Ceccato

(2014) explains that places with poor visibility from outdoor or areas with easy escape have

higher risk of rape crimes. Newman (1972) developed theories about the architecture and

social interaction, where events can be influenced by the urban planning of a place. Brant-

ingham and Brantingham (1995) suggest that “the urban settings that create crime (and

fear) are human constructions. . . home, parks, factories, transport systems . . . the ways in

which we assemble these large building blocks of routine activity into the urban cloth can

have an enormous impact on our fear levels and on the quantities, types and timing of

crimes we suffer”.

In our study we are going to try to analyze how sex-based crimes in Chicago are dis-

tributing in space and time and the interaction between these crimes with some particular

places as parks, schools, liquor stores and police offices. We had not access to other infor-

mation about offenders as residence, age, race or distance done to commit their crimes and

neither if crimes were their first crimes or followings. In this case, we only analyzed the

distribution of events recorded by the police of Chicago.
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Part III

Spatio-Temporal Analysis
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Chapter 4

Exploratory Spatial Analysis

4.1 Introduction

In this section, we are going to explain in a general way, what a Point Pattern is. It is im-

portant to explain the difference between Point Pattern and Point Process. A Point Process

is a “stochastic process in which we observe the locations of some events of interest within

a bounded region”. And as the result of a Point Process, we obtain a point pattern where

the locations of events are generated (Bivand et al.; 2008).

The interest of using point pattern analysis is because of the interest in determining

the sex-based crimes spatial distribution in Chicago. Two interesting things to focus are

about the distribution of crimes in our window sample or area of interest and if there is an

interaction between them or not (Bivand et al.; 2008). A “spatial point pattern” is a dataset

that includes the locations of the events (crimes, car crashes, cancer lunge cases...) or the

locations of the things (liquor stores, police offices, schools...). The most important is to

analyze the data in order to find spatial trends (Baddeley et al.; 2015). To perform a spatial

analysis about the distribution of crimes can contribute to obtain an important information

such as inhibition or preference to commit crime in certain places, tendency for sex-based

crimes to be found near certain sources, etcetera.

It is important to say that not all the point data can be treated as a point pattern. Be-

cause sometimes, the research interest is different and we take samples for some location in
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a field to, for example, measure soil acidity. All these points data are obtained artificially.

In this case, with crime data, we are taking all the complete number of crimes recorded by

police.

A point pattern points can show some type of dependence or independence based on

the locations of the points. These points can represent “regularity” (avoidance), “inde-

pendence” (CSR) or “cluster”(points closer to each other). The existence of correlations

does not mean causality, so we cannot determine the cause why the points create clusters

(Baddeley et al.; 2015).

One of the techniques to analyze correlation is the K-function. This function is ex-

plained later in section 4.4.1.

4.1.1 Marks

Marks are all kind of attributes that can be recorded for each event in our dataset (Baddeley

et al.; 2015). If the dataset has not marks, then is called “unmark”. If our dataset is marked,

then we are talking about “marked point pattern”. These marks are auxiliary information

attached. One example could be, in a dataset of a forest where each point data is a tree, the

diameter of each tree. If we have more marks such length, is named “marked point pattern

with multivariate marks”(Baddeley et al.; 2015).

A marked point pattern is defined as

y = {(x1,m1),(x2,m2)....,(xn,mn)},x1εW,m1εM (4.1)

where x1 are the locations of the events and m1 are the marks.

In this study, we used marks extracted after performing some spatial analysis. We

added as marks for sexual assault crime, all the distances to sex offense crime, schools,

police offices, liquor store and parks. We added marks as well for sex offenses.

4.1.2 Covariates

Marks are different from covariates. Marks are part of the response and covariates are

explanatory. Some example could be the elevation of the terrain at all locations. The
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spatial function is defined as Z(u), where Z is the altitude at location u (Baddeley et al.;

2015).

4.2 Point Processes

A Point Process is a mechanism to produce a point pattern. These Point Patterns consist of

a finite number of points distributed spatially, usually, in a two-dimensional space bounded

region (Baddeley et al.; 2015). In these case, in a planar region, we are going to analyze a

spatial point pattern (the locations of crimes) in Chicago, where the boundary of Chicago

city will be our bounded region {xi ∈ A : i = 1, ...,n} where A is the planar region where the

points of the process are lying inside it. We started with a Univariate point process, where

only the locations are taken into account of one type of event, and after some basic analysis,

we added some marks (marked point process). These marks could give us extra information

about each event in our point pattern. In our case, the marks are the distances (nearest-

neighbor) to other factors as parks, liquor shops, schools, police offices and between the

two types of crime.

A point process can be a spatial point process when it includes a location. The location

of data is really interesting because it can answer many questions as if the events are dis-

tributed creating clusters, if there is relation between two different point patterns (sexual

assault and sex offenses), and about the density (Mateu; 2016).

It is necessary to convert our point pattern in an object of class planar point pattern,

from now PPP, in order to perfom the analysis (Baddeley et al.; 2015). This is compulsory

to enter a point pattern using spatstat package in R. The difference between a point pattern

object and a PPP is that, as we have said before, the point pattern has attached maks, the

window and the spatial coordinates and the PPP contain the required information to do

analysis and calculations about point pattern. For example, in R, if we want to access to the

columns from our dataset, we should do it from our point pattern (names(nameOfDataset)),

by the way, if we use the same command after converting our dataset in a PPP object,

we will obtain the information necessary to perform some analysis. We can know the

“window” that we are using, the “n” (number of observations in our object), the “x” and

“y” and the “markformat”.
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4.2.1 Window Sampling

To analyze data we need to define a bounded region, or in other words; the “sampling

window”. Taking into account that the point process X, which is the point pattern inside a

region W, should have a finite point process on an infinite two-dimensional plane, we need

to fix that bounded area which will be our study region where we will only analyze the

points within our region W.

As long as we have several datasets or shapefiles with different point processes, we

need to select a window in order to analyze and plot all of them in the same bounding area.

In our analysis, we configured Chicago boundary as the sampling window, Figure 4.11.

Figure 4.1: Chicago boundary as Sampling Window

4.2.2 Stationarity and Isotropy

To focus on the interaction between point, it is used to assume that the spatial point pattern

is stationary, but it is not always true,because if we say that our spatial point pattern is

stationary that means that the intensity is constant (Baddeley et al.; 2015). In our study, as

we will observe in next sections, the intensity is not constant. An easy way to explain what

stationarity and isotropy is, it is basing the explanation on Baddeley et al. (2015) book. If

we select a small region within our sampling window and we put over it a smaller window,
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for example a circle, and we move that circle around the space inside window, and the dis-

tribution is invariant to translation, then we can say that our point pattern is stationary.

If we select a small region within our window and we put over our circle, and we move

that circle around the space inside sampling window, and the distribution is invariant to

rotation, then we can say that our point pattern is isotropic.

4.2.3 Poisson process

We can differentiate between homogeneous and inhomogeneous Poisson Process. The

difference between them is that the intensity function in the HPP is constant whereas in the

IPP the intensity change depending on the space, but in both Poisson Process the events are

distributed depending on the intensity and both of them assumes that events are occurring

independently (Bivand et al.; 2008). We will see more about these two processes in next

subsections.

4.2.3.1 Homogeneous Poisson Process

We can say that we have an HPP when the events are independently and uniformly dis-

tributed in the area of study (Bivand et al.; 2008). That means that λ is constant and that

there is not any region where events are appearing more than another region. As well the lo-

cation of one point is not affecting to the probabilities of another point could appear closer

(Bivand et al.; 2008). A point process is homogeneous Poisson Process of intensity λ if

(Mateu; 2016):

1. the number, N(W), of events in any planar region W follows a Poisson distribution with

mean λ |W|, where |W| denotes the area of W,

2. given N(W) = n, the n events in W form an independent random sample from the uniform

distribution on W.

3. For any two disjoint regions W and G, the random variables N(W) and N(G) are inde-

pendent.
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The HPP is stationary - see section 5.2.2 - and isotropic - see section 5.2.3 (Bivand

et al.; 2008).

4.2.3.2 Inhomogeneous Poisson Process

An inhomogeneous Poisson Process has a not constant intensity, it varies spatially. This

is the simplest non-stationary point process model. Here, the events can appear more fre-

quently in some areas than in others (Bivand et al.; 2008). A IPP of intensity λ has the next

characteristics (Mateu; 2016):

1. the number, N(W), of events in any planar region W follows a Poisson distribution with

mean
∫

W λ (x)dx, for some non-negative valued function λ (x).

2. given N(W) = n, the n events in W form an independent random sample from the uniform

distribution on W with pdf proportional to λ (x).

3. For any two disjoint regions W and G, the random variables N(W) and N(G) are inde-

pendent.

4.2.3.3 Envelopes

The envelopes are to compute n simulation envelopes of a summary function. In this case,

we computed 99 simulations. After checking if our data is distributed creating clusters,

randomly or uniformly, we can use the envelope function to see if it is statistically signifi-

cant (Baddeley; 2010).

To see how sexual assault crime and sex offense are distributing on space we run in R

the envelope function. See Figure 4.2.

The function of the envelope is to compare with a CSR, creating, in this case, 99 simu-

lations Poisson with intensity

n
|W |

, (4.2)
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(a) Sexual Assault

(b) Sex Offense

Figure 4.2: Envelopes for sex-based crimes

where n is the number of points and W is the window. After that, it calculates the K-

inhom for all the 99 simulations. Once the 99 simulations have done, it selects the higher

and the smaller to create the envelope and calculate the K-inhom for Poisson. When every-

thing is done, then it calculates the Kinhom for our PPP and if it is outside of the envelope

means that our PPP is not CSR. Also, is important to know if it is above or below of the

envelope. If our K-inhom is above means that the distribution is creating clusters, but if it

is below, means repulsion. In these two PPP, that both are outside the envelope and above,

what means that they are not following a CSR and they are creating clusters.

4.3 First-order Intensity

Bivand et al. (2008) explain that “the first-order characteristics measures the distribution of

the events in the study region”. Usually, the first approximation for this analysis should be

to estimate the density of our dataset. We can also measure the intensity λ (x) of the point

process in order to measure the spatial distribution. The intensity could be proportional to

the density. We can have two point patternsa with the same density but the intensity could

28



be higher on one of them depending on the number of observed events. Having higher

intensity in which where more events are observed (Bivand et al.; 2008).

The intensity measures the frequency of points (events) per unit area (the average den-

sity of points), and that intensity can be classified as homogeneous; if points are spread

uniformly or inhomogeneous; if they are non-uniformly distributed (the intensity vary on

space)(Baddeley; 2010). Baddeley et al. (2015) explains that intensity is the most important

part of data analysis. Inhomogeneous intensity can reflect risk, avoidance or preference,

among others, on space.

In this case, we can talk about nonparametric intensity. We have nonparametric data

when we are not taking into account any covariate to do the intensity analysis.

Figure 4.3: Sexual crimes around Chicago from 2007 to 2017

When we are working with several inputs from some years, in this case, 10 years range,

is quite difficult to notice about the intensity, as we can observe in figure 5.1.
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It is also important to know the interaction between points. If we find in our dataset

several points closer to each other we would expect that the dependency between these

points are stronger (Baddeley; 2010).

The interaction between points is a second-order moment where we can use the K-

function, as we will see later, for distances. K-function is the known tool to measure

the dependence measuring the spatial correlation. It is possible to measure the spaces

(function G) or the shortest distances between the points in the spatial point pattern within

a window. One of this shortest distances is the “nearest neighbor” distance (function G).

This is assuming that the process is stationary. A stationary process means that the process

has an homogeneous intensity or what is the same, if we select a set E and we shift this set

within our window, the number of points that are falling inside will be unaffected. This is

really important to take into account because in our case, our process is inhomogeneous so

we cannot use K-function because it is used for homogeneous processes. Instead of that,

we should use K-inhom. function. Same case with G function(Baddeley et al.; 2015).

This event can happen with points of the same type, for example between sexual assault

points or between sex offenses points, but this also can happen between point of different

types, as for example between sexual assault and sex offense or between sexual assault and

the location of parks or schools.

4.3.1 Quadrat counting

If we suspect that intensity is inhomogeneous, we can check it using quadrat counting.

The observation window is divided into squares same size or subregions named quadrats.

If the process is homogeneous, the different subregions or quadrats, which have the same

area (same size and shape), should contain an equal number (on average) of points falling

inside(4.3). As we can see in Figure (4.4) the numbers are different for each quadrat.

nj = n(x
⋂

B j) for j = 1, ....,m. (4.3)

where Bj are the subregions within the window and nj are the number of points falling

in each quadrat.
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(a) Quadratcounting Assault (b) Quadratcounting Offense

Figure 4.4: Quadrat counting

Quadrat counting can be used to estimate the intensity function non-parametrically. We

can do that if we suspect that the intensity is inhomogeneous.

4.3.2 Estimating inhomogeneous intensity

The intensity in an inhomogeneous distribution, generally, vary depending on the location

(Baddeley; 2010). We can say that intensity, in a region of an area, are the expected density

points, falling inside, per unit area. Intensity is really important if our goal is the prevention

of some events Baddeley et al. (2015), in our case; sex-based crimes. There is homogeneity

when the intensity is distributed uniformly. In other words, in a subregion B, the expected

points lying within B is proportional to the area of B (Baddeley; 2010):

E[N(X∩B)] = λarea(B) (4.4)

The empirical density in a homogeneous point process is:

λ̄ =
n(x)

area(W )
(4.5)

where λ̂ is the number of points inside, divided by the area.

In this case, we need to find the appropriate formula for our analysis. As we said before,

this intensity in an inhomogeneous distribution generally vary on each location, so we need

to use an intensity function for inhomogeneous distribution:
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E[N(X∩B)] =
∫

B
λ (u)du (4.6)

Where E is the expected number of points in a point process within a B area, and λ (u)du

is the expected number of points falling inside small region within the area of study.

(a) Assault BW: 1346.107 2747.984 (b) Offense BW: 1408.858 2889.663

(c) Schools BW: 2148.529 4449.162 (d) Police BW: 3551.830 8263.575

(e) Liquors BW: 2038.327 4230.526 (f) Parks BW: 2258.310 4908.789

Figure 4.5: First-order Intesities
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As Figure 4.5 shows, all datasets have an inhomogeneous intensity.

4.4 Second-order summary characteristics

The second-order properties offer us information about the interaction between two points

(arbitrary) showing if the tendency is to appear creating clusters, regularly spaced or they

appear independently (Bivand et al.; 2008).

4.4.1 K-function and Kcross function

In this analysis, we are going to measure the distances between two point patterns, in this

case, the two types of crimes, and also between one crime point pattern with school, police

departments, parks and liquor stores point patterns. First of all, we used the nncross func-

tion which provide us with a vector of distances from one PPP object to other. Function

nncross is a “Nearest Neighborhood Distances Bivariate” analysis. With the results, we

have created histograms to see the results.

As we can observe in the Figure 4.6, where a crime of type “Sexual assault” is hap-

pening, there are more possibilities that one of type “Sex Offense” happens within 500 feet

(152.4 meters) radius. In the case of Offenses, the probabilities of one crime of type Assault

happens within 250 feet (76.2 meters) is higher. For locations as schools, liquor stores and

parks, both types of crimes are happening within 2000 feet distance radius (609.6 meters)

and for police offices, crimes take more distances, between 5000 and 10000 feet (1524 to

3048 meters).

Function nncross takes two patterns and looks for the nearest neighbor in the second

patten from one point in pattern one. Function Kcross Inhomogenous makes a circle with

radius r surrounding each point of the first pattern and counting how many points of the

second pattern are inside the circle. Function nncross in important in Kcross inhomoge-

neous analysis because we need to determine the radius used. The radius depends directly

of the nearest neighbor distances.
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(a) Assault - Offense (b) Offense - Assault (c) Assault - Schools

(d) Offense -Schools (e) Assault - Police (f) Offense - Police

(g) Assault - Liquors (h) Offense - Liquors (i) Assault - Parks

(j) Offense - Parks

Figure 4.6: Histogram of nncross distance

The K-function assumes homogeneity. As we have seen before, there are functions for

homogeneous processes and different ones for inhomogeneous processes. We can estimate

the K-inhom function in a non-stationary point pattern. To do that is necessary to convert
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the dataset in a PPP object previously. In our dataset, we have two different PPP objects

(sexual assault and sex offense dataset) and we need to do measure the distances between

the two types. For that, we used K-cross inhom which is a version of K-function for a mul-

titype point pattens. The inhomogeneous K-cross counts the expected number of points of

type 1 (Sexual Assault) within a distance of a point of type 2 (Sex offense). The K-inhom

is defined as

Kinhom(r) = E

[
∑

x j∈X

1
λ (x j)

1{0 < ||u− x j|| ≤ r}

∣∣∣∣∣u ∈ X

]
(4.7)

In the inhomogeneous K function we take a point u and we measure the weight of total

points that are inside a r distance from u point. We can use the usual K-function if the

process is stationary because λ (u) is constant.

In this case we used the function Kcross available in spatstat package. The estimation is

similar to the original estimation (K-function) but here is measured the pairwise distances

from all the points contained in type i (sexual assault) to all points of type j (sex offense),

Kij(r).

The results are available in the Figure 4.7, for the assault, and Figure 4.8, for the of-

fense. Let’s start with the Assault. In the Figure 4.7 (a) we can see that the three estimations

are above and separate from the Poisson line and, that means that assault and offense are

dependent and creating clusters in space. Depending means that when we found one point

of one point pattern x, the expected probability of finding points of pattern y are high. For

figure (b), we are analyzing assault and polices offices. We can see on the graph that in this

case, they tend to inhibit themselves. In figure (c) are assault and schools. Here we can see

that they are independent and creating clusters. For assault and liquor, figure (d) is exactly

the same. And finally, for figure (e), assault and parks, we can observe that they tend to

inhibit.
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(a) Assault - offense (b) Assault - Police

(c) Assault - Schools (d) Assault -Liquors

(e) Assault - Parks

Figure 4.7: Kcross inhom Function [Assault]

In Figure 4.8 we analyzed the offense. In figure (a) offense and assault are dependent

and creating clusters in space. In figure (b) police and offenses use to be inhibitive. For the

figure (c) we can see that offense and school are dependent and they create clusters. For

figure (d), offense and liquors, are also forming clusters and they are dependent. And in
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(a) Offense - Assault (b) Offense - Police

(c) Offense - Schools (d) Offense - Liquors

(e) Offense - Parks

Figure 4.8: Kcross imhom Function [Offense]

figure (e), parks and offenses are dependent on each other.

Note that each graph has a different distance. This is because we fitted the code based

on the results of the histograms, where we had measured the distances between crime pat-

terns within different the radius. We took the third quartile in order to obtain a better result.
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Example:

k21 = Kcross.inhom(X ,”o f f ence”,”assault”,dcrime2,dcrime1,

r = seq(0,summary(Dist2to1crimes$dist)[[5]], length.out = 200),

main = ””,ribwid = 0.06,ribsep = 0.06)

where Dist2to1crime$dist where the distances obtained with nncross analysis and the

[[5]] make reference to the third quantile of this distances.

4.4.2 G-function

To measure the distances to the nearest event from an arbitrary point we can use the G-

function Bivand et al. (2008). In this case, we are going to use an alternative of the G-

functions which fit better on our dataset.

We can use the G-ihom function available in spatstat package. In a non-stationary

pattern we can use G-inhom to estimate the inhomogeneous nearest neighbor.

G-inhom is only useful if we want to measure the nearest neighbor distance in one point

pattern, what means, measuring the distances from point u to the rest of nearest points. As

we said before, we are working with two point patterns, so we should use Gcross Inhom

function. This function is already created but not implemented in R yet. Also is existing

function Gcross. We used that one because is correctly use it when is a multitype point

pattern. This function estimate the distance from point type i to nearest point of type j.

Based on the result obtained in Figure 4.9 we can see that all three estimations for each

pair are above the theoretical line (Poisson line). Theoretical is computed assuming CSR

which means that results of estimations above the theoretical line mean clustering and esti-

mations below Poisson line means repulsion. In our case, in every plot we can observe the

estimations above the Poisson line, so every pair of patterns examined show clustering.

Note that this analysis is for homogeneous distribution and not for inhomogeneous, so

results can suffer some variations.
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(a) Assault - Offense (b) Assault - Police (c) Assault - Schools

(d) Assault - Liquors (e) Assault - Parks (f) Offense - Assault

(g) Offense - Police (h) Offense - Schools (i) Offense - Liquors

(j) Offense - Parks

Figure 4.9: Gcross Function
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4.5 Relative Risk

This section is devoted to estimating the spatially-relative frequency of each type of points

with respect to each other so that we only apply it to assault-police offices and offense-

police offices to see the relative frequency of crimes and police offices.

In relative risk analysis, the aim is to estimate

ρ(u) =
λX(u)
λY (u)

, u ∈W, (4.8)

where λX and λY are the intensity functions of point processes X and Y , respectively. For

more details see Kelsall et al. (1995).

In order to estimate the relative risk (4.8), one can use plug-in intensity estimators.

However, (Kelsall et al.; 1995; Davies et al.; 2017) recommended using a common band-

width for estimating both numerator and denominator. We then used “Hazelton” method,

described in Hazelton (2008), which is also implemented in R package “sparr” and function

“LSCV.risk”. This function finds the common bandwidth by minimizing a weighted-by-

control MISE of the (raw) relative risk function.

As previously mentioned, we have two crime point patterns assault and offense where

we are interested in estimating the corresponding relative risk of these two patterns with

respect to the pattern of police offices. This can disclose if the distribution of one pattern

is affected by another pattern. In the literature, relative risk might also be represented

as the logarithm values of (4.8), however, we here only take the fraction of two intensity

estimates.

Figure 4.10 (a) shows the relative risk of sex assault crime with respect to police of-

fices. For the calculations we have used common bandwidth, calculated using method

“Hazelton”, see R package sparr and (Davies et al.; 2017).

We point out that the average relative risk of assault is 505.5217 and for the offense is

403.26. Figure 4.10 confirms that relative risk is not distributed homogeneously. Accord-

ing to the Figure 4.10 (a), we can see that the in the South and in the middle of Chicago,

the relative risk is higher than the average relative risk. Moreover, Figure 4.10 (b) reveals

that the risk in the west of Chicago is higher than the average. The common bandwidth for

assault was 15644.24 feet and for offense 15701.79 feet.
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(a) Assault (b) Offense

Figure 4.10: Crime relative risk estimations with respect to police offices.

4.6 Distance to Focus

In this section, we build and analyze a model based on the standard method of ecological

regression. This method is usually implemented through a mixed effect Poisson log-linear

model. In our case we analyzed if the proximity effect to a particular place, in this case

parks, can induce more presence of sex-based crimes. The need to combine several inputs

of crime events close to the parks using a log-linear formulation is not realistic.

In this case, as proposed by Ramis et al. (2011), we considered the use of a multiplica-

tive non-linear distance effect to take into account the underlying spatial structure of the

data. We used the model

Oi ∼ Po(Eiµi), i = 1, . . . ,98, (4.9)

with

log{µi}= log{ρ}+
5

∑
j=1

log{ f (di j;α j,β j)}. (4.10)

Here, Oi represents the number of sex-based crimes in the ith neighborhood, with 1 ≤
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Figure 4.11: Focus selected of four neighborhoods in Chicago

i≤ 4. Ei stands for the total number of expected cases in each neighborhood under a normal

situation, which is generally estimated by a 2% per tract. The parameter ρ is related to

the overall “sex based crime risk”. The di j stand for the distances between the centroid of

neighborhood i and the focus j. The distances di j are included as a covariate in a continuous

function f (di j;α j,β j) of the form

f (di j;α j,β j) = 1+α j exp{−(di j/β j)
2}, (4.11)

with two parameters, α j accounting for the elevation in risk at the source, and β j accounting

for the decay in risk as distance to source increases.

We fitted the model and estimated the parameters of the distance function (See Table

4.1) f (di j), i.e α j, β j, by maximum likelihood. The approximate log-likelihood function,

up to a constant term, is (Diggle et al.; 1997):

L(ρ,θ ,α,β ) :=−
98

∑
i=1

µi +
98

∑
i=1

Oi log{µi}, (4.12)
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where

µi = ρ

5

∏
j=1

f (di j), (4.13)

To test the hypotheses about the parameters we use the usual generalized likelihood

ratio test statistic

D = 2
{

L(φ̂)−L0(φ̂0)
}
, (4.14)

where L0 and L denote the maximized log-likelihoods under the null and alternative hy-

potheses, respectively.

Previous studies have pointed out that the usual asymptotic properties of the likelihood

ratio test may not hold for the models considered in this paper because the distance function

is such that when α j = 0, β j is indeterminate. However, following Ramis et al. (2011) this

was solved by assuming that the likelihood ratio test can be considered to have one effective

degree of freedom per source, rather than two.

In the context of our application, we considered two tentative models:

1. Null model: µi = ρ ,

2. Distance model: µi = ρ
5
∏
j=1

f (di j),

Model 1 does not take into account any particular spatial structure. Model 2 brings into

the model the spatial dependence through a distance function. The selected model based

on the full expression in (4.10) is the one that best fits our data.

Table 4.1: Estimation of the distance fucntion parameters

Parameters α β

Focus 1 9.47 95823.47

Focus 2 -0.34 374434.38

Focus 3 3.23 13394.63

Focus 4 1.29 179108.44

We selected four neighborhood trying to cover from north to south all Chicago map.

Within each neighborhood, randomly, we selected 4 parks (focus). In table 4.1, we can

observe that Focus 2 located on Little Village, is the inhibitor one and Focus 1 in Chatham

neighborhood, Focus 3 in Austin and 4 in West Ridge are parks attractors of sex-based
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crimes in Chicago.
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Figure 4.12: Fitted functions per focus.

We can observe the graphical output for the distance functions, in Figure 4.12, depend-

ing on the estimated parameters as given in Table 4.1. We note that all focuses except Focus

2 have a positive value of parameter α indicating that focuses 1, 3 and 4 have an attractive

behavior of this type of crime. Focus 2, on the contrary, has a detractor behavior. The value

of parameter β controls the strength of the attraction. It has the same units as distances.
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The larger it is, a smoother decay presents the interaction function. The constant function

at 1 indicates the case of no spatial relation among crimes and distance to the focus.

4.7 A first look at the Temporal Analysis

We analyzed the data temporary in a very simply way, separating space from time. We cre-

ated some graphs to see how crimes are distributing on time, for example the distribution

by year, seasons, months and day of the week.

We can observe in the histograms of Figure 4.13 that Sexual Assault crime (b) is more

stable on time and there were not many variations for the last 10 years. For Sex Offense (c)

crime we can observe a high drop on crime rates from 2007 to 2017. If we check the Total

Crimes histogram (a) we can observe in a general view that crime is decreasing slowly.

In the histograms of Figure 4.14, we can see that the months where we can find a peak

of crimes are the summer months. We divided the months by seasons; from December to

Febrary is winter (1), from March to May is spring (2), from July to August is summer

(3), and from September to November is Autumn (4). As we can see there is a peak in the

range of summer months. The same happens when we analyze the crimes by month. We

can found more crimes occurring on June, July and August (Histogram Figure 4.16).

The last one, is the histogram Figure 4.16, where we analyzed crimes day by day. In

the last 10 years, sex-based crimes were more concentrated on weekends (Saturday and

Sunday). For Sexual Assault, we can see this concentration clearly on weekends but for

Sex Offense seems that there is not a preferred day. We can see a increasing on Tuesday

and Thursday. This analysis could give us more information if we obtain the result for each

month of the last year and not with a global analysis of 10 years.
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(a) Total Crimes per year (b) Sexual Assaults per year

(c) Sex Offenses per year

Figure 4.13: Chicago Sex-based Crimes distribution per year [2007-2017]
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(a) Total Crimes by Seasons (b) Sexual Assault by Season

(c) Sex Offense by Season

Figure 4.14: Chicago Sex-based Crimes distribution per seasons [2007-2017]
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(a) Total Crimes by months (b) Sexual Assault by monnths

(c) Sex Offense by months

Figure 4.15: Chicago Sex-based Crimes distribution per month [2007-2017]
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(a) Total Crimes per day of Week (b) Sexual Assault per day of Week

(c) Sex Offense per day of Week

Figure 4.16: Chicago sex-based Crimes distribution per day of the week [2007-2017]
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Part IV

Conclusions
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Chapter 5

Conclusions, Limitations and Future

Lines of research

5.1 Conclusions

In this section, we are going to explain the conclusions and results that we have obtained

on the previous analysis. We focused on solving the main objectives and research question

of this thesis; 1) if sex-based crime in Chicago has spatial variations, 2) if there is any inter-

action between events from the same data pattern and 3) if there is any interaction between

different types of crimes.

We can see in our results that the distribution of the two point patterns analyzed in the

city of Chicago varies spatially. As we can see in Figure 4.2 (a) and (b) they are distributed

creating clusters in the space. We also calculated the intensity of Sexual Assault and Sex

offense crimes and we can see which parts of the city has more intensity. In the Sexual

Assault case, Figure 4.5 (a), we can observe a higher intensity in the middle-south and

north-west of Chicago. The intensity of Sex Offense, Figure 4.5 (b), are a bit more spread

than Sexual Assault where we can found higher intensity in middle-south, north-west and

north-east of Chicago city.

Our objective 2 was to detect if there is any interaction between events within the same

data pattern. We applied the K-Inhom function and calculated the envelopes. We can see
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in Figure 4.2 (a) and (b) that both types of crimes have a cluster distribution. Points of the

same typology tend to be aggregated in space.

For research question 3, first we analyzed the distances from points of crime type 1

(sexual assault) to points of crime type 2, and we discovered that the maximum distance to

find a sex offense from a sexual assault crime was 500 feet (152.4 meters) approximately

same distance from offense to assault. To be more concise we apply the Kcross inhom

analysis and we found out that sexual assault and sex offense are dependent, what means

that the probability of finding one type of crime close to the other type of crime is high. As

well the distribution of the crime on space is inhomogeneous and creates clusters in space.

For temporal analysis, we only introduced on the first steps of the analysis. Results are

visible on Figures 4.13, 4.14, 4.15 and 4.16. Andresen and Malleson (2015) analyzed the

patterns of different types of crimes in Vancouver, Canada. They found patterns for some

types of crimes but they could not find any temporal pattern during weekdays on Sexual

Assault crime, being a bit higher on Tuesday/Wednesday and Saturday. In our case, the

study based on Chicago, we found a clear temporal pattern on Saturday and Sunday. Not

occurring the same as Sex Offense crime, where the temporal distribution is more homoge-

neous. As we have seen, the offenders also have daily routines and their crimes are modeled

on that routines. During weekends, people use to have more free time and less organized

activities as during week time (Ceccato; 2011), and also offenders. So, it is more probable

that one offender can target a victim.

5.2 Limitations

This subsection is created to explain what limitation we have found in the creation of this

thesis and possible future lines of research.

The limitation we have found is about data. Data was downloaded from an open data

portal from Chicago, but not all the data were available or updated. One of the data not

updated were the population data. Last update was in 2013 about the 2010 year population.
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Our analysis was from 2007 to 2017. The population is changing a lot in a year and even

more if we need to focus on neighborhood population, which was our case. In this case,

we could not find any population per each neighborhood available on data portal.

5.3 Futures Lines of research

This part is created to express future lines of research that we think could be interesting.

Once analyzed all area of Chicago city it would be interesting to select micro-scale

areas within Chicago in order to analyze deeply. To know why some neighborhoods have

more or fewer crimes than other, to analyze the behavior of crime spatial and temporal dis-

tribution on small areas within a neighborhood could give important and extra information

about criminal events, as needs or problems in some streets or common areas. That also

allows police officers to know better their city and neighborhood and to create strategies to

prevent future crimes. As Shiode et al. (2015) found, at micro-scale areas we can found

different patterns for the different types of crimes than high areas.

Another interesting future line of research is the temporal analysis. Here we only in-

troduced a basic analysis separated from the spatial component because it was not the

principal aim of this thesis. One future research could be analyzing temporal patterns, first

to differentiating daytime crimes and night crimes and adding the spatial factor to see if

the spatial distribution, taking into account some range of hours, months or seasons, create

variations or differences. As Cohen and Felson (1979) explained crime can be affected by

the daily habits and repetitive daily activities.
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Appendix A

Code in R

#LIBRARIES

l i b r a r y ( s p a t s t a t )

l i b r a r y ( r p a n e l )

l i b r a r y ( t k r p l o t )

l i b r a r y ( sp )

l i b r a r y ( r g d a l )

l i b r a r y ( m a p t o o l s )

l i b r a r y ( r g e o s )

l i b r a r y ( s p a r r )

# ######################################################

# READ DATA

# ######################################################

#−−−−Read Boundary SHP as a po lygon

boundary2 = r e a d S h a p e P o l y ( ” Chicago C i t y Boundary6 . shp ” ,

d e l e t e n u l l o b j =TRUE)
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p r o j 4 s t r i n g ( boundary2 )=CRS( ”+ i n i t = epsg :4326 ” )

b o u n d a r y P r o j 2 = spTrans fo rm ( boundary2 , CRS( ”+ i n i t = epsg :3857 ” ) )

p l o t ( bounda ryPro j2 , axes =TRUE)

#−−−−Read Crimes SHP as a p o i n t s .

c r i m e s = r e a d S h a p e P o i n t s ( ” S exu a l c r i m e s . shp ” )

p r o j 4 s t r i n g ( c r i m e s )=CRS( ”+ i n i t = epsg :4269 ” )

c r i m e P r o j = spTrans fo rm ( cr imes , CRS( ”+ i n i t = epsg :3857 ” ) )

p l o t ( c r i m e P r o j , axe s =TRUE, add= T , pch=” . ” )

#−−−−Read P o l i c e S t a t i o n s SHP as a p o i n t s

p o l i c e 2 3 = r e a d S h a p e P o i n t s ( ”POLICE23 . shp ” )

p r o j 4 s t r i n g ( p o l i c e 2 3 )=CRS( ”+ i n i t = epsg :4269 ” )

p o l i c e 2 3 P r o j = spTrans fo rm ( p o l i c e 2 3 , CRS( ”+ i n i t = epsg :3857 ” ) )

p l o t ( p o l i c e 2 3 P r o j , axe s =TRUE, add=T , c o l =2)

#−−−−Read S c h o o l s SHP as a p o i n t s

s c h o o l s = r e a d S h a p e P o i n t s ( ”CPS Schoo l L o c a t i o n s SY1415 . shp ” )

p r o j 4 s t r i n g ( s c h o o l s )=CRS( ”+ i n i t = epsg :4269 ” )

s c h o o l s P r o j = spTrans fo rm ( s c h o o l s , CRS( ”+ i n i t = epsg :3857 ” ) )

p l o t ( s c h o o l s P r o j , axe s =TRUE, add=T , c o l =3)

#−−−−Read L iquo r SHP as a p o i n t s

l i q u o r = r e a d S h a p e P o i n t s ( ” l i q Chicago . shp ” )

p r o j 4 s t r i n g ( l i q u o r )=CRS( ”+ i n i t = epsg :3435 ” )

l i q u o r P r o j = spTrans fo rm ( l i q u o r , CRS( ”+ i n i t = epsg :3857 ” ) )

p l o t ( l i q u o r P r o j , axe s =TRUE, add=T , c o l =4)
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#−−−−Read Parks SHP as a po lygon

#Read Parks SHP as a po lygon

p a r k s = r e a d S h a p e P o l y ( ” Chicago P a r k s Bounda r i e s2012 . shp ” )

p r o j 4 s t r i n g ( p a r k s )=CRS( ”+ i n i t = epsg :3435 ” )

p a r k s P r o j = spTrans fo rm ( parks , CRS( ”+ i n i t = epsg :3857 ” ) )

p l o t ( p a r k s P r o j , axe s =TRUE, add=T , c o l =6)

# ################# C e n t r o i d s o f sha pe s ##########

#−−−−−−−parks−−−−

c e n t r P a r k s = g C e n t r o i d ( p a r k s P r o j , by id =TRUE)

p l o t ( p a r k s P r o j )

p o i n t s ( c o o r d i n a t e s ( p a r k s P r o j ) )

p o i n t s ( c e n t r P a r k s , pch =2)

p l o t ( c e n t r P a r k s , pch =1 , c o l =6)

# ################################################

# Window

# ################################################

w3=as . owin ( b o u n d a r y P r o j 2 )

w3

p l o t ( w3 )

# ############################################################

# CONVERT TO PPP

# ############################################################

# c o n v e r t c r ime da ta

crimePPP1 = ppp ( c r i m e P r o j $ coords . x1 [ c r i m e P r o j $Type ==1] ,
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c r i m e P r o j $ coords . x2 [ c r i m e P r o j $Type ==1] ,w3 )

crimePPP2= ppp ( c r i m e P r o j $ coords . x1 [ c r i m e P r o j $Type ==2] ,

c r i m e P r o j $ coords . x2 [ c r i m e P r o j $Type ==2] ,w3 )

crimePPP1= unique ( crimePPP1 )

crimePPP2= unique ( crimePPP2 )

p l o t ( crimePPP1 , pch=” . ” , c o l s =2)

p l o t ( crimePPP2 , pch=” . ” , c o l s =4)

p l o t ( crimePPP1 , pch=” . ” , c o l s =2)

p l o t ( crimePPP2 , pch=” . ” , c o l s =4 , add=T )

# c o n v e r t l i q u o r da ta

l i q u o r P P P = ppp ( l i q u o r P r o j $ coords . x1 ,

l i q u o r P r o j $ coords . x2 , w3 )

l i q u o r P P P = unique ( l i q u o r P P P )

p l o t ( l i quo rPPP , c o l s =5 , add=T )

# c o n v e r t p o l i c e s t a t i o n da ta

po l i ce23PPP = ppp ( p o l i c e 2 3 P r o j $ coords . x1 ,

p o l i c e 2 3 P r o j $ coords . x2 , w3 )

po l i ce23PPP = unique ( po l i ce23PPP )

p l o t ( po l ice23PPP , add= T , c o l s =2)

# c o n v e r t s c h o o l s da ta

schoo l sPPP = ppp ( s c h o o l s P r o j $ coords . x1 ,

s c h o o l s P r o j $ coords . x2 , w3 )

schoo l sPPP = unique ( s choo l sPPP )

p l o t ( schoolsPPP , add= T , c o l s =3)
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# c o n v e r t p a r k s da ta

c e n t r P a r k s P P P =ppp ( c e n t r P a r k s $x , c e n t r P a r k s $y , w3 )

c e n t r P a r k s P P P = unique ( c e n t r P a r k s P P P )

p l o t ( c e n t r P a r k s P P P , add= T , c o l s =6)

# c o n v e r t f o r e s t r y da ta

# c e n t r F o r e s t P P P= ppp ( c e n t r F o r e s t $x , c e n t r F o r e s t $y , w3 )

# c e n t r F o r e s t P P P= un i qu e ( c e n t r F o r e s t P P P )

# p l o t ( cen t rFores tPPP , add= T , c o l s =7)

# ################ I n t e n s i t y ########

par ( mar=c ( 0 , 0 , 0 , 1 ) )

dc r ime1 = d e n s i t y . ppp ( crimePPP1 , s igma = bw . s c o t t ( cr imePPP1 ) )

p l o t ( ( dc r ime1 ) , main = ” ” , r i b w i d = 0 . 0 4 , r i b s e p = 0 . 0 2 )

dcr ime2 = d e n s i t y . ppp ( crimePPP2 , s igma = bw . s c o t t ( cr imePPP2 ) )

p l o t ( ( dc r ime2 ) , main = ” ” , r i b w i d = 0 . 0 4 , r i b s e p = 0 . 0 2 )

d p o l i c e 2 3 = d e n s i t y . ppp ( po l ice23PPP , s igma = bw . s c o t t ( po l i ce23PPP ) )

p l o t ( ( d p o l i c e 2 3 ) , main = ” ” , r i b w i d = 0 . 0 4 , r i b s e p = 0 . 0 2 )

d s c h o o l s = d e n s i t y . ppp ( schoolsPPP , s igma = bw . s c o t t ( s choo l sPPP ) )

p l o t ( ( d s c h o o l s ) , main = ” ” , r i b w i d = 0 . 0 4 , r i b s e p = 0 . 0 2 )

d l i q u o r = d e n s i t y . ppp ( l i quo rPPP , s igma = bw . s c o t t ( l i q u o r P P P ) )

p l o t ( ( d l i q u o r ) , main = ” ” , r i b w i d = 0 . 0 4 , r i b s e p = 0 . 0 2 )

d p a r k s = d e n s i t y . ppp ( c e n t r P a r k s P P P , s igma = bw . s c o t t ( c e n t r P a r k s P P P ) )
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p l o t ( ( d p a r k s ) , main = ” ” , r i b w i d = 0 . 0 4 , r i b s e p = 0 . 0 2 )

# #######################################################

# DISTANCES

# #######################################################

# ####### N e a r e s t Neibourhood D i s t a n c e s B i v a r i a t e

#−−−−−−−−D i s t a n c e s from CrimePPP1 t o a l l f a c t o r s

D i s t 1 t o 2 c r i m e s = n n c r o s s ( crimePPP1 , crimePPP2 ) #TEMPLATE

D i s t 1 t o p o l i c e 2 3 = n n c r o s s ( crimePPP1 , po l i ce23PPP )

D i s t 1 t o s c h o o l s = n n c r o s s ( crimePPP1 , schoo l sPPP )

D i s t 1 t o l i q u o r = n n c r o s s ( crimePPP1 , l i q u o r P P P )

D i s t 1 t o p a r k s = n n c r o s s ( crimePPP1 , c e n t r P a r k s P P P )

# D i s t 1 t o f o r e s t s = n n c r o s s ( crimePPP1 , c e n t r F o r e s t P P P )

#−−−−−−−−D i s t a n c e s from CrimePPP2 t o a l l f a c t o r s

D i s t 2 t o 1 c r i m e s = n n c r o s s ( crimePPP2 , crimePPP1 ) #TEMPLATE

D i s t 2 t o p o l i c e 2 3 = n n c r o s s ( crimePPP2 , po l i ce23PPP )

D i s t 2 t o s c h o o l s = n n c r o s s ( crimePPP2 , schoo l sPPP )

D i s t 2 t o l i q u o r = n n c r o s s ( crimePPP2 , l i q u o r P P P )

D i s t 2 t o p a r k s = n n c r o s s ( crimePPP2 , c e n t r P a r k s P P P )

# D i s t 2 t o f o r e s t s = n n c r o s s ( crimePPP2 , c e n t r F o r e s t P P P )

# ######### CREATE HISTOGRAMS ##############

par ( mar=c ( 5 , 5 , 2 , 2 ) )

h i s t ( D i s t 1 t o 2 c r i m e s $ d i s t , main=” ” )
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h i s t ( D i s t 2 t o 1 c r i m e s $ d i s t , main=” ” )

h i s t ( D i s t 1 t o p o l i c e 2 3 $ d i s t , main=” ” )

h i s t ( D i s t 2 t o p o l i c e 2 3 $ d i s t , main=” ” )

h i s t ( D i s t 1 t o s c h o o l s $ d i s t , main=” ” )

h i s t ( D i s t 2 t o s c h o o l s $ d i s t , main=” ” )

h i s t ( D i s t 1 t o l i q u o r $ d i s t , main=” ” )

h i s t ( D i s t 2 t o l i q u o r $ d i s t , main=” ” )

h i s t ( D i s t 1 t o p a r k s $ d i s t , main=” ” )

h i s t ( D i s t 2 t o p a r k s $ d i s t , main=” ” )

# ##### Kcross − inhom #####

marks ( crimePPP1 )= rep ( ” a s s a u l t ” , n p o i n t s ( crimePPP1 ) )

marks ( crimePPP2 )= rep ( ” o f f e n c e ” , n p o i n t s ( crimePPP2 ) )

marks ( po l i ce23PPP )= rep ( ” p o l i c e ” , n p o i n t s ( po l i ce23PPP ) )

marks ( schoo l sPPP )= rep ( ” s c h o o l ” , n p o i n t s ( schoo l sPPP ) )

marks ( l i q u o r P P P )= rep ( ” l i q u o r ” , n p o i n t s ( l i q u o r P P P ) )

marks ( c e n t r P a r k s P P P )= rep ( ” pa rk ” , n p o i n t s ( c e n t r P a r k s P P P ) )

# marks ( c e n t r F o r e s t P P P )= rep (” f o r e s t ” , n p o i n t s ( c e n t r F o r e s t P P P ) )

Y = l i s t ( crimePPP1 , crimePPP2 ,

po l ice23PPP ,

schoolsPPP , l i quo rPPP ,

c e n t r P a r k s P P P )

X = crimePPP1

f o r ( i i n 2 : l e n g t h (Y) ) {

X= s u p e r i m p o s e (X, Y[ [ i ] ] )

}
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marks (X)= as . f a c t o r ( marks (X) )

# ########## KCross F u n c t i o n ############################

par ( mar=c ( 3 , 3 , 1 , 1 ) )

#−−−−−−−−−−−− A s s a u l t −−−−−−

#−−−−−−−Kcross c r i m e s a s s a u l t − o f f e n s e

k12 = Kcross . inhom (X, ” a s s a u l t ” , ” o f f e n c e ” , dcr ime1 , dcr ime2 ,

r = seq ( min ( D i s t 1 t o 2 c r i m e s $ d i s t ) , summary ( D i s t 1 t o 2 c r i m e s $ d i s t )

[ [ 5 ] ] , l e n g t h . o u t =200) , main = ” ” , r i b w i d = 0 . 0 6 , r i b s e p = 0 . 0 6 )

p l o t ( k12 )

#−−−−−−−Kcross a s s a u l t − p o l i c e

k 1 p o l i c e = Kcross . inhom (X, ” a s s a u l t ” , ” p o l i c e ” , dcr ime1 ,

d p o l i c e 2 3 , r = seq ( 0 , summary ( D i s t 1 t o p o l i c e 2 3 $ d i s t ) [ [ 5 ] ] ,

l e n g t h . o u t =200) , main = ” ” , r i b w i d = 0 . 0 6 , r i b s e p = 0 . 0 6 )

p l o t ( k 1 p o l i c e )

#−−−−−−−Kcross a s s a u l t − s c h o o l

k 1 s c h o o l = Kcross . inhom (X, ” a s s a u l t ” , ” s c h o o l ” , dcr ime1 ,

d s c h o o l s , r = seq ( 0 , summary ( D i s t 1 t o s c h o o l s $ d i s t ) [ [ 5 ] ] ,

l e n g t h . o u t =200) , main = ” ” , r i b w i d = 0 . 0 6 , r i b s e p = 0 . 0 6 )

p l o t ( k 1 s c h o o l )

#−−−−−−−Kcross a s s a u l t − l i q u o r

k 1 l i q u o r = Kcross . inhom (X, ” a s s a u l t ” , ” l i q u o r ” , dcr ime1 ,

d l i q u o r , r = seq ( 0 , summary ( D i s t 1 t o l i q u o r $ d i s t ) [ [ 5 ] ] ,

l e n g t h . o u t =200) , main = ” ” , r i b w i d = 0 . 0 6 , r i b s e p = 0 . 0 6 )
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p l o t ( k 1 l i q u o r )

#−−−−−−−Kcross a s s a u l t − park

k1park = Kcross . inhom (X, ” a s s a u l t ” , ” pa rk ” , dcr ime1 ,

dparks , r = seq ( 0 , summary ( D i s t 1 t o p a r k s $ d i s t ) [ [ 5 ] ] ,

l e n g t h . o u t =200) , main = ” ” , r i b w i d = 0 . 0 6 , r i b s e p = 0 . 0 6 )

p l o t ( k1park )

#−−−−−−−− A s s a u l t −−−−−−−−−−−

#−−−−−−−Kcross c r i m e s o f f e n c e − a s s a u l t

k21 = Kcross . inhom (X, ” o f f e n c e ” , ” a s s a u l t ” , dcr ime2 ,

dcr ime1 , r = seq ( 0 , summary ( D i s t 2 t o 1 c r i m e s $ d i s t ) [ [ 5 ] ] ,

l e n g t h . o u t =200) , main = ” ” , r i b w i d = 0 . 0 6 , r i b s e p = 0 . 0 6 )

p l o t ( k21 )

#−−−−−−−Kcross o f f e n c e − p o l i c e

k 2 p o l i c e = Kcross . inhom (X, ” o f f e n c e ” , ” p o l i c e ” , dcr ime2 ,

d p o l i c e 2 3 , r = seq ( 0 , summary ( D i s t 2 t o p o l i c e 2 3 $ d i s t ) [ [ 5 ] ] ,

l e n g t h . o u t =200) , main = ” ” , r i b w i d = 0 . 0 6 , r i b s e p = 0 . 0 6 )

p l o t ( k 2 p o l i c e )

#−−−−−−−Kcross o f f e n c e − s c h o o l

k 2 s c h o o l = Kcross . inhom (X, ” o f f e n c e ” , ” s c h o o l ” , dcr ime2 ,

d s c h o o l s , r = seq ( 0 , summary ( D i s t 2 t o s c h o o l s $ d i s t ) [ [ 5 ] ] ,

l e n g t h . o u t =200) , main = ” ” , r i b w i d = 0 . 0 6 , r i b s e p = 0 . 0 6 )

p l o t ( k 2 s c h o o l )

#−−−−−−−Kcross o f f e n c e − l i q u o r
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k 2 l i q u o r = Kcross . inhom (X, ” o f f e n c e ” , ” l i q u o r ” , dcr ime2 ,

d l i q u o r , r = seq ( 0 , summary ( D i s t 2 t o l i q u o r $ d i s t ) [ [ 5 ] ] ,

l e n g t h . o u t =200) , main = ” ” , r i b w i d = 0 . 0 6 , r i b s e p = 0 . 0 6 )

p l o t ( k 2 l i q u o r )

#−−−−−−−Kcross o f f e n c e − park

k2park = Kcross . inhom (X, ” o f f e n c e ” , ” pa rk ” , dcr ime2 ,

dparks , r = seq ( 0 , summary ( D i s t 2 t o p a r k s $ d i s t ) [ [ 5 ] ] ,

l e n g t h . o u t =200) , main = ” ” , r i b w i d = 0 . 0 6 , r i b s e p = 0 . 0 6 )

p l o t ( k2park )

# ########## GCross F u n c t i o n ############################

#−−−−−−−−−−−− A s s a u l t −−−−−−

#−−−−−−−Gcross c r i m e s a s s a u l t − o f f e n c e

g12 = Gcross (X, ” a s s a u l t ” , ” o f f e n c e ” , dcr ime1 , dcr ime2 ,

r = NULL, b r e a k s = NULL)

p l o t ( g12 )

#−−−−−−−Gcross a s s a u l t − p o l i c e

g 1 p o l i c e = Gcross (X, ” a s s a u l t ” , ” p o l i c e ” , dcr ime1 , d p o l i c e 2 3 ,

r = NULL, b r e a k s = NULL)

p l o t ( g 1 p o l i c e )

#−−−−−−−Gcross a s s a u l t − s c h o o l

g 1 s c h o o l = Gcross (X, ” a s s a u l t ” , ” s c h o o l ” , dcr ime1 , d s c h o o l s ,

r = NULL, b r e a k s = NULL)
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p l o t ( g 1 s c h o o l )

#−−−−−−−Gcross a s s a u l t − l i q u o r

g 1 l i q u o r = Gcross (X, ” a s s a u l t ” , ” l i q u o r ” , dcr ime1 , d l i q u o r ,

r = NULL, b r e a k s = NULL)

p l o t ( g 1 l i q u o r )

#−−−−−−−Gcross a s s a u l t − park

g1park = Gcross (X, ” a s s a u l t ” , ” pa rk ” , dcr ime1 , dparks ,

r = NULL, b r e a k s = NULL)

p l o t ( g1park )

#−−−−−−−− A s s a u l t −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

#−−−−−−−Gcross c r i m e s o f f e n c e − a s s a u l t

g21 = Gcross (X, ” o f f e n c e ” , ” a s s a u l t ” , dcr ime2 , dcr ime1 ,

r = NULL, b r e a k s = NULL)

p l o t ( g21 )

#−−−−−−−Gcross o f f e n c e − p o l i c e

g 2 p o l i c e = Gcross (X, ” o f f e n c e ” , ” p o l i c e ” , dcr ime2 , d p o l i c e 2 3 ,

r = NULL, b r e a k s = NULL)

p l o t ( g 2 p o l i c e )

#−−−−−−−Gcross o f f e n c e − s c h o o l

g 2 s c h o o l = Gcross (X, ” o f f e n c e ” , ” s c h o o l ” , dcr ime2 , d s c h o o l s ,

r = NULL, b r e a k s = NULL)

p l o t ( g 2 s c h o o l )
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#−−−−−−−Gcross o f f e n c e − l i q u o r

g 2 l i q u o r = Gcross (X, ” o f f e n c e ” , ” l i q u o r ” , dcr ime2 , d l i q u o r ,

r = NULL, b r e a k s = NULL)

p l o t ( g 2 l i q u o r )

#−−−−−−−Gcross o f f e n c e − park

g2park = Gcross (X, ” o f f e n c e ” , ” pa rk ” , dcr ime2 , dparks ,

r = NULL, b r e a k s = NULL)

p l o t ( g2park )

# #################################

# r e l a t i v e r i s k

# #################################

#−−−− A s s a u l t − O f f e n s e −−−−−−−−−−−−−−−−

par ( mfrow= c ( 1 , 1 ) )

d r i s k 1 a n d 2 = LSCV . r i s k ( crimePPP1 , crimePPP2 ,

method = ” h a z e l t o n ” )

c1y2 = d e n s i t y ( crimePPP1 , s igma = d r i s k 1 a n d 2 )

c2= d e n s i t y ( crimePPP2 , s igma = d r i s k 1 a n d 2 )

p l o t ( c2 / c1y2 )

n p o i n t s ( crimePPP2 ) / n p o i n t s ( crimePPP1 )

( crimePPP2 / crimePPP1 )

#−−−− A s s a u l t − p o l i c e s t a t i o n s −−−−−−−−−−−−−−−−−−−−−−−−−−−−−

d r i s k 1 p s = LSCV . r i s k ( crimePPP1 , po l ice23PPP ,

method = ” h a z e l t o n ” )

c1ps = d e n s i t y ( crimePPP1 , s igma = d r i s k 1 p s )
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cps1 = d e n s i t y ( po l i ce23PPP , s igma = d r i s k 1 p s )

p l o t ( cps1 / c1ps )

n p o i n t s ( po l i ce23PPP ) / n p o i n t s ( crimePPP1 )

#−−−− A s s a u l t − s c h o o l s

d r i s k 1 s c = LSCV . r i s k ( crimePPP1 , schoolsPPP ,

method = ” h a z e l t o n ” )

c1sc = d e n s i t y ( crimePPP1 , s igma = d r i s k 1 s c )

c sc1 = d e n s i t y ( schoolsPPP , s igma = d r i s k 1 s c )

p l o t ( c sc1 / c1sc )

n p o i n t s ( schoo l sPPP ) / n p o i n t s ( crimePPP1 )

#−−−− A s s a u l t − l i q u o r

d r i s k 1 l i q u o r = LSCV . r i s k ( crimePPP1 , l i quo rPPP ,

method = ” h a z e l t o n ” )

c 1 l i q = d e n s i t y ( crimePPP1 , s igma = d r i s k 1 l i q u o r )

c l i q 1 = d e n s i t y ( l i quo rPPP , s igma = d r i s k 1 l i q u o r )

p l o t ( c l i q 1 / c 1 l i q )

n p o i n t s ( l i q u o r P P P ) / n p o i n t s ( crimePPP1 )

#−−−− A s s a u l t − p a r k s

d r i s k 1 p a r k s = LSCV . r i s k ( crimePPP1 , c e n t r P a r k s P P P ,

method = ” h a z e l t o n ” )

c1pk = d e n s i t y ( crimePPP1 , s igma = d r i s k 1 p a r k s )

cpk1= d e n s i t y ( c e n t r P a r k s P P P , s igma = d r i s k 1 p a r k s )

p l o t ( cpk1 / c1pk )

n p o i n t s ( c e n t r P a r k s P P P ) / n p o i n t s ( crimePPP1 )

#−−−− O f f e n c e − A s s a u l t

d r i s k 2 a n d 1 = LSCV . r i s k ( crimePPP2 , crimePPP1 ,
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method = ” h a z e l t o n ” )

c2and1 = d e n s i t y ( crimePPP2 , s igma = d r i s k 2 a n d 1 )

c1= d e n s i t y ( crimePPP1 , s igma = d r i s k 2 a n d 1 )

p l o t ( c1 / c2and1 )

n p o i n t s ( crimePPP1 ) / n p o i n t s ( crimePPP2 )

#−−−− O f f e n c e − p o l i c e s t a t i o n s

d r i s k 2 p s = LSCV . r i s k ( crimePPP1 , po l i ce23PPP ,

method =” h a z e l t o n ” )

c2ps = d e n s i t y ( crimePPP2 , s igma = d r i s k 2 p s )

cps2 = d e n s i t y ( po l ice23PPP , s igma = d r i s k 2 p s )

p l o t ( cps2 / c2ps )

n p o i n t s ( po l i ce23PPP ) / n p o i n t s ( crimePPP2 )

#−−−− O f f e n c e − s c h o o l s

d r i s k 2 s c = LSCV . r i s k ( crimePPP1 , schoolsPPP ,

method = ” h a z e l t o n ” )

c2sc = d e n s i t y ( crimePPP2 , s igma = d r i s k 2 s c )

c sc2 = d e n s i t y ( schoolsPPP , s igma = d r i s k 2 s c )

p l o t ( c sc2 / c2sc )

n p o i n t s ( schoo l sPPP ) / n p o i n t s ( crimePPP2 )

#−−−− O f f e n c e − l i q u o r s t o r e s

d r i s k 2 l i q = LSCV . r i s k ( crimePPP1 , l i quo rPPP ,

method = ” h a z e l t o n ” )

c 2 l i q = d e n s i t y ( crimePPP2 , s igma = d r i s k 2 l i q )

c l i q 2 = d e n s i t y ( l i quo rPPP , s igma = d r i s k 2 l i q )

p l o t ( c l i q 2 / c 2 l i q )

n p o i n t s ( l i q u o r P P P ) / n p o i n t s ( crimePPP2 )
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#−−−− O f f e n c e − p a r k s

d r i s k 2 p k = LSCV . r i s k ( crimePPP1 , c e n t r P a r k s P P P ,

method = ” h a z e l t o n ” )

c2pk = d e n s i t y ( crimePPP2 , s igma = d r i s k 2 p k )

cpk2= d e n s i t y ( c e n t r P a r k s P P P , s igma = d r i s k 2 p k )

p l o t ( cpk2 / c2pk )

n p o i n t s ( c e n t r P a r k s P P P ) / n p o i n t s ( crimePPP2 )

# #############################################

# TEMPORAL

# #############################################

crimesSEASON=read . csv ( ”SEXUAL FOR SEASONS . csv ” , sep =” ; ” )

h i s t ( crimesSEASON$ Season , main = ” T o t a l c r i m e s p e r Seasons ” )

h i s t ( crimesSEASON$Month , main = ” T o t a l c r i m e s p e r Month ” )

h i s t ( crimesSEASON$DayWeek , main =

” T o t a l c r i m e s p e r Day of t h e week ” )

h i s t ( crimesSEASON$ year , main = ” T o t a l c r i m e s p e r Years ” )

SeasAss = crimesSEASON [ crimesSEASON$Type ==1 , ]

SeasOf f = crimesSEASON [ crimesSEASON$Type ==2 , ]

h i s t ( SeasAss $ Season , main = ” Sex ua l A s s a u l t p e r Seasons ” )

h i s t ( SeasOf f $ Season , main = ” Sex O f f e n s e p e r Seasons ” )

h i s t ( SeasAss $Month , main = ” Se xu a l A s s a u l t p e r Months ” )

h i s t ( SeasOf f $Month , main = ” Sex O f f e n s e p e r Months ” )

h i s t ( SeasAss $DayWeek , main = ” Se xu a l A s s a u l t p e r Day Week” )

h i s t ( SeasOf f $DayWeek , main = ” Sex O f f e n s e p e r Day Week” )

h i s t ( SeasAss $ year , main = ” S ex ua l A s s a u l t p e r Year ” )
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h i s t ( SeasOf f $ year , main = ” Sex O f f e n s e p e r Year ” )

h i s t ( SeasAss $ Domestic , main = ” Se xu a l A s s a u l t Domest ic o r n o t ” )

h i s t ( SeasOf f $ Domestic , main = ” Sex O f f e n s e p e r Domest ic o r n o t ” )

# #############################################

# ENVELOPE

# #############################################

d <− i n t e n s i t y ( crimePPP1 )

Y <− mclapp ly (X= 1 : 9 9 ,FUN = f u n c t i o n ( i ){

r p o i s p p ( d , win = crimePPP1 $window )

} )

system . t ime ( Z <− mclapp ly (X= 1 : 9 9 , f u n c t i o n ( i ){

Kinhom (Y[ [ i ] ] , r = seq ( 0 , 5 5 0 0 , l e n g t h . o u t = 6 1 ) )

} ) )

M <− matrix ( nrow = 61 , nco l = 99)

f o r ( i i n 1 : 9 9 ) {

M[ , i ] <− as . data . frame ( Z [ [ i ] ] ) [ , 3 ]

}

klow <− u n l i s t (

mc lapp ly (X=1: nrow (M) ,FUN = f u n c t i o n ( i ){

min (M[ i , ] )

} )

)

kup <− u n l i s t (

mc lapp ly (X=1: nrow (M) ,FUN = f u n c t i o n ( i ){

max (M[ i , ] )

73



} )

)

r <− as . data . frame ( Z [ [ 1 ] ] ) [ , 1 ]

kk <− Kinhom ( crimePPP1 , r = r )

par ( mar=c ( 4 , 4 , 1 , 1 ) )

p l o t ( r , kup , t y p e =” n ” , y l a b = e x p r e s s i o n (K[ inhom ] ( r ) ) ,

x l a b =” r ” , y l im =c ( 0 , max ( kk$ b o r d e r ) ) )

l i n e s ( r , klow , t y p e =” l ” , c o l =” grey70 ” )

l i n e s ( r , kup , t y p e =” l ” , c o l =” grey70 ” )

polygon ( c ( r , rev ( r ) ) , c ( kup , rev ( klow ) ) , c o l = ” grey70 ” ,

b o r d e r = NA)

l i n e s ( r , as . data . frame ( Z [ [ 1 ] ] ) [ , 2 ] , t y p e =” l ” , l t y =2)

l i n e s ( r , as . data . frame ( kk ) [ , 3 ] , t y p e = ” l ” , l t y =3)

l egend ( 0 . 5 , max ( kk$ b o r d e r ) , c ( e x p r e s s i o n ( hat (K) [ inhom ] ˆ { bord } ) ,

e x p r e s s i o n (K[ p o i s ] ) ) , l t y =c ( 3 , 2 ) )

# #######################################################

dcp2 <− i n t e n s i t y ( crimePPP2 )

Ycp2 <− mclapp ly (X= 1 : 9 9 ,FUN = f u n c t i o n ( i ){

r p o i s p p ( dcp2 , win = crimePPP2 $window )

} )

system . t ime ( Zcp2 <− mclapp ly (X= 1 : 9 9 , f u n c t i o n ( i ){

Kinhom ( Ycp2 [ [ i ] ] , r = seq ( 0 , 5 5 0 0 , l e n g t h . o u t = 6 1 ) )

} ) )
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Mcp2 <− matrix ( nrow = 61 , nco l = 99)

f o r ( i i n 1 : 9 9 ) {

Mcp2 [ , i ] <− as . data . frame ( Zcp2 [ [ i ] ] ) [ , 3 ]

}

klowcp2 <− u n l i s t (

mc lapp ly (X=1: nrow ( Mcp2 ) ,FUN = f u n c t i o n ( i ){

min ( Mcp2 [ i , ] )

} )

)

kupcp2 <− u n l i s t (

mc lapp ly (X=1: nrow ( Mcp2 ) ,FUN = f u n c t i o n ( i ){

max ( Mcp2 [ i , ] )

} )

)

r cp2 <− as . data . frame ( Zcp2 [ [ 1 ] ] ) [ , 1 ]

kkcp2 <− Kinhom ( crimePPP2 , r = rcp2 )

par ( mar=c ( 4 , 4 , 1 , 1 ) )

p l o t ( rcp2 , kupcp2 , t y p e =” n ” , y l a b = e x p r e s s i o n (K[ inhom ] ( r ) ) ,

x l a b =” r ” , y l im =c ( 0 , max ( kkcp2 $ b o r d e r ) ) )

l i n e s ( rcp2 , klowcp2 , t y p e =” l ” , c o l =” grey70 ” )

l i n e s ( rcp2 , kupcp2 , t y p e =” l ” , c o l =” grey70 ” )

polygon ( c ( rcp2 , rev ( r cp2 ) ) , c ( kupcp2 , rev ( klowcp2 ) ) ,

c o l = ” grey70 ” , b o r d e r = NA)

l i n e s ( rcp2 , as . data . frame ( Zcp2 [ [ 1 ] ] ) [ , 2 ] , t y p e =” l ” , l t y =2)

l i n e s ( rcp2 , as . data . frame ( kkcp2 ) [ , 3 ] , t y p e = ” l ” , l t y =3)

l egend ( 0 . 5 , max ( kkcp2 $ b o r d e r ) , c ( e x p r e s s i o n ( hat (K) [ inhom ] ˆ { bord } ) ,
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e x p r e s s i o n (K[ p o i s ] ) ) , l t y =c ( 3 , 2 ) )

76


