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IMPROVING PUBLIC HEALTH IN SMART CITIES IN THE AIR POLLUTION CONTEXT 

 

Abstract 

The public has continually developed interest in knowing the air quality around them. This is of 

great importance not only for planning their activities, but also for taking precautionary measures 

for their health. With support from smart cities infrastructure that supports taking measurements 

of pollutant concentrations, several countries and researchers have used the concept of air quality 

index (AQI) in its different forms of air quality or air pollution to interpret and communicate such 

measurements. 

In this study we have reviewed the implemented indices by government bodies and some 

formulations from researchers in relation to the available data to determine an optimum index for 

Madrid city. This comparison has helped to formulate the Madrid Local Air Quality Index (MLAQI), 

which considers the local situation in Madrid city. 

In relation to the available data from the city council, we have reviewed and compared some of 

the spatial interpolation methods that have been applied in the field of air pollution. This helped 

us to identify IDW for support of automated hourly pollution interpolation for the available data 

from Madrid pollution sensors. 

We have then used MLAQI and IDW to create an hourly pollution Web Feature service aimed at 

helping with public awareness of the air quality around them. The surfaces are categorised with 

the index categories from good to very poor categories with defined colour coding. 

We used the created service to develop a routing web application where high MLAQI categories 

of poor and very poor are used as polygon barriers to limit the route calculation in those polluted 

areas thereby helping the public to protect their health from such areas. 
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1 Introduction 

1.1 Background to the study 

Smart cities use information technologies to improve on the performance and quality of urban 

services, to decrease costs and optimize resources, and more so they involve citizens to participate 

actively in such activities(Zanella et al., 2014). Among the various areas developed in such a 

context, this study focuses on public health. There has been increasing public need for better air 

quality or for avoidance of air pollution, which has led to the establishment of determination and 

representation approaches of these occurrences continuously using the index concept in their 

formulations. 

In recent years, air pollution control has demonstrated to have a positive impact on public health 

(Correia et al., 2013). A control measure taken by governments or local administrations involves 

using specific sensors distributed over a wide area usually named air pollution sensors, which are 

able to detect different levels of air pollution in a particular location. 

Deployment of these sensors is slightly growing up with Smart cities and Internet Of Things(Zanella 

et al., 2014), which enables us to obtain access to their produced data. However, the information 

usually provided to the users is one-dimensional based, in this case corresponding to a determined 

and fixed latitude and longitude where the sensor is installed. 

Many works have been done to publish or generate two-dimensional data from those types of 

sensors, among these we underline the ones using interpolation methods that use spatial analysis 

applying statistical theory and techniques to model spatially referenced data. 

In our context, pollutant concentrations are types of data that can be represented by surfaces 

where each raster cell represents a measurement such as a cell’s relationship to a fixed point or 

specific concentration level. Due to impracticability of obtaining values for each cell in a raster, 

sample points are used to derive the intervening values using interpolation methods. This ability 

to create surfaces from sample data of air pollution sensors makes spatial interpolation both 

powerful and useful for the study. 

In disseminating pollution information, several government bodies and industry players publish 

pollutant concentration levels on their websites or mobile applications. The published information 

can be in the form of pollutant concentrations or scaled concentrations based on a particular air 

quality or air pollution index. Some of these indices provide health related recommendations to 

the general public or specific groups of people for the different levels of pollutant concentrations. 
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1.2 The study area 

The chosen study area is Madrid city, the capital of Spain. The city has had challenges with air 

pollution and has continuously set up measures to control this pollution challenge. One of the 

measures used for management and control of this challenge is the use of a network of automatic 

monitoring stations and other mobile stations for measuring pollutant concentrations and 

calibration of the measurement equipment. 

In engaging the public on the awareness of the air quality around them, the city council 

implemented an air quality information system which disseminates such information to the public 

in various ways like sms, emails, website, “Aire de Madrid” mobile application and public displays. 

The hourly pollutant concentration levels are communicated to the public through the hourly 

index while the daily levels are communicated through the daily index. The daily communication 

includes maps of the air quality prediction surfaces for a particular day and the following day are 

categorised by zone in Madrid. The city council also publishes pollutant concentration values 

through the open data portal for researchers and application developers to use in studies about 

this challenge in the city. 

1.3 Problem statement 

The public has continuously developed interest in knowing the state of the air quality, which has 

supported the development of various approaches for air pollution concentration measurements, 

representation and dissemination of the resulting information to the public. 

As the Madrid city council offers the necessary infrastructure and information services to take 

pollution concentration measurements, this has enabled reporting about the state of air quality 

in the city to the public. The reports are mainly the pollutant concentrations at the locations of 

sensor stations scaled on a given index with a colour representation and the daily prediction 

pollution surfaces together with a prediction surface for the following day categorised by the 

different zones of Madrid. 

With the city’s pollutant concentration values becoming too high at certain hours, daily pollutant 

prediction surfaces categorised by zones may not effectively help the public to plan their hourly 

activities or avoid certain areas with high pollutant concentration values at certain hours. This 

presents a need for an hourly pollution surface service which service can be used by the general 

public in planning their hourly activities or be incorporated in other services of public interest like 

routing for the public to use in their navigation between locations of interest. 
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1.4 Aim 

To develop an hourly air pollution surface service for Madrid city that will help the public to be 

aware of the air quality around them and be in position to make informed decisions while planning 

their activities around the city. 

1.5 Objectives 

In achieving the study’s aim, we will meet several objectives. 

 Review and analysis of existing index approaches used in communicating air quality or air 

pollution. 

 Review and analysis of different interpolation techniques, both deterministic and 

geostatistical ones used in the field of air pollution. 

 Modification of the existing Madrid Air Quality Index for better air pollution 

representation with support of spatial interpolation. 

 Obtaining and aggregating the Madrid city council open portal published pollution data to 

support index calculation using the modified index. 

 Perform spatial interpolation on the computed index and creating hourly raster surfaces 

for the index. 

 To support the dissemination of these results to smart citizens and improve their health, 

there is a need for creating a real-time conversion service to generate vector geometries 

from the interpolated raster surfaces into categories of Good, Acceptable, Poor and Very 

Poor according to the index. 

 To facilitate the data access and exploitation from final applications, we had to create an 

automatic hourly publishing service for publishing and sharing the created vector surfaces 

online. 

 Implementing a web application using the published service to help the public plan a path 

to walk or run by minimizing the high pollution areas to traverse, a way to improve their 

health. 

1.6 Hypothesis 

Air pollution concentration measurements from a Smart city’s infrastructure can support the 

generation of hourly pollution surfaces, which can help protect the health of citizens. These 

surfaces can be incorporated into activities of public interest to help the public make informed 

decisions about such activities. 
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1.7 Limitations 

The study is limited to the available published data from active sensor stations in Madrid city. The 

number of stations may affect the accuracy of spatial interpolation. 

The access of the ESRI routing and traffic premium services is limited to use with a proxy web 

server. The proxy setup requires an active ESRI developer account for generating required tokens 

and application registration access information. This routing service also limits the number of 

intersected street with polygon barriers in routing. 
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2 Literature review 

2.1 Comparative study of Air Quality Indices 

In pursuit of addressing air pollution issues around the globe, several approaches for reporting the 

studies and the results have been developed and tested. One of the approaches developed is the 

approach of air quality index that seeks to represent the level of the air quality in a location of 

interest. The indices developed consider different pollutants and use varying limits in reporting 

the results. 

The study compares some of the formulated indices from governmental bodies and the research 

community, some of which several government bodies have implemented. To compare these 

approaches, the study is based on their definitions and calculation, categories considered with the 

category ranges, the symbology used in their representations, the general health 

recommendations to the public and to specific groups of people, the effect of multi-pollutants and 

concentration measurement location variations. 

2.1.1 The United States Environmental Protection Agency (EPA) Air Quality Index (AQI) 

The US EPA AQI categorises air quality in six categories of Good with range (0-50), Moderate with 

range (51-100), Unhealthy for Sensitive Groups with range (101-150), Unhealthy with range (151-

200), Very Unhealthy with range (201-300) and hazardous with range (301-500). With this AQI, 

the values above 500 are also considered hazardous (US EPA, 2014). These categories increase 

with increasing effect on human health and are assigned standard colours for easier identification 

and reporting (US EPA, 2013). 

This AQI is defined for pollutants of Ozone, PM2.5, PM10, Carbon monoxide, Nitrogen Dioxide and 

Sulfur Dioxide. These pollutants (O3, PM1, PM2.5, PM10, CO, NO2, and SO2) are also critical for 

research and Industrial IoT system deployment with US EPA-funded testing facilities like AQ-SPEC 

at the Southern California Air Quality Management District (SC - AQMD) in Los Angeles, California 

(Valarm, 2018). The EPA also defines the limit values for specific time scales of these pollutants for 

computation of the AQI. For Ozone, the limit values are defined for 1hour and 8hours, for PM 2.5 

and PM10, the limit values are defined for 24hours, for Carbon monoxide, the limit values are 

defined for 8hours and the limits for Nitrogen Dioxide and Sulfur Dioxide are defined for 1hour. 

Higher values of limit values do not indicate higher AQI but are the basis for calculation of the 

index (US EPA, 2013). At the established categories, the AQI defines health related risks or groups 

of people that are highly affected by the levels of air pollution. 
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2.1.2 The Canada Air Quality Health Index. 

The Canadian government uses an Air Quality Health Index (AQHI) developed based on the relative 

risk of pollutants to human health with a scale designed to help people understand what the air 

quality around them means to their health. It helps people make decisions regarding short-term 

exposure to air pollution and adjusting their activities based on the information obtained (Stieb et 

al., 2008; ECCC Canada, 2016). 

The AQHI communicates the air quality health related risks on a scale of 1 to 10+ with 4 categories 

of health risks as Low Health Risk (1-3), Moderate Health Risk (4-6), High Health Risk (7-10), or 

Very High Health Risk (10+). A colour scheme of light blue for lower values of the index to brown 

for higher values of the index is used in the index communication. It also gives the health messages 

for both the population at risk and the general population. AQHI uses the relative risks of a 

combination of pollutants of Ozone, PM2.5 and Nitrogen Dioxide to determine the final index. 

2.1.3 Common Air Quality Index (CAQI) 

Developed under the CITEAIR project of the European Union with the aim of establishing a 

platform for comparing air quality across the different cities in Europe, a review of the existing 

indices was carried out and CAQI developed to achieve the comparability across the cities in real-

time and caters for hourly, daily and yearly time scales. It established two indices, one for the 

roadside monitoring stations and the other one for city background conditions (van den Elshout, 

Léger and Nussio, 2008). CAQI defines five classes with appropriate ranges of Very Low (0-25), Low 

(25-50), Medium (50-75), High (75-100) and Very High (above 100). 

The first version of CAQI considered pollutants of Ozone (O3), PM10, Carbon monoxide (CO), 

Nitrogen Dioxide (NO2) and Sulfur Dioxide (SO2) but the revised version of the index introduced 

PM2.5 in the index calculation (van den Elshout, Léger and Nussio, 2008; Van Den Elshout, Léger 

and Heich, 2014). CAQI uses the concept of core pollutants for the two indices, introduced to allow 

for the calculation of the index and without it an index calculation is not performed. For the 

roadside index, the core pollutants considered are NO2 and PM10 with CO and PM2.5 as auxiliary 

pollutants while for the city background index NO2, PM10 and O3 are considered core pollutants 

with CO, SO2 and PM2.5 considered as auxiliary pollutants. The index is calculated by linear 

interpolation between the class borders of the pollutants and the final index given as the highest 

sub index of the considered pollutants (van den Elshout, Léger and Nussio, 2008; Plaia and 

Ruggieri, 2011). 
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2.1.4 The UK Air Quality Index 

In a review of the UK Air Quality Index, Committee on the Medical Effects of Air Pollutants 

(COMEAP) developed and recommended a Daily Air Quality Index (DAQI) for the purpose of 

providing short-term health advise to the public regarding the air quality around them and 

possible recommendations such people can take (COMEAP UK, 2011). Following the 

recommendations from COMEAP, the Department for Environment, Food and Rural Affairs (Defra) 

together with responsible administrations implemented this index from January 2012. This Index 

was later updated with minor changes through Defra’s update on the implementation of DAQI in 

April 2013 to conform with the EU limit values of pollutant concentrations. The update also 

emphasised that data rounding off should always be performed at the end of calculations before 

communicating results to avoid errors (Emily Connolly et al., 2013). 

DAQI is defined on a scale of 1 to 10 with colour coding and categorised into four bands of Low (1-

3), Moderate (4-6), High (7-9) and Very High (10) (COMEAP UK, 2011). COMEAP report 

recommended the removal of CO from the AQI and the inclusion of PM2.5. Currently the DAQI 

uses the pollutants of Ozone (O3), Nitrogen Dioxide (NO2), Sulfur Dioxide (SO2), PM2.5 and PM10 

in calculation of the index. The Automatic Urban and Rural Network (AURN) measures these 

pollutant concentrations in near real-time and their values used in calculation of the index 

(COMEAP UK, 2011). The overall index is given by the highest pollutant concentration of the 

considered pollutants. To allow prediction of elevated air pollution episodes in real-time, DAQI 

uses trigger values to predict concentrations of pollutants (COMEAP UK, 2011). 

2.1.5 Ireland Air Quality Index 

In order to find an appropriate Air Quality Index for Ireland that included health information, Air 

Quality Health Information Working Group was set up in 2011 for the task. The Health Service 

Executive (HSE) reviewed existing health based evidence on the impact of air pollution on health 

and also reviewed a selection of Air Quality Indices that existed across the globe. The committee 

reached similar conclusions to those done by the COMEAP. This led to the proposal by the Irish 

Environmental Protection Agency (EPA) for adopting the UK DAQI into the Irish air quality 

monitoring infrastructure. The HSE and Irish EPA reached the conclusion of introducing the Air 

Quality Index for Health (AQIH) that is closely aligned with the UK DAQI. 

The AQIH was proposed to maintain consistency with the previous Irish index that was also an air 

quality index. It is noted that the UK DAQI is a pollution index as it was replacing a previous air 

pollution index. This difference led to the difference in the naming of the index categories (EPA 
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Ireland, 2013a). The Irish AQIH uses a scale with defined colour coding of 1 to 10 that is categorised 

into four bands of Good (1-3), Fair (4-6), Poor (7-9) and very poor (10) (EPA Ireland, 2013b). These 

bands correspond to the UK DAQI bands of Low, Moderate, High and Very High respectively. The 

other information like health messages and interpretation of the index is the same. Like the DAQI, 

AQIH considers five pollutants of ozone, nitrogen dioxide, sulphur dioxide, PM2.5 and PM10. The 

final index is given by the worst index of the separately calculated indices of the considered 

pollutant concentrations. 

2.1.6 Spain, Madrid Air Quality Index 

Madrid City Council provides information to its community using an air quality index defined by a 

scale of 0 to >150 with four categories of “Buena” - good (0-50), “Admisible” - acceptable (51-100), 

“Deficiente” - poor (101-150) and “Mala” - very poor (>150). The City council uses the pollutants 

of PM10, Sulfur Dioxide, Nitrogen Dioxide, Carbon Monoxide and Ozone. Sub indices are 

calculated for the considered pollutants and the final index is the worst sub index of the pollutant 

concentrations (Madrid City Council, 2015). 

2.1.7 France Air Quality Index 

The ATMO Index is the air quality index used in major cities in France that have a population of 

more than 100,000 inhabitants. The index is represented by a giraffe and is based on a scale of 1 

to 10 ranging from very good to very bad and with three coloured bands of Green (1-4), Orange 

(5-7) and Red (8-10). ATMO Index considers the pollutants of Sulfur Dioxide, Nitrogen Dioxide, 

Ozone, PM2.5 and PM10. Sub indices are calculated for the four pollutant concentrations and the 

final aggregated index is the highest sub index calculated from the pollutant concentrations 

(ATMO France, 2008). Each pollutant has defined limit values for the scale ranges upon which 

pollutant concentrations are compared to determine the pollutant sub index. 

2.1.8 Singapore Air Quality Index 

Singapore reports air quality in terms of Pollutant Standards Index (PSI). The index is categorised 

into five categories of Good (0-50), Moderate (51-100), Unhealthy (101-200), Very Unhealthy (201-

300) and Hazardous (301-500) (NEA Singapore, 2017). PSI is based on six pollutants of PM2.5, 

PM10, Sulfur Dioxide, Carbon Monoxide, Ozone and Nitrogen Dioxide. The sub indices of all the 

considered pollutants are calculated and the final index is the highest sub index of the pollutant 

concentrations (NEA Singapore, 2014). 
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2.1.9 Researchers work on Air Quality Index representation 

Several researchers have continued to investigate on the better representation of air quality index. 

We have specifically selected five published papers detailing some of these methods which are 

related with health, the effect of multi pollutants on heath and spatial variability of pollutant 

measurement locations. 

To account for multi pollutant short-term health effects of exposures on the final index, 

(Cairncross, John and Zunckel, 2007) formulated an Air Pollution Index (API). To account for this 

effect, the final index is the summation of the normalised sub indices of pollutant concentrations. 

The developed index depends on the relative risk of daily mortality associated with the common 

pollutants of PM2.5, PM10, Sulfur Dioxide, Nitrogen Dioxide, Ozone and Carbon Monoxide. The 

proposed index has a scale of 1 to 10 with defined colour codes. It also defines the index with four 

categories together with associated increase in mortality risks. The four categories are low (1-3), 

moderate (4-6), high (7-9) and very high (10). 

Based on time series analysis of air pollution and mortality in Canadian cities, (Stieb et al., 2008) 

proposed an Air Quality Health Index (AQHI). To cater for multi pollutant effects and varying 

seasons, they carried out analysis for pollutant combinations using single and multi pollutant 

models and for varying seasons. To develop the index, they used the combination of Carbon 

Monoxide, Nitrogen Dioxide, Ozone, PM2.5 or PM10 and Sulfur Dioxide pollutants. The index 

excludes Sulfur Dioxide and Carbon Monoxide in its formulation after realising their small effect 

during the analysis. The index is defined by four different scenarios using PM2.5, PM10, warm and 

cool seasons for the case of PM2.5. The index created is on a scale of 0 to 10+ with categories of 

Low risk (0-3), Moderate risk (4-6), High risk (7-10) and Very high risk (above 10). A corresponding 

colour scheme is also defined along the scale with colours ranging from light blue at low AQHI 

values to brown at high AQHI values and red for very high risk category. It provides health related 

messages to the population at risk and the general population. 

Using the pollutants of Carbon Monoxide, Sulfur Dioxide, Nitrogen Dioxide, Ozone and PM10, 

(Kyrkilis, Chaloulakou and Kassomenos, 2007) developed the aggregate Air Quality Index for 

Athens, Greece. To cater for multi pollutant effects, they adopted an aggregate function to 

compute the overall index of the city. They compared their results with the modified USEPA AQI 

using the European pollutant standard limits and found the modified USEPA predicted higher 

values than the developed aggregate AQI. 
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In studying multi-pollutant effects and relative risks of short-term exposure to pollutants, (Sicard 

et al., 2011) developed the Aggregate Risk Index. The ARI is based on the exposure response 

relationship and relative risk of established effects to assess the additive effects of pollutants. The 

method used published relative risk functions data and particular sets of relative risks for 

associated health risk end points to derive the index. The ARI considers the relative risks of Sulfur 

Dioxide, Nitrogen Dioxide, PM2.5, PM10 and Ozone pollutants. In catering for the multi pollutant 

effects, the final index is the summation of individual calculated risk indices. The index is defined 

from 0 to 10 with the risk values used to derive the break points. The index is categorised into Low 

(1-3), Moderate (4-6), High (7-9) and Very high (10) with appropriate information about the excess 

relative risk of mortality or morbidity. 

In considering the additive effects resulting from multi pollutants and the effect of measuring 

pollutants over different geographical locations, (Murena, 2004) developed a daily Air Pollution 

Index (PI) modified out of the US EPA AQI. The developed index uses European limit values in its 

computation. The index uses the common pollutants of Carbon Monoxide, Nitrogen Dioxide, 

PM10, Sulphur Dioxide and Ozone in its computation. The index is defined on a scale of 0 to 100 

and it defines five categories of Good quality (25), Low pollution (50), Moderate pollution (70), 

Unhealthy for sensitive groups (85) and Unhealthy (100). The index introduced clouds for 

representing the pollution categories. The method introduced considers the sum of ratios of daily 

reference concentrations of pollutants and their bottom breakpoint concentration values to cater 

for multi pollutant additive effects on human health and introduces weights for geographical 

location variability of sensor measured pollutants concentrations. 

2.1.10 Summary of the reviewed indices 

The reviewed indices share and differ in some of their formulations and representations Table 1. 

To relate these indices, we have summarised them in terms pollutants considered in their 

formulation, the number of categories and ranges they consider, the symbolisation and graphical 

representation used, the health recommendations for the categories, the effect of multi pollutants 

and the spatial variability of concentration measurement locations. 
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Table 1: Summary of reviewed indices from government bodies and the research community 

From Table 1, most indices share pollutant compositions with Ozone and Nitrogen Dioxide 

pollutants being common to all. They vary in the formulation of categories ranging from 3 to 6 

with the mode number of categories being 4. Apart from two indices one of which colour 

symbology is undefined and the other one using only clouds, all other indices use colour 

symbology spread over their respective categories. Most indices give general and specific health 

recommendations to the public. The indices from the research community considered more the 

effect of multi-pollutants compared with the researched or implemented indices by government 

bodies. Most indices do not consider the location variability of pollutant measurements. 

2.2 Spatial interpolation methods in air pollution 

2.2.1 Spatial Interpolation 

Spatial interpolation involves estimation of values of a desired attribute of a phenomenon at 

unsampled points using the values of sampled points in the estimation or prediction process. 

Miller associated Tobler’s first law of geography as being core to spatial auto correlation, spatial 

interpolation and techniques for predicting missing variables in a geographic space (Miller, 2004). 

Tobler’s first law of geography states that: “everything is related to everything else, but near things 

are more related than distant things” (Tobler, 1970). In situations that involve continuous variables 

like elevation of the landscape, pollutant concentrations in the atmosphere and temperature, it is 

challenging to take measurements at every location to represent such phenomena, thus the 

power of spatial interpolation that facilitates the prediction of intermediate values from sampled 

locations and makes it possible to represent such phenomena as surfaces. Spatial interpolation is 

Index
Number of 

Categories

Ranges of 

Categories
Symbolisation

General Health 

Recommendations

Specific Groups 

Recommendations

Multi-Pollutant 

Consideration

Measurement 

location variation

US EPA, AQI CO  NO2  O3  PM2.5  PM10  SO2 6 0 - 500 Colours Yes Yes No No

Canada, AQHI  NO2  O3  PM2.5 4 1 - 10+ Colours Yes Yes Yes No

Common Air 

Quality Index, CAQI
CO  NO2  O3  PM2.5  PM10  SO2 5 0 - 100+ Colours No No No Yes

UK Defra, DAQI NO2  O3  PM2.5  PM10  SO2 4 1 - 10 Colours Yes Yes No No

Irish EPA , AQIH NO2  O3  PM2.5  PM10  SO2 4 1 - 10 Colours Yes Yes No No

Spain Madrid CO NO2  O3  PM10  SO2 4 0 - >150 Colours No No No No

France, ATMO NO2  O3  PM2.5  PM10  SO2 3 1 - 10
Giraffe and 

Colours
No No No No

Singapore, PSI CO NO2  O3  PM2.5  PM10  SO2 5 0 - 500 Colours Yes Yes No No

Cairncross et al. 

2007, API
CO NO2  O3  PM2.5  PM10  SO2 4 1 - 10 Colours Yes No Yes No

Stieb et al. 2008, 

AQHI
NO2  O3  PM2.5 PM10 4 1 - 10+ Colours Yes Yes Yes No

Kyrkilis et al. 2007, 

Aggregate AQI
CO NO2  O3  PM10  SO2 Yes No

Sicard et al. 2011, 

ARI
NO2  O3  PM2.5  PM10  SO2 4 0 - 10 Colours Yes Yes Yes No

Murena 2004, PI CO NO2  O3  PM10  SO2 5 0 - 100 Clouds No No Yes Yes

Pollutants Considered
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very useful in many fields like environmental modelling, surveying, mining, civil engineering, 

agriculture, etc., that involve the need of representing several phenomena as surfaces. 

Spatial interpolation is classified into three categories of non-geostatistical, geostatistical and 

methods that combine both geostatistical and non-geostatistical techniques (Li and Heap, 2008). 

Features that distinguish and offer comparison of these spatial interpolation methods are 

discussed in (Li and Heap, 2014). These features include: The global and local nature of prediction 

where the global predictors use the entire sample points in the prediction process while the local 

use part of the points near the un known point for its prediction, the exactness of the interpolator 

where the exact interpolators resulting in a prediction that is the same as the observed value at 

the sampled location while the inexact results in a value that is different from the value at the 

sampled location, the deterministic and stochastic nature of the prediction. 

2.2.2 Deterministic and stochastic spatial interpolation methods 

The deterministic interpolators produce predictions without assessing the errors in the prediction 

process. The deterministic methods include Nearest neighbour (NN), Triangulated irregular 

network (TIN), Natural neighbour (NaN), Inverse distance weighting (IDW) and Radio Basis 

Functions (RBF) (Li and Heap, 2008; Adhikary and Dash, 2017). Stochastic interpolators produce 

predictions in both the deterministic part and provide the error assessment part. These include 

Regression models (LM) and Kriging (Li and Heap, 2008). Several researchers have used both 

deterministic and stochastic methods to represent different phenomena in terms of surfaces. 

Some studies have also compared the performance of different methods in representing different 

phenomena (Anselin and Le Gallo, 2006; Rojas-Avellaneda, 2007; Pultar et al., 2010; Kumar Jha et 

al., 2011; Singh et al., 2011; Joseph et al., 2013; Adhikary and Dash, 2017). 

2.2.3 Spatial interpolation studies with air pollution 

In building an environmental quality index for Madrid city, Spain, (Montero, Chasco and Larraz, 

2010) used Ordinary Kriging to produce surfaces of SO2, CO, NOx, NO2, PM, O3 and noise from 

monitoring stations in Madrid city and linked this data with census tracts data. In their study, they 

reported variation of precision for locations that were further away from the monitoring stations. 

They used 27 monitoring stations for the annual averages of daily readings for the year 2001 for 

their study. 

In modelling NO2 and PM10 in the metropolitan areas of Barcelona and Bilbao, Spain, (Lertxundi-

manterola and Saez, 2009) used Ordinary kriging to interpolate the daily averages of NO2 and 

PM10 across the cities. They obtained a disappearing spatial dependence of concentrations at a 
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distance of 1-3km from the monitoring stations. For the case of Barcelona, they used 9 monitoring 

stations for both pollutants and for the case of Bilbao, they used 28 monitoring stations for NO2 

and 10 for PM10. 

In analysing the sensitivity of hedonic models of price houses with interpolation of air quality 

measures in Southern California, USA, (Anselin and Le Gallo, 2006) needed to assign O3 levels to 

house transaction locations. They tested four interpolation methods of Thiessen polygons, IDW, 

Ordinary kriging and spline and found Ordinary kriging offering consistent fit and reasonable 

parameters for their study. They used O3 measurements from 27 monitoring stations. 

In analysing environmental justice of particulate air pollution in Hamilto, Canada, (Jerrett et al., 

2001) used Universal kriging to create pollution surfaces from pollutant concentration data of 23 

monitoring stations and linked the results with the social economic and demographic data of 

Hamilton. They based on prior knowledge of existence of a spatial trend in the particulate data of 

Hamilton to choose universal kriging against ordinary kriging. 

In predicting the pollutant concentrations in Mexico City, Mexico using interpolation methods, 

(Rojas-Avellaneda, 2007) identified IDW and kriging as the most used spatial interpolation 

methods in pollutant concentration prediction. The study compared IDW and Simple kriging 

methods using O3 concentration measurements from 20 monitoring stations at a specific time for 

21 days. Both methods performed better with a consideration of a linear drift in the data and 

produced closely related results. 

In mapping the background air pollution across Europe, (Beelen et al., 2009) compared the 

performance of three modelling techniques of Universal kriging, Ordinary kriging and a regression 

model. They considered pollutants of NO2, O3, PM10, SO2 and CO using the Airbase data and the 

predictor variables used were from EU-wide databases. The results for NO2, O3 and PM10 showed 

better performance of Universal kriging compared with the other two methods while none of the 

methods predicted SO2 and CO satisfactorily. 

In assessing spatial interpolation methods for O3 exposure predictions, (Joseph et al., 2013) used 

data from two urban areas of Los Angeles, California USA, with 27 monitoring stations and 

Houston, Texas, with 42 monitoring stations for the compare Simple average, Nearest neighbour, 

IDW, Ordinary kriging and Universal kriging. The results indicated the superiority of Ordinary 

kriging with a calibrated range parameter in comparison with the other tested methods. 

In mapping hourly O3 episodes for spring and summer periods in Eastern Texas, USA, (Kethireddy 

et al., 2014) used Ordinary kriging to interpolate and map O3 at a 1km spatial scale with 80 
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monitoring stations. The study detected episodes of O3 during afternoon hours and found 

Ordinary kriging to successful predictions of this pollutant in the study area.  

2.2.4 Summary of the used spatial interpolation methods in air pollution 

Table 2 shows the summary of the reviewed studies in relation to spatial interpolation and air 

pollution. These have been summarised with the pollutants considered and the number of used 

monitoring stations. 

Study Methods Best method from 

comparison studies 

Pollutants 

considered 

Number of 

sensors 

(Montero, Chasco and 

Larraz, 2010) 

Ordinary Kriging  SO2, CO, NOx, NO2, 

PM, O3, noise 

27 

(Lertxundi-manterola 

and Saez, 2009) 

Ordinary Kriging  NO2, PM10 9, 28, 10 

(Anselin and Le Gallo, 

2006) 

Thiessen polygons, IDW, 

Ordinary kriging and spline 

Ordinary kriging O3 27 

(Jerrett et al., 2001) Universal Kriging   23 

(Rojas-Avellaneda, 

2007) 

IDW, Simple Kriging IDW O3 20 

(Beelen et al., 2009) Universal kriging, Ordinary 

kriging and a regression model 

Universal kriging NO2, O3, PM10, 

SO2, CO 

 

(Joseph et al., 2013) Simple average, Nearest 

neighbour, IDW, Ordinary 

kriging and Universal kriging 

Ordinary kriging O3 27, 42 

(Kethireddy et al., 

2014) 

Ordinary kriging  O3 80 

Table 2: Summary of the used spatial interpolation methods in air pollution 

From these studies, we found that kriging in its different forms was the widely used method of 

spatial interpolation in relation to air pollution and these studies also shared the similarity in the 

sources of used data like the data used in Madrid with one of the studies (Montero, Chasco and 

Larraz, 2010) conducted in Madrid. The popularity of kriging confirms earlier findings by (Jerrett 

et al., 2005). 

2.2.5 The general prediction equation 

With most prediction methods seen as weighted data averages and using the general prediction 

equation (Webster and Oliver, 2007), we have used this general equation (1) to briefly describe 

the Inverse Distance Weighted (IDW) and Kriging methods. 

 𝑍̂(𝑥0) = ∑ 𝜆𝑖𝑍(𝑥𝑖)

𝑛

𝑖=1

 (1) 
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Where 𝑍̂ is the predicted attribute value at 𝑥0. 𝑍(𝑥𝑖), the data values at 𝑥𝑖 … 𝑥𝑛 points. 𝜆𝑖 are the 

assigned weights to the data values at those points and 𝑛 is the used number of sample points for 

the prediction. 

2.2.6 Inverse Distance Weighted (IDW) 

Also known as the Inverse Distance Weighting, IDW, is a deterministic spatial interpolation method 

that bases on the idea of nearer things being more related to each other than further things to 

assign more weights to observations near the value being predicted. IDW weights the sampled 

points with an inverse function of the distance from the prediction point to the sampled points. 

Thus from the general equation (1), IDW defines weights as given in equation (2). 

 𝜆𝑖 =
1/𝑑𝑖

𝑝

∑ 1/𝑑𝑖
𝑝𝑛

𝑖=1

 (2) 

Where 𝑑𝑖 represents the distance difference between 𝑥0 and 𝑥𝑖  , 𝑝 being the power parameter 

and 𝑛, the number of sample points used in the prediction. Webster and Oliver noted that the 

power parameter choice is arbitrary (Webster and Oliver, 2007). As cited by Li and Heap, the 

accuracy of IDW is mainly affected by the power parameter. With 𝑝 = 0, IDW becomes moving 

average, with 𝑝 = 1, IDW becomes linear interpolation, with 𝑝 = 2, IDW becomes inverse square 

distance or inverse distance squared and when 𝑝 ≠ 1, then IDW is a weighted moving average (Li 

and Heap, 2008). 

2.2.7 Kriging 

Developed by Matheron and D.G Krige, kriging is a local, exact and stochastic spatial interpolation 

method. Kriging is a generic term referring to a family of geostatistical techniques that come in 

form of both linear or non-linear interpolators (Webster and Oliver, 2007). Kriging methods are 

based on the following equation (3) which is a modification from the general equation (1). 

 𝑍̂(𝑥0) − 𝜇 = ∑ 𝜆𝑖[𝑍(𝑥𝑖) −

𝑛

𝑖=1

𝜇(𝑥0)]  (3) 

𝜇, the known stationary mean is considered constant over the entire domain that is calculated as 

the average of the data. 𝜆𝑖, kriging weight, 𝑛, number of sampled points for estimation within a 

search window and 𝜇(𝑥0) is the mean of the sampled data within a search window. 

For the purpose of this study, the focus is on the kriging methods of Ordinary kriging and Universal 

kriging that have been applied in similar studies more than Simple kriging. 
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2.2.8 Ordinary kriging (OK) 

Within the kriging family, Ordinary kriging is the most used method (Webster and Oliver, 2007; 

Oliver and Webster, 2015). It assumes a randomly and spatially dependent variation whose mean 

is unknown and constant and the variance only dependent on the distance separation and 

direction between places (Oliver and Webster, 2015; Adhikary and Dash, 2017). The estimation 

error is expressed in equation (4)  

 𝜀(𝑥0) = 𝑍̂(𝑥0) − 𝑍(𝑥0) =  ∑ 𝜆𝑖𝑍(𝑥𝑖)

𝑛

𝑖=1

− 𝑍(𝑥0) (4) 

With 𝑍(𝑥0) as the true value of the variable at 𝑥0 and 𝜀(𝑥0) as the estimation error. Since the 

expected residual of unbiased estimate is supposed to be 0, then  

 𝐸[𝜀(𝑥0)] = 0 (5) 

The weights sum to 1 to ensure an unbiased estimation resulting in equation (6). 

 ∑ 𝜆𝑖

𝑛

𝑖=1

= 1 (6) 

2.2.9 Kriging with a trend (KT) 

Also known as Universal kriging, KT considers both the random and the non-stationary nature of 

a variable and uses both components in the estimation process. It uses the non-stationarity 

component to estimate the trend and uses the random component to estimate the variogram. 

Thus arriving at the equation (7). 

 𝑍̂(𝑥0) =  𝜇(𝑥0) + 𝜀(𝑥0) (7) 

Where 𝜇(𝑥0) is the deterministic function which is a drift and 𝜀(𝑥0) is the random variation that 

is treated to be auto-correlated. 𝑥0 represents the spatial coordinates of the data as explanatory 

variables (Adhikary and Dash, 2017). 

2.2.10 The variogram or semivariogram 

A variogram expresses the spatial variation of an attribute and is estimated using a semi-variance 

of the difference between data values of the entire sampled points that are separated by a lag 

vector ℎ. The semivariogram 𝛾̂(ℎ) is expressed as in equation (8). 

 
𝛾̂(ℎ) =

1

2𝑚(ℎ)
∑ [𝑍(𝑥𝑖) − 𝑍(𝑥𝑖 + ℎ)]2 

𝑚(ℎ)

𝑖=1

 

 

(8) 
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Where 𝑚(ℎ) is the number of sample point pairs separated by ℎ. A plot of 𝛾̂(ℎ) against ℎ gives an 

experimental variogram with special features of nugget, sill and range. 

As cited by Li and Heap, a variogram is very important in analysing the data structure (Li and Heap, 

2008). The experimental variogram produced with the sampled data is fitted with variogram 

models like the linear, pure nugget, spherical, exponential and Gaussian models (Bayraktar and 

Turalioglu, 2005; Webster and Oliver, 2007, chap. 5.2; Li and Heap, 2008). The shape of the 

experimental variogram determines which model is applicable for a given scenario. These fitted 

models help in determining the variogram parameters of nugget, sill, range, the lag size, the 

number of lags and the neighbourhood search strategy. 

Webster and Oliver noted the controversy surrounding model choice and fitting in geostatistics 

due variations in different determinants like semi variances, anisotropy, point to point variation in 

the experimental variogram and none linearity of most models in different parameters (Webster 

and Oliver, 2007, p. 101). 

3 Methodology 

To achieve the aim and objectives of the study, we have studied the available data from Madrid 

city council, compared it with the reviewed air quality index approaches and interpolation 

methods used in the field of air pollution to find an applicable index and a suitable interpolation 

method for the study. We have then used these approaches during the implementation phase. 

3.1 Data description, comparison with reviewed AQIs and MLAQI formulation 

3.1.1 The Madrid air pollution sensor network 

The city council of Madrid, has a network of 24 sensor stations deployed to measure different 

pollutant concentrations in Madrid city to enable pollution and air quality monitoring and 

management. The city council of Madrid has been monitoring air quality since 1968 using a manual 

network and later on a set of automatic network stations since 1978. Due to the studies, 

developments and legislation about air quality, the city council has continued to refine and 

develop this network to accommodate the developments. 

The sensor stations’ network continually measures the pollutants of Sulfur dioxide, Carbon 

monoxide, Nitrogen monoxide, Nitrogen dioxide, PM2.5, PM10, Nitrogen oxides, Ozone, Toluene, 

Benzene, Ethylbenzene, Metaxylene, Paraxylene, Orthoxylene, Total hydrocarbons, Methane, 

Non-methane hydrocarbons. 
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The stations in this sensor network are categorised into “Tráfico” - traffic, “Urbana de fondo” - 

Urban background and “Suburbana” - suburban. At each station several pollutants are measured 

but the combinations of measurements at each station are quite different. The tráfico sensor 

stations are mainly located along the road network and close to the city centre for detecting 

pollution caused by emissions on the road network while the other two types are located mainly 

outside the area covered by the tráfico sensor stations. The urbana de fondo sensors mainly 

represent the exposure of the general urban population while the suburbana are located in the 

city outskirts at locations of high ozone levels. 

Stations are identified by station codes and pollutants identified by parameter codes for the 

pollutants measured at each station. 

Tráfico - traffic stations. These are stations 4 (Pza. de España), 8 (Escuelas Aguirre), 11 (Avda. 

Ramón y Cajal), 36 (Moratalaz), 38 (Cuatro Caminos), 39 (Barrio del Pilar), 48 (Castellana), 50 (Plaza 

Castilla) and 56 (Pza. Fernández Ladreda). 

Urbana de fondo - Urban background. These are stations 16 (Arturo Soria), 17 (Villaverde), 18 

(Farolillo), 27 (Barajas Pueblo), 35 (Pza. del Carmen), 40 (Vallecas), 47 (Mendez Alvaro), 49 (Parque 

del Retiro), 54 (Ensanche de Vallecas), 55 (Urb. Embajada), 57 (Sanchinarro) and 60 (Tres Olivos 

Plaza) 

Suburbana – suburban. These are stations 24 (Casa de Campo), 58 (El Pardo) and 59 (Juan Carlos 

I) 

Within this network there are three “super stations” which stations measure most of the network 

pollutant components and consider all the types of tráfico, urbano de fondo and suburbana. These 

are stations 18 (Farolillo (without PM2.5)), 24 (Casa de Campo) and 8 (Escuelas Aguirre). 

The location of different sensor types is shown in the Figure 1. 
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Figure 1: Sensor stations location and types 

3.1.2 Description of the published data from the sensor network 

The Madrid city council publishes data from the monitoring sensor stations at an hourly basis and 

also provides historical hourly data for different months in different file types like .XML, .CSV and 

.TXT file formats. The data published are the measures of pollutant concentrations. For the hourly 

data, the file contains about 151 records of sensors for 24 hours with the station coding, sensor 

coding and the date at which the values are recorded. For historical monthly data, the file contains 

data for the entire month where every sensor at all sensor stations has its daily hourly values. 

At a single monitoring station, several sensor values for different pollutants are published but 

without location information. Since location information for the different sensor stations is 

important for spatial interpolation, which is a big component of the study, there was need to 

incorporate location information to the monitoring sensor stations. The Madrid city council also 

provides description and location (latitude, longitude and altitude) information about the network 
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monitoring stations which we transformed into a projected coordinate system 

(ETRS89_UTM_zone_30N) to support structural modelling and parameter control. 

3.1.3 Comparison of the data with reviewed air quality indices 

In selecting an applicable air quality index for our study, we have related the available Madrid 

sensor data with some of the reviewed AQIs for the study. We base this relation on the indices 

definitions with the pollutant combinations in their formulations. From the discussed AQIs, the 

indices of AQHI (Canada) preferred for its linkage to health, CAQI (European), DAQI (UK Defra), 

Madrid Spain and ATMO (France) preferred for their formulation with the limit values of the 

European union have been compared with the available data from the sensor stations and this 

comparison is given in Table 3. 

 

Table 3: Comparison of air quality indices and the available data 

From Table 3, it can be seen that using the AQIs with the pollutant combinations considered during 

their formulations presents a challenge in interpolation as most of the AQIs are presented with 2 

sensor stations that fulfil such pollutant combinations. For the AQI used by the Madrid city council, 

it’s the three super stations that accommodate this pollutant combination though these stations 

are close to each other and would hardly represent the air quality situation of the whole of Madrid 

city. 

With the main sources of pollution in Madrid being Nitrogen Dioxide mainly due to heavy traffic, 

ozone and PM (Madrid Salud, 2016), a couple of pollutant combinations were suggested to 

support interpolation of the data from the available sensor stations. Several scenarios of pollutant 

combination have been related and analysed with some of the reviewed AQIs in getting the 

optimum scenario to serve the purpose for the study. 

Scenario 1. Considering the AQHI established by (Stieb et al., 2008). 

The AQHI defined by (Stieb et al., 2008) considers either PM10 or PM2.5. Opting to use the AQHI 

defined by PM10 facilitates 4 candidate sensor stations from which we can interpolate the data. 

Index
Sensor 

Stations

AQHI(Canada) Ozone Nitrogen Dioxide PM2.5 2

CAQI(Roadside) carbon monoxide Nitrogen Dioxide PM10 PM2.5 2

CAQI(Background) carbon monoxide Ozone Nitrogen Dioxide Sulfur Dioxide PM10 PM2.5 2

DAQI(UK Defra) Ozone Nitrogen Dioxide Sulfur Dioxide PM10 PM2.5 2

Spain Madrid carbon monoxide Ozone Nitrogen Dioxide Sulfur Dioxide PM10 3

ATMO(France) Ozone Nitrogen Dioxide Sulfur Dioxide PM10 PM2.5 2

Pollutant Combinations
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However, consideration of the AQHI that uses PM2.5 facilitates 2 candidate sensor stations from 

which data can be interpolated. The other shortcoming of this index for this study is that it was 

formulated with the concentration response coefficients derived from Canadian mortality data 

and would not represent the situation in this study area.  

Scenario 2. Considering the CAQI’s Roadside index without carbon dioxide as one of the auxiliary 

pollutants. 

Using a combination of Nitrogen Dioxide and PM10 as core pollutants with PM2.5 as an auxiliary 

pollutant facilitates 6 sensor stations from which data can be interpolated. Most of these stations 

are near the city centre of the type “Tráfico” - traffic stations. This scenario facilitates prediction 

of the central part of the city and not the city as a whole. 

Scenario 3. Considering the CAQI’s City Background index without PM10 a core pollutant and 

without PM2.5 as an auxiliary pollutant.  

This scenario facilitates 4 sensor stations to support interpolation though these stations are close 

to each other and may not give a better interpolation and representation of the entire city. 

Scenario 4. Considering the CAQI’s City Background index without PM10 as a core pollutant and 

without auxiliary pollutants.  

In this scenario where we only consider a combination of Nitrogen Dioxide and Ozone, it facilitates 

14 sensor stations from which to interpolate the data. The challenge with this scenario is that we 

would neglect both PM2.5 and PM10, which are some of the pollutants of concern in the study 

area. 

We present the analysed scenarios in Figure 2, with maps showing the available stations for 

interpolation in each scenario. 
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Figure 2: Madrid sensor stations combination scenarios 

Though the Madrid AQI shares some features with the UK DAQI, Ireland’s AQHI in terms of the 

pollutants and the number of categories considered, there is a difference in terms of reporting as 

the other two indices report daily situation rather than an hourly situation reported by the Madrid 

AQI. This renders it challenging to compare the limit values of these indices. 

The CAQI offers both hourly and daily indices but differs from the Madrid AQI in terms of the 

number of categories and in their formulation. The CAQI is defined by five categories against four 

categories of Madrid AQI and has two types of AQI, the Roadside and Background AQIs. From the 

formulation of these indices and considering the hourly limit values, the limit values of NO2 and 

PM10 for first two categories of CAQI for very low and low are the same as that of the first category 

of Madrid AQI with a difference in O3 limits. 
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The Madrid AQI lacks PM2.5 in its formulation yet this pollutant is among the pollutants of concern 

in the city and thus the need for its inclusion in an AQI formulation. 

3.1.4 Formulation of the Madrid Local Air Quality Index (MLAQI) 

From this study a new hourly AQI was suggested, the Madrid Local Air Quality Index (MLAQI) which 

was modified out of the used index in Madrid city (Madrid City Council, 2015) and uses the CAQI’s 

idea of core and auxiliary pollutants (Van Den Elshout, Léger and Heich, 2014). The MLAQI is based 

on the categories and limit values of the Madrid AQI and CAQI. The pollutants considered in this 

index are NO2, O3, PM10 and PM2.5. The core pollutant for MLAQI is NO2 and the auxiliary 

pollutants are O3, PM10 and PM2.5. With MLAQI, the index at a given station, should only be 

calculated with the existence of the core pollutant and at least one of O3 and PM10 pollutants. 

This is due to the inadequacy of PM2.5 measurements and the spatial distribution of the sensors 

for its measurements that would not represent the whole city while interpolated. 

To get a sub index, compare a pollutant concentration with the defined limit values of that 

pollutant and the index range for this AQI as shown in equation (9). 

 
𝑆𝑥 =

(𝑃𝑥 − 𝑃𝑙𝑜)

(𝑃𝑢𝑝  −  𝑃𝑙𝑜)
∗ (𝐼𝑢𝑝  −  𝐼𝑙𝑜)  +  𝐼𝑙𝑜 

 

(9) 

Where 𝑆𝑥 is the sub index, 𝑃𝑥 is the pollutant concentration measurement, 𝑃𝑙𝑜 is the lower limit 

value for the range where the pollutant measurement falls, 𝑃𝑢𝑝 is the upper limit value for the 

range where the pollutant measurement falls, 𝐼𝑢𝑝is the upper limit value of the index range and 

𝐼𝑙𝑜 is the lower index limit value for the range.  

To get the final index at a given sensor station which qualifies for index calculation with MLAQI, 

use equation (9) to calculate sub indices of the available pollutants at that station. The final index 

is the highest of those sub indices at that station. It is the index range which defines the category 

of the final index. The MLAQI is shown in Table 4 with the pollutant limit values used to calculate 

the sub indices and the colour coding for the respective categories. 

 

Table 4: Madrid Local Air Quality Index 

Index Range Index Category Core Pollutant

NO2 O3 PM10 PM2.5

0-50 Good 0 ‐ 100 0 ‐ 90 0-50 0-30

51-100 Acceptable 101 ‐ 200 91 ‐ 180 51-90 31-55

101-150 Poor 201 ‐ 300 181 – 240 91-150 56-90

>150 Very Poor > 300 > 240 >150 >90

Auxiliary Pollutants
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The strengths of this index are that it considers the local situation of Madrid city, and it considers 

the composition of the available sensor network and the pollutants whose concentrations can be 

measured. With MLAQI, the sensor network facilitates 22 out of 24 sensor stations from which we 

can acquire data for interpolation to represent the air quality situation in Madrid. The Figure 3 

shows a map extract of the spatial distribution of the data with the defined and adopted index for 

the study. 

 

Figure 3: The spatial distribution of sensor stations with MLAQI 

3.1.5 Source of the routing service 

With this study using the ESRI platform for implementation and the limitations with the ESRI’s 

routing service that limits the number of intersected streets with polygon barriers in routing, there 

was need for an alternative route service. We obtained this route service from the Institute of 

New Imaging Technologies (INIT), Universitat Jaume I (UJI) at 

https://geotec.init.uji.es/arcgis/rest/services/routing/SpainNetwork/NAServer/ 

3.2 Implementation 

3.2.1 Implementation workflow 

In using the described data to implement the study, we designed a workflow to guide the whole 

implementation procedure. This involved data acquisition from Madrid’s open data portal at 

https://geotec.init.uji.es/arcgis/rest/services/routing/SpainNetwork/NAServer/
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https://datos.madrid.es/portal/site/egob/, incorporation of the MLAQI, calculation of sub indices 

and the final indices, location integration and feature class generation, Exploratory Spatial Data 

Analysis (ESDA), structural modelling, spatial interpolation, raster-vector conversion, map 

processing, publishing a Web Feature Service (WFS) and creating routing web application. These 

steps support each other to reach our final goal. The followed workflow is graphically represented 

in Figure 4. 

 

Figure 4: Implementation workflow 

 

https://datos.madrid.es/portal/site/egob/


26 
 

3.2.2 Data handling and implementation environment 

For data retrieval, index calculation, ESDA and structural modelling, we identified a big challenge 

with manual data retrieval, handling and index calculation and a need for automation. This led us 

to creating several python modules for handling this challenge and automating the process. With 

the implementation in Python 2.7.12 under the ESRI ArcGIS ArcMap environment, having a 

limitation of requiring an active ArcMap sign in using the ArcGIS online account for publishing a 

WFS service. We opted for the implementation environment in Python 3.6.2 under ArcGIS Pro 

which integrates with the GIS python package for handling data and administration of ArcGIS 

online and ArcGIS for server. 

3.2.3 Data acquisition, aggregation, index calculation and feature class generation 

For each monitoring station, we grouped the sensors, and retrieved only the required pollutant 

data at every station. The data aggregation module retrieves real time and historical data, checks 

the data and extracts only the pollutants and their concentration values which are of interest in 

the study. The real time data uses the time handler module that returns the positions in the file at 

which the data should be queried. The time handler and data aggregation python modules are 

attached in appendices 7.1 and 7.2 respectively. 

From the description of MLAQI, the index we have applied in the study, several considerations are 

needed for the index calculation. The consideration of core pollutant without which an index is 

not calculated for a given station and the need for at least one of the auxiliary pollutants. The 

index calculation module incorporates these conditions required for the index calculation at every 

monitoring station, checks pollutant concentrations against their limits, calculates the sub indices 

for only stations that meet the conditions and determines the final index from the highest sub 

index. The python code for the module is attached in appendix 7.3. 

The feature class generator module joins the monitoring stations description and location 

information with the calculated index and then creates a point feature class for the support of 

processes like ESDA, structural data analysis and interpolation. The script for this process is 

contained in appendix 7.4. 

3.2.4 Exploratory Spatial Data Analysis 

Before the choice of an interpolation method for this study and interpolation, we have explored 

our data to check for any errors, distribution and the existence of any outliers. Since the output of 

the interpolation was intended to serve a continuous interpolation process all the year around for 



27 
 

the real time data published by the Madrid city council, we decided to test 2017 historical data for 

diurnal and seasonal consistency in its behaviour. In the choice of time ranges for diurnal 

consistency analysis, we selected several hours of 7:00am, 1pm and 7pm for a specific day of 12th 

or 13th for the several months. For seasonal consistency analysis, we chose January, April, July and 

October, which are the middle months of every season. We explored the data using the regional 

histogram and Voronoi polygons functionalities of ArcGIS. 

3.2.5 IDW structural modelling 

To analyse the data structure for modelling with IDW, we used 6 sets of different model 

parameters to analyse our 12 datasets. For each dataset, we first used the default parameters for 

modelling and recorded the model parameters together with their prediction errors. To minimise 

the errors in relation to equations (6) and (5), we then repeated the procedure with the other 5 

sets of model parameters. 

3.2.6 Variogram structural modelling 

To study the structure of our data for Kriging, we employed the use of the variogram and tried 

fitting two different models of spherical and exponential to get an optimum one to better 

represent our phenomenon. The exponential model appeared to fit better our phenomenon than 

the spherical model and was therefore used for further structural modelling of our datasets. 

With the exponential model, we tried two options for all the datasets for an optimum 

representation. One option constituted using same model parameters for all the datasets while 

the other one had different model parameters for the different datasets. 

With the first option using same model parameters for all the datasets except the sill, we used a 

nugget of 0, lag size of 2000 which was close to the Observed Mean Distance of 2417, 6 as the 

number of lags, 6000 as the range, 8 sectors for the sector type, 2 for minimum neighbours in a 

sector and 5 as the maximum neighbours in a sector. From the analysis, we recorded the values 

of Mean prediction error, Root Mean Square prediction error and Root Mean Square Standardised 

prediction error.  

With the second option, we repeated the variograpy process with varying model parameters to 

obtain results with mean prediction error tending to 0 and Root Mean Square Standardised 

prediction error tending to 1. For this option, we recorded the major range, lag size, number of 

lags, number of neighbours, sector type and the parameters recorded in the first option. 
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3.2.7 Spatial interpolation of the data 

With the greatly varying partial sill values identified during variogram modelling for Ordinary 

Kriging, which would not support the generalisation of this parameter for a continuous 

interpolation process for our study, we identified IDW method for application in our Madrid 

scenario. Using the model parameters obtained from structural modelling with IDW, we 

interpolated all the 12 datasets to offer the outputs of this operation as inputs for the raster vector 

conversion process. 

3.2.8 Raster vector conversion 

The input to this process is the generated geostatistical layer from the IDW interpolation. The 

process uses the GaLayerToContour tool using the filled contour type with the class breaks of the 

MLAQI index to generate an index categorised polygon feature class. The extent environment 

settings for this process are set using the extent of the Madrid boundary polygon feature class. 

This is used to extend the processing environment outside the location of the sensor locations’ 

point data to generate representation for the entire area of Madrid. Using the clip analysis tool, 

the generated polygon feature class is now clipped with the Madrid boundary polygon feature 

class to keep it within the shape extent of the study area. The output from the clipping is projected 

to a WGS1984 Web Mercator Auxiliary Sphere coordinate system to support the drawing of the 

features on the web. Using the select analysis tool, the projected polygon feature class is 

separated into 4 polygon feature classes according to the MLAQI index. 

3.2.9 Map processing service 

This process is important to prepare the map elements for publishing. Feature classes in a 

geodatabase do not store symbology with them, thus the need for this step to apply the polygon 

outlines, colour and transparency symbology properties before publishing. This process mainly 

uses the mapping module of ArcPy. The process checks the layer’s list in the project’s map 

document for existence of any layers and removes them. It then adds the created index feature 

classes to the map. It then uses the apply symbology from layer tool to apply the symbology to the 

layers in the map and saves the map document. The map processing module is attached in 

appendix 7.5. 

3.2.10 Publishing service 

The publishing service involves steps of creating a web layer service definition draft (SDDraft), 

staging the service definition, connecting to the server, adding or updating the service difinition, 
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publishing the service on the server and setting sharing options on the server. The service name, 

summary and tags variables are used to describe the service once it is published. The Create Web 

Layer SDDraft mapping function takes in the parameters of the prepared map document, the 

SDDraft path, the service name, the hosting destination, tags and summary of the service to create 

the SDDraft file. The SDDraft is staged with the StageService_server function to create the Service 

Definition file (SD). Using the GIS python package, the module then connects to the server with 

the publisher or administrator credentials to add a new service definition or update the existing 

one on the server. The module then publishes the service definition on the server setting 

overwriting and sharing options. The publishing module is attached in appendix 7.6. 

3.2.11 Deployment of an hourly services execution 

To achieve the hourly publishing service, we used Microsoft Window’s Task Scheduler application. 

The steps required for the Task Scheduler process were creating a process name, creating a trigger 

and creating an action to be performed at that trigger. The trigger includes the time, the process 

should run and after what interval the process should repeat. We created an execution task to run 

the python execution file with an argument of the deployment service python file. This python file 

contains the required python modules for processing all the steps until the publishing is executed. 

3.2.12 Web application development 

With the created WFS service and routing service as data sources, we created a web application 

using the ArcGIS API for JavaScript technology. The application uses the JavaScript references for 

CSS and JavaScript from ESRI’s Content Delivery Network (CDN). The other component for the 

application is the HTML5. With the ArcGIS API for JavaScript built on top of the Dojo framework, 

we used some of its controls and layout elements for the application. The involved steps to create 

the application were creating the HTML5 document with basic HTML tags of html, head, meta, 

tittle, body. We then added CSS styles for the used layout elements. The main part of the 

application is the script part that queries and adds the data to the application and controls the 

process and the behaviour of the application. 

With the ArcGIS JavaScript API and Dojo using Asynchronous Module Definition (AMD), this allows 

only calling appropriate modules for the application with Dojo’s require function. This “require” 

function takes two arguments: one for the required modules array and the other one, a function 

for returning those loaded modules. We created a map containing a basemap and the route layer, 

the map view containing the map, data extent and the spatial reference of the data. We then 

added all the WFS service layers using the feature layer module. 
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The application queries the poor and very poor feature layers from the WFS service in a JSON 

format using the Query module, checks if those layers contain features in them and adds such 

features to the route parameters as polygon barriers. This is to check for empty layers which when 

added to the route parameters block routing execution in the application. These polygon barriers 

are used to limit the user navigation in these high pollution areas. A route generated with a 

polygon barrier between the locations of interest will minimise the travelling cost parameter and 

avoid these areas with high pollution index categories. 

To add stops on the map, the user clicks the Add Stop button which activates the adding stop 

functionality. The user then adds stops on the map view by clicking on the desired locations on 

the view. 

The route task uses the route layer and the route parameters of stops, polygon barriers, 

impedance attribute name and spatial reference to determine the route. To obtain and display a 

route between at least points of interest selected on the map, the user clicks the solve route 

button which determines and displays the shortest route through those points while minimising 

polluted area. The used travel impedance for the study is kilometres thus the resulting shortest 

route. 

We enhance the user’s interaction with the application by providing the user with more 

functionalities with the application. These include the clear stops and route button to enable the 

user clear the route result and perform another route task, the search bar offering the user with 

functionality to search for a location of interest, a geolocation button to enable the user locate 

their position on the map, the zoom and home buttons for map navigation, the legend for 

identifying index categories and the basemap toggle tool to enable the user toggle the base the 

streets and hybrid basemaps. 

4.0 Results and discussion 

4.1 Statistics from ESDA 

The following are the results from ESDA for all the datasets of the study. 

January data 

For the three selected hours on 12th January, data from 22 out of 24 sensor stations met the 

requirements for the MLAQI calculation and their indices calculated. Using the regional histogram, 

obtained statistics for the calculated indices. 
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For the 7am dataset, we obtained a minimum index value of 4 at Juan Carlos I station and a 

maximum index value of 73 at Plaza Fernández Ladreda station. The index distribution was slightly 

skewed to the right with a mean of 32 slightly greater than a median of 30. There was a deviation 

of 15 from the mean value. The 1st quartile indicated that 25% of the stations had indices less than 

an index value of 23 and the 3rd quartile indicated that 75% of the stations had indices less than 

an index value of 39. With Plaza Fernández Ladreda station having the maximum index value of 

73 that did not pass the 1.5IQR (1.5 inter quartile rule) test for the upper outlier, this station was 

further investigated and this value was due to the high NO2 value of 145 recorded at that time and 

there were other readings close to 130 after 4 hours. 

For the 1pm dataset, we obtained a minimum index value of 12 at Juan Carlos I station and a 

maximum index value of 61 at Cuatro Caminos station. The index distribution was slightly skewed 

to the left with the mean of 37 slightly less than the median of 39. There was a deviation of 13 

from the mean value. The 1st quartile indicated that 25% of the stations had indices less than 28 

while the 3rd quartile indicated that 75% of the stations had indices less than 47. There was no 

identified outlier in this dataset. 

For the 7pm dataset, the obtained minimum index value of 14 was at Juan Carlos I station and the 

maximum index value of 37 was at Escuelas Aguirre station. We obtained a normal index 

distribution with the same mean and median of 28. There was a deviation of 5 from the mean 

value. About 25% of the stations had indices less than 26 and 75% of the stations had indices less 

than 31. With Juan Carlos I station having the minimum value of 14 that appeared as a lower 

outlier, the station was further investigated and found the contributing pollutants of NO2 and O3 

for index calculation had stable readings compared with their neighbouring readings on that day. 

Generally, the analysis with Voronoi polygons did not indicate any presence of trends in the 

datasets for January. The index values for 7am and 7pm datasets spread with in the first two 

categories of the MLAQI while the 7pm dataset only stayed in the first category of the MLAQI. 

April 

For the case of April, data was queried at the same time intervals on the 13th day of the month. 

Exactly 22 out of 24 stations passed the MLAQI criteria for index calculation in all the three cases 

and their indices calculated. 

The 7am dataset produced a minimum index value of 15 at El Pardo station and a maximum index 

value of 59 at Plaza Fernández Ladreda station. This dataset showed a normal index distribution 

with the same mean and median of 33. There was a deviation of 9 from the mean value. The 1st 
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quartile indicated that 25% of the station had indices less than 28 while the third quartile indicated 

that 75% of the stations had indices less than 38. The maximum index value of 59 was further 

investigated and the contributing pollutant NO2 had a value of 117 that was more than 40 

comparing to its neighbouring values. 

The 1pm dataset showed a minimum index value of 10 at Sanchinarro station and a maximum 

index value of 70 at El Pardo station. The index distribution was skewed to the left with a mean of 

48 and a median of 58. There was a deviation of 19 from the mean value. Around 25% of the 

stations had index values less than 27 while 75% of the stations had index values less than 63.  

The 7pm dataset showed a minimum index value of 11 at Sanchinarro station and a maximum 

index value of 74 at Casa de Campo station. The index distribution was skewed to the left with a 

mean of 49 and a median of 58. There was a deviation of 19 from the mean value. 25% of the 

stations had index values less than 35 while 75% of the stations had index values less than 63. 

Generally, there was no indication of trends in the datasets for April. All the three data sets are 

spread in the first two categories of the MLAQI. 

July data 

For the July datasets, the data was obtained for the 13th day of the month. The 7am dataset had 

22 out of 24 stations that qualified for the index calculation whereas the 1pm and 7pm datasets 

had 21 out of 24 stations that qualified for the index calculation. 

The 7am dataset had a minimum index value of 15 at Parque del Retiro station and a maximum 

index value of 71 at Cuatro Caminos station. The index had a normal distribution with the same 

mean and median of 37. There was a deviation of 12 from the mean value. The statistics showed 

that 25% of the stations had index values less than 29 while 75% of the stations had index values 

less than 44. We further investigated the station with the maximum index value and found that 

the contributing pollutant PM10 had a reading of 67 that was stable with its neighbouring 

readings. 

With the 1pm dataset, the minimum index value was 30 at Méndez Álvaro station and the 

maximum index value was 158 at Urbanización Embajada station. The index had a slight skewed 

distribution to the right with a mean of 57 and a median value of 52. The deviation from the mean 

was 26. The statistics showed that 25% of the stations had index values less than 45 while 75% of 

the stations had index values less than 61. We tested the maximum index value with the 1.5IQR 

rule and it indicated to be an upper outlier. The Urbanización Embajada station with this maximum 

index value was further investigated and the contributing pollutant of PM10 had a reading of 168 
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that was more than 80 compared with its neighbouring values. We also noted that this index value 

fell in the very poor category of MLAQI. 

With the 7pm dataset, the minimum index value was 31 at Barrio del Pilar station and the 

maximum index value was 102 at Sanchinarro station. The index distribution was skewed to the 

right with a mean value of 57 and a median value of 47. There was a deviation of 22 from the mean 

value. 25% of the stations had index values less than 41 while 75% of the stations had index values 

less than 65. We further investigated Sanchinarro station and the contributing pollutant PM10 had 

a reading of 92, which was stable compared with its neighbouring readings. 

With the July datasets, there appeared index values that were higher than the rest of the values. 

These were investigated further to have a better understanding of their distribution. Apart from 

the maximum index value of the 1pm dataset, the other index values in this dataset are spread 

out within the first two categories of the MLAQI like the 7am data set while the 7pm dataset 

slightly extends to the third category of the MLAQI. There were no noticeable tendencies of trend 

in the datasets. 

October data 

With the datasets obtained for October 12th, 22 out of 24 stations for all the three datasets 

qualified for the MLAQI criteria for index calculation and their index values calculated. 

With the 7am dataset, the minimum index value was 22 at Ensanche de Vallecas station while the 

maximum value was 47 at Plaza Fernández Ladreda station. The index distribution was normal 

with a mean of 34 and a median of 33. There was a deviation of 7 from the mean value. The 

statistics show that 25% of the stations had index values less than 27 while 75% of the stations 

had index values less than 38. There were no noticeable outliers in this dataset. 

For the 1pm dataset, the minimum was 26 at Méndez Álvaro station while the maximum was 52 

at Casa de Campo station. The index distribution was normal with mean value of 40 and median 

value of 39. There was a deviation of 7 from the mean value. The statistics revealed that 25% of 

the stations had index values less than 37 while 75% of the stations had index values less than 46. 

There were no noticeable outliers in the dataset. 

For the 7pm dataset, the minimum value was 29 at Plaza Castilla station and the maximum value 

93 at Escuelas Aguirre station. The index distribution is skewed to the right with a mean value of 

56 and a median value of 49. There was a deviation of 19 from the mean value. Around 25% of the 

stations had index values less than 40 while 75% of the stations had index values less than 66. 

There were no noticeable outliers in the dataset. 
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Generally, there were no outlier indications in the October datasets. The 7am dataset is spread 

only in the first category of the MLAQI while the 1pm and 7pm datasets spread out in the first and 

second categories of MLAQI. There were no trends noticed in the datasets. 

4.1.1 General nature of the data 

Generally, most of the data from all the months spread in the first two categories of the MLAQI. 

The stations whose index values appeared to be outliers were further investigated and the values 

of the contributing pollutants to index calculation compared with their neighbouring values. We 

identified the index values that appeared to be outliers for January and April were as a result of 

NO2 while those that appeared to be outliers for July were as a result of PM10. It should however 

be noted that Madrid city normally gets high pollution episode days when pollutant 

concentrations reach above 200 or 300 especially with NO2. In 2017, there were NO2 episodes in 

March, September, October, November and December. We captured part of the October episode 

on 12th October with NO2 reading for Escuelas Aguirre station as 185 at 7pm. The next reading at 

8pm was 259 and the reading at 9pm was 228. No trend was detected from the datasets. The 

statistics from the datasets are summarised in Table 5. 

 

Table 5: Summary statistics of Exploratory Spatial Data Analysis 

4.2 Statistics from IDW structural modelling 

Table 6 shows a pair extract of model parameters together with their errors that produced the 

lowest magnitude Mean and Root Mean Square prediction errors. From Table 6, the model 

parameters of power 2, search radius of 6000 for both the major and minor semi-axes, minimum 

neighbours 5, maximum neighbours 10 and sector type of 8 sectors, produced the highest 

frequency of 67% in obtaining the lowest magnitude Root Mean Square prediction error. With this 

Month(2017) Time Stations Minimum Maximum Mean
Standard 

Deviation
1st 

Quartile
Median

3rd 

Quartile

MLAQI 

Categories

Lower 

Outlier

Upper 

Outlier

January 12th

7am 22 4 73 32 15 23 30 39 2 -1 63

1pm 22 12 61 37 13 28 39 47 2 -0.5 75.5

7pm 22 14 37 28 5 26 28 31 1 18.5 38.5

April 13th

7am 22 15 59 33 9 28 33 38 2 13 53

1pm 22 10 70 48 19 27 58 63 2 -27 117

7pm 22 11 74 49 19 35 58 63 2 -7 105

July 13th

7am 22 15 71 37 12 29 37 44 2 6.5 66.5

1pm 21 30 158 57 26 45 52 61 4 21 85

7pm 21 31 102 57 22 41 47 65 3 5 101

Oct 12th

7am 22 22 47 34 7 27 33 38 1 10.5 54.5

1pm 22 26 52 40 7 37 39 46 2 23.5 59.5

7pm 22 29 93 56 19 40 49 66 2 1 105
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consistency in producing lowest prediction errors, we selected these model parameters for further 

interpolation with IDW. 

 

Table 6: An extract of model parameters and their errors with IDW structural modelling 

4.3 Statistics from variogram structural modelling 

The results from structural modelling with same model parameters except the sill are presented 

in Table 7. 

 

Table 7: Error summary from variogram using same model parameters 

Month 

(2017)
Time Power

Search 

Radius

Minimum 

Neighbours

Maximum 

Neighbours
Sector Type Minimum Maximum Average

Mean 

Prediction Error

Root Mean Square 

Prediction Error

January 12th

7am 2 6000 5 10 8 Sectors 4 73 32 1.0564 16.9887

2 3000 3 10 8 Sectors 4 73 32 0.9605 17.1555

1pm 2 6000 5 10 8 Sectors 12 61 37 2.1592 15.0591

2 2000 2 6 8 Sectors 12 61 37 2.0599 15.4057

7pm 2 3000 3 10 8 Sectors 14 37 28 0.7371 6.0215

2 2000 2 6 8 Sectors 14 37 28 0.788 6.0126

April 13th

7am 2 3000 3 10 8 Sectors 15 59 33 1.3371 9.5417

2 2000 2 6 8 Sectors 15 59 33 1.2907 9.5561

1pm 2 6000 5 10 8 Sectors 10 70 48 -2.1524 19.8638

2 4500 2 10 4 Sectors 10 70 48 -1.6527 20.5964

7pm 2 6000 5 10 8 Sectors 11 74 49 -2.3625 18.5848

2 4500 2 10 4 Sectors 11 74 49 -1.8538 19.7176

July 13th

7am 2 6000 5 10 8 Sectors 15 71 37 0.873 13.2113

2 3000 3 10 8 Sectors 15 71 37 0.7485 13.3889

1pm 2 6000 5 10 8 Sectors 30 158 57 -1.4705 28.283

2 4500 2 10 4 Sectors 30 158 57 -0.6452 29.2997

7pm 2 6000 5 10 8 Sectors 31 102 57 -0.5447 24.0025

2 2000 2 6 8 Sectors 31 102 57 0.081 24.9419

Oct 12th

7am 2 6000 5 10 4 Sectors at 45o 22 47 34 -0.1571 5.7084

2 4500 2 10 4 Sectors 22 47 34 -0.0629 5.9538

1pm 2 6000 5 10 8 Sectors 26 52 40 -1.3401 7.1394

2 2000 2 6 8 Sectors 26 52 40 -1.2768 7.1233

7pm 2 6000 5 10 8 Sectors 29 93 56 1.3273 22.7593

2 3000 3 10 8 Sectors 29 93 56 0.9549 23.1866

Month(2017) Time
Partial 

sil l
Minimum Maximum Average

Mean Prediction 

Error

Root Mean Square 

Prediction Error

Root Mean Square 

Standardized Prediction Error

January 12th

7am 214.72 4 73 32 0.0114 16.6543 1.2744

1pm 192.76 12 61 37 1.2719 15.2679 1.2142

7pm 31.566 14 37 28 0.33 5.8922 1.2378

April 13th

7am 79.58 15 59 33 0.4296 9.1827 1.1379

1pm 415.98 10 70 48 -1.2642 19.0342 0.9888

7pm 392.55 11 74 49 -1.2733 18.1727 0.9648

July 13th

7am 168.43 15 71 37 0.3989 13.3432 1.2291

1pm 693.41 30 158 57 -1.1333 26.7615 1.125

7pm 510.53 31 102 57 0.1917 24.536 1.1824

Oct 12th

7am 53.86 22 47 34 -0.2058 6.4456 0.905

1pm 53.81 26 52 40 -0.6958 6.791 0.9838

7pm 421.47 29 93 56 0.4155 23.8407 1.4116
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From the results in Table 7, the magnitude of the mean prediction error for the datasets which 

had very high or very low indices in them is higher and their Root Mean Square prediction error 

values are higher compared to the other datasets. From equations (6) and (5), the Mean prediction 

error is expected to be close to 0 and Root Mean Squared Standardised prediction error close to 

1 but with these results not tending very close to those values, we carried out the second option 

and compared the results of both options. 

We present the obtained results from the second option using varying model in Table 8. 

 

Table 8: Error summary from variogram using varying model parameters 

From Table 8, the values for the mean prediction error and the Root Mean Squared Standardised 

prediction error tended closer to 0 and 1, respectively, compared with the first option results. Root 

Mean Square prediction error did not greatly differ from that of the first option. Like in the first 

option, the datasets with very high or very low index values exhibited the same behaviour.  

Though the results from both options were closely related, there was a challenge of greatly varying 

partial sill values for the first option with the same model parameters. This made it challenging to 

support an hourly continuous representation of our index for different diurnal times and seasons. 

4.4 Categorised surfaces from IDW interpolation 

We categorised the output from IDW interpolation of all datasets according to the definition of 

MLAQI. We present the output from this process in Figure 5. 

Month(2017) Time
Major 

Range

Partial 

Sil l
Lag size

Number 

of lags

Minimum 

Neighbours

Maximum 

Neighbours

Sector 

Type

Mini

mum

Maxi

mum
Average

Mean 

Prediction 

Error

Root Mean 

Square 

Prediction Error

Root Mean Square 

Standardized 

Prediction Error

January 12th

7am 5850 244.98 2650 8 2 5 8 sectors 4 73 32 0.0099 16.65099 1.1843

1pm 2500 185.39 500 6 2 5 8 sectors 12 61 37 0.7039 15.0139 1.064

7pm 2500 28.77 600 6 2 5 8 sectors 14 37 28 0.0446 5.7011 1.0515

April 13th

7am 4000 81.87 1000 6 2 5 8 sectors 15 59 33 0.0632 9.3366 1.0453

1pm 2700 352.23 900 6 2 5 8 sectors 10 70 48 -0.9333 20.1774 1.0354

7pm 4000 315.48 800 6 2 5 8 sectors 11 74 49 -1.08464 18.7351 1.04342

July 13th

7am 3900 192.93 800 8 2 5 8 sectors 15 71 37 0.0872 13.0541 1.0022

1pm 5500 655.36 1650 8 2 5 8 sectors 30 158 57 -1.1338 26.6378 1.1282

7pm 4000 470.71 1650 8 2 5 8 sectors 31 102 57 0.0104 24.4779 1.1326

Oct 12th

7am 9900 51.28 1650 6 2 5 4 sectors 22 47 34 0.0044 6.0834 1.0089

1pm 3900 45.44 650 6 2 5 8 sectors 26 52 40 -0.4683 6.9245 1.0173

7pm 4000 479.47 1000 6 2 5 8 sectors 29 93 56 -0.0054 23.1574 1.145
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Figure 5: Categorised IDW interpolation output according to MLAQI 

From Figure 5, the categorised surfaces mostly use the first two categories of MLAQI. The datasets 

for 7am data for all the months are mostly spread in the good category of MLAQI while those of 

7pm tend to spread in the good and acceptable categories. The data from January is mostly 

depicted by the good category of MLAQI. The data from the months of April and July are more 

represented by the acceptable category for the afternoon hours. These results agree with the 

findings obtained during ESDA. 
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4.5 The published Web Feature Service (WFS) 

The output from the publishing operation is a WFS service. This service resides under the ArcGIS 

REST Services Directory in the folder specified during publishing. The main features of the created 

service are the creation of a Service ItemId (b813a7936d194bc1bfc078b6c91ba29a) that can be 

used for its querying, maintaining the layer organisation, contains the Spatial Reference ID (SRID) 

for the data, gives the supporting query formats of both JSON and geoJSON and also maintains 

the symbology properties which are contained in the drawing info parameter. This service is 

shared publicly and can be reached using the ItemId or the REST service URL at 

https://services1.arcgis.com/k8WRSCmxGgCwZufI/arcgis/rest/services/madridPollutionSurface/

FeatureServer. The service definition for this service is overwritten every hour and the service then 

updated every hour from this service definition. 

4.6 Resulting routing application  

The developed application is hosted at http://pixel.uji.es/pollution/. This application uses the 

hourly generated features from the feature service URL, which it continuously refreshes to fetch 

any updates and apply them to the map. A screenshot of the application is shown in Figure 6.  

 

Figure 6: A screenshot of the developed application 

To protect the user’s health against polluted area of poor and very poor categories, the application 

offers the user with functionality to solve a route for navigation through Madrid road network 

which minimises these polluted areas. A screenshot of such a rout is shown in Figure 7. 

https://services1.arcgis.com/k8WRSCmxGgCwZufI/arcgis/rest/services/madridPollutionSurface/FeatureServer
https://services1.arcgis.com/k8WRSCmxGgCwZufI/arcgis/rest/services/madridPollutionSurface/FeatureServer
http://pixel.uji.es/pollution/
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Figure 7: A route with minimised polluted areas 

5.0 Conclusion and recommendations 

The Madrid pollution sensor station network infrastructure provides a platform to help in building 

services aimed at helping the public be aware of the air quality around them.  

Using this network’s data and modifying the city’s air quality index for better representation of 

the pollution phenomenon in the city, the study has developed a hourly pollution surface service 

to help the public be aware of the air quality around them and be in position to make informed 

decisions while planning their hourly activities. 

The study also demonstrated that the created service could be used as a data source by other 

applications to create applications aimed at public awareness of the air pollution around them. 

During the implementation of the study, each process appeared to be in position to execute 

standalone operations for other purposes of mapping and data analysis like automating feature 

class generation, mapping and publishing automations. 

From this study, we made an observation that data will not always be in a ready geospatial format 

for individual studies, but geospatial technologies are enablers to extract and format such data to 

serve the purpose of such studies. 

With the challenge of varying sill values during the variogram modelling, further research could be 

performed with more spatio-temporal analysis of hourly behaviour of the pollution situation in 

Madrid. This would help us have a better understanding about episode hours in Madrid and 
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whether hourly varying interpolation model parameters could be applicable to achieve better 

interpolation. 

More studies could incorporate mortality or hospital admissions data in the air quality index and 

results compared. 

The interpolation could be supplemented with other parameters like elevation of sensor stations 

to test the variability of pollutant concentration measurements over different elevation. 

A routing application could be extended into a mobile application with detailed study of how 

people would interact with such an application. 
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7.0 Appendices 

7.1 The time handler module 

# -*- coding: utf-8 -*- 

 

# The time Handler Module  

 

# checking to provide index positions of values at the current time(tm) 

 

def currHour(tm): 

    # conditions for 24 hours time variation 

    if tm >= 0 and tm <= 24: 

        if tm >= 0.34 and tm < 1.34: 

            # dVI data value index, vTI index of the data validity test 

            dVI, vTI = 55, 56 

        elif tm >= 1.34 and tm < 2.34: 

            dVI, vTI = 9, 10 

        elif tm >= 2.34 and tm < 3.34: 

            dVI, vTI = 11, 12 

        elif tm >= 3.34 and tm < 4.34: 

            dVI, vTI = 13, 14 

        elif tm >= 4.34 and tm < 5.34: 

            dVI, vTI = 15, 16 

        elif tm >= 5.34 and tm < 6.34: 

            dVI, vTI = 17, 18 

        elif tm >= 6.34 and tm < 7.34: 

            dVI, vTI = 19, 20 

        elif tm >= 7.34 and tm < 8.34: 

            dVI, vTI = 21, 22 

        elif tm >= 8.34 and tm < 9.34: 

            dVI, vTI = 23, 24 

        elif tm >= 9.34 and tm < 10.34: 

            dVI, vTI = 25, 26 

        elif tm >= 10.34 and tm < 11.34: 

            dVI, vTI = 27, 28 

        elif tm >= 11.34 and tm < 12.34: 

            dVI, vTI = 29, 30 

        elif tm >= 12.34 and tm < 13.34: 

            dVI, vTI = 31, 32 

        elif tm >= 13.34 and tm < 14.34: 

            dVI, vTI = 33, 34 

        elif tm >= 14.34 and tm < 15.34: 

            dVI, vTI = 35, 36 

        elif tm >= 15.34 and tm < 16.34: 

            dVI, vTI = 37, 38 

        elif tm >= 16.34 and tm < 17.34: 

            dVI, vTI = 39, 40 

        elif tm >= 17.34 and tm < 18.34: 

            dVI, vTI = 41, 42 

        elif tm >= 18.34 and tm < 19.34: 

            dVI, vTI = 43, 44 

        elif tm >= 19.34 and tm < 20.34: 

            dVI, vTI = 45, 46 

        elif tm >= 20.34 and tm < 21.34: 

            dVI, vTI = 47, 48 

        elif tm >= 21.34 and tm < 22.34: 

            dVI, vTI = 49, 50 

        elif tm >= 22.34 and tm < 23.34: 

            dVI, vTI = 51, 52 

        else: 

            dVI, vTI = 53, 54 

        tIndixValues = [dVI, vTI] 

    return tIndixValues  
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7.2 Data aggregator module 

# Data aggregation module 
 

# -*- coding: utf-8 -*- 

import time 

import timeFcDec 

 

 

def aggrData(a): 

    # storing all data into a single list to be returned 

    storePollData = [] 

    # using the local time 

    currTimeLocal = time.localtime() 

    decTime = (currTimeLocal[3] + (float(currTimeLocal[4])/60)) 

    dataIndexHolder = timeFcDec.currHour(decTime) 

    # extracting lines from the text file 

    for lineData in a: 

        if lineData[dataIndexHolder[1]] == 'V': 

            processPart = (lineData[0]+lineData[1]+lineData[2]+" 

"+lineData[3]+" " + 

                                    lineData[4]+" "+lineData[5]+" " + 

lineData[6]+" " + 

                                    lineData[7]+" "+lineData[8]+" 

"+lineData[dataIndexHolder[0]]) 

            storePollData.append(processPart) 

 

    # testing the station and component pollutants 

    stnNosRef = ['004', '008', '011', '016', '017', '018', '024', '027', 

'035', 

                        '036', '038', '039', '040', '047', '048', '049', 

'050', 

                        '054', '055', '056', '057', '058', '059', '060'] 

    pollNos = ['08', '09', '10', '14'] 

    # storing all component pollutant data into respective stations 

    stnNos = ['004', '008', '011', '016', '017', '018', '024', '027', 

'035', '036', 

                            '038', '039', '040', '047', '048', '049', 

'050', '054', 

                            '055', '056', '057', '058', '059', '060'] 

    # the length of the entire list 

    dataLength = len(storePollData) 

    i = 0 

    for i in range(dataLength): 

        m = storePollData[i].split() 

        if m[0][-3:] in stnNosRef and m[1] in pollNos: 

            r = stnNosRef.index(m[0][-3:]) 

            if r >= 0: 

                stnNos[r] += (" "+m[1]+" "+m[7]) 

    return stnNos 

    pass 
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7.3 The sub index and final index calculation module  

# Index calculation module 

 

# Ilo - Index lower limit, Iup - Index upper limit 

# Plo - pollutant lower limit, Pup - pollutant upper limit 

# Px -  pollutant value whose index we want, Pco - pollutant code 

 

# indexLimits = [0, 50, 51, 100, 101, 150, >150] 

 

# function for determining nitrogen params for index 

def nitLim(Px): 
    # nitrogenLimitValues = [0, 100, 101, 200, 201, 300] 
    # conditions for Pco 08(Nitrogen dioxide) 
    if Px >= 0 and Px <= 100: 
        Ilo, Iup, Plo, Pup = 0, 50, 0, 100 
    elif Px > 100 and Px <= 200: 
        Ilo, Iup, Plo, Pup = 51, 100, 101, 200 
    elif Px > 200 and Px <= 300: 
        Ilo, Iup, Plo, Pup = 101, 150, 201, 300 
    else: 
        # arbitrary addition of 100 to the pollutant reading to allow index calc 
        # arbitrary Iup of 200 for index calc 
        Ilo, Iup, Plo, Pup = 151, 200, 301, Px+100 
    sx = ((Px - Plo)/(Pup - Plo))*(Iup - Ilo) + Ilo 
    return sx 
 

# function for determining ozone params for index 
def ozoLim(Px): 
    # ozoneLimitValues = [0, 90, 91, 180, 181, 240] 
    # conditions for Pco 14(Ozone) 
    if Px >= 0 and Px <= 90: 
        Ilo, Iup, Plo, Pup = 0, 50, 0, 90 
    elif Px > 90 and Px <= 180: 
        Ilo, Iup, Plo, Pup = 51, 100, 91, 180 
    elif Px > 180 and Px <= 240: 
        Ilo, Iup, Plo, Pup = 101, 150, 181, 240 
    else: 
        # arbitrary addition of 100 to the pollutant reading to allow index calc 
        # arbitrary Iup of 200 for index calc 
        Ilo, Iup, Plo, Pup = 151, 200, 241, Px+100 
    sx = ((Px - Plo)/(Pup - Plo))*(Iup - Ilo) + Ilo 
    return sx 
 

# function for determining pm10 params for index 
def ptnLim(Px): 
    # pmtenLimitValues = [0, 50, 51, 90, 91, 150] 
    # conditions for Pco 10(PM10) 
    if Px >= 0 and Px <= 50: 
        Ilo, Iup, Plo, Pup = 0, 50, 0, 50 
    elif Px > 50 and Px <= 90: 
        Ilo, Iup, Plo, Pup = 51, 100, 51, 90 
    elif Px > 90 and Px <= 150: 
        Ilo, Iup, Plo, Pup = 101, 150, 91, 150 
    else: 
        # arbitrary addition of 100 to the pollutant reading to allow index calc 
        # arbitrary Iup of 200 for index calc 
        Ilo, Iup, Plo, Pup = 151, 200, 151, Px+100 
    sx = ((Px - Plo)/(Pup - Plo))*(Iup - Ilo) + Ilo 
    return sx 
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# function for determining pm2.5 params for index 

def ptfLim(Px): 

    # ptwodotfiveLimitValues = [0, 30, 31, 55, 56, 90] 

    # conditions for Pco 09(PM2.5) 

    if Px >= 0 and Px <= 30: 

        Ilo, Iup, Plo, Pup = 0, 50, 0, 30 

    elif Px > 30 and Px <= 55: 

        Ilo, Iup, Plo, Pup = 51, 100, 31, 55 

    elif Px > 55 and Px <= 90: 

        Ilo, Iup, Plo, Pup = 101, 150, 56, 90 

    else: 

        # arbitrary addition of 100 to the pollutant reading to allow index calc 

        # arbitrary Iup of 200 for index calc 

        Ilo, Iup, Plo, Pup = 151, 200, 91, Px+100 

    sx = ((Px - Plo)/(Pup - Plo))*(Iup - Ilo) + Ilo 

    return sx 

 

def dataIndices(a): 

    finalDataList = [] 

    # a is the whole data list 

    # navigate through the entire data 

    wdl = len(a)  # the length of the whole data 

    i = 0 

    for i in range(wdl): 

        stnWithIndex = [] 

        b = a[i].split()  # b is a station data list 

        # navigate through a station data 

        sdl = len(b)  # the length of the station data 

        if "08" in b and sdl > 3:  # condition for core pollutant 

            if "14" in b or "10" in b:  # condition for auxilliary pollutants 

                stnWithIndex.append(b[0]) 

                subIndicesList = [] 

                j = 1 

                for j in range(sdl): 

                    # nitrogen a core pollutant, is already in the condition 

                    indexN = b.index("08") 

                    indexNV = indexN+1 

                    nitSubIndex = nitLim(float(b[indexNV])) 

                    subIndicesList.append(nitSubIndex) 

                    # test existance of ozone in the station list 

                    if "14" in b: 

                        indexO = b.index("14") 

                        indexOV = indexO+1 

                        ozoSubIndex = ozoLim(float(b[indexOV])) 

                        subIndicesList.append(ozoSubIndex) 

                    # test existance of pm10 in the station list 

                    if "10" in b: 

                        indexT = b.index("10") 

                        indexTV = indexT+1 

                        ptnSubIndex = ptnLim(float(b[indexTV])) 

                        subIndicesList.append(ptnSubIndex) 

                    # test existance of pm25 in the station list 

                    if "09" in b: 

                        indexF = b.index("09") 

                        indexFV = indexF+1 

                        ptfSubIndex = ptfLim(float(b[indexFV])) 

                        subIndicesList.append(ptfSubIndex) 

                    pass 

                stnIndex = int(round(max(subIndicesList))) 

                stnWithIndex.append(stnIndex) 

                finalDataList += stnWithIndex 

        pass 

    return finalDataList 

    pass 
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7.4 Feature class generation, Interpolation and vector conversion processes 

# Location integration, Feature class generation, Interpolation and Vector 

conversion 

# -*- coding: utf-8 -*- 

import urllib.request 

import os 

import arcpy 

import madpoldataaggregCT  # calling the aggregation module 

import madpolindexcalculation  # calling the index calculation module 

 

 

arcpy.env.workspace = "C:\\MadridPollution\\ToneDev\\Madrid_Sensors.gdb" 

arcpy.env.overwriteOutput = True 

 

# local variables for feature class creation 

out_path = arcpy.env.workspace 

out_name = "testmadrid" 

geometry_type = "POINT" 

has_m = "DISABLED" 

has_z = "DISABLED" 

# projected coordinate system used for the area around madrid 

sr = arcpy.SpatialReference(25830) 

# Create empty point Featureclass 

arcpy.CreateFeatureclass_management(out_path, out_name, geometry_type, "", 

has_m, has_z, sr) 

 

empData = out_name 

 

 

# adding required fields 

def addRFields(featLyr): 

    nFieldName = "stnID" 

    if len(arcpy.ListFields(featLyr, nFieldName)) == 0: 

        arcpy.AddField_management(featLyr, nFieldName, "TEXT") 

    nFieldName = "stnName" 

    if len(arcpy.ListFields(featLyr, nFieldName)) == 0: 

        arcpy.AddField_management(featLyr, nFieldName, "TEXT") 

    nFieldName = "stnType" 

    if len(arcpy.ListFields(featLyr, nFieldName)) == 0: 

        arcpy.AddField_management(featLyr, nFieldName, "TEXT") 

    nFieldName = "stnElev" 

    if len(arcpy.ListFields(featLyr, nFieldName)) == 0: 

        arcpy.AddField_management(featLyr, nFieldName, "SHORT") 

    nFieldName = "MLAQI" 

    if len(arcpy.ListFields(featLyr, nFieldName)) == 0: 

        arcpy.AddField_management(featLyr, nFieldName, "SHORT") 

 

 

# check if fields are added 

addRFields(empData) 
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stnLoc = [['004', 'Plaza de España', 439577.503, 4475070.366, 637, 'Urbana de tráfico'], 

    ['008', 'Escuelas Aguirre', 442117.68, 4474786.082, 672, 'Urbana de tráfico'], 

    ['011', 'Ramón y Cajal', 442567.611, 4478088.964, 708, 'Urbana de tráfico'], 

    ['016', 'Arturo Soria', 445788.017, 4476804.759, 698, 'Urbana de fondo'], 

    ['017', 'Villaverde', 439420.566, 4466527.998, 601, 'Urbana de fondo'], 

    ['018', 'Farolillo', 437893.845, 4471845.515, 581, 'Urbana de fondo'], 

    ['024', 'Casa de Campo', 436601.241, 4474586.797, 645, 'Suburbana'], 

    ['027', 'Barajas Pueblo', 450835.949, 4480855.369, 631, 'Urbana de fondo'], 

    ['035', 'Plaza del Carmen', 440344.765, 4474535.745, 657, 'Urbana de fondo'], 

    ['036', 'Moratalaz', 445254.758, 4473251.64, 671, 'Urbana de tráfico'], 

    ['038', 'Cuatro Caminos', 440036.799, 4477465.145, 699, 'Urbana de tráfico'], 

    ['039', 'Barrio del Pilar', 439693.285, 4481085.951, 673, 'Urbana de tráfico'], 

    ['040', 'Vallecas', 444705.01, 4471040.179, 677, 'Urbana de fondo'], 

    ['047', 'Méndez Álvaro', 441734.865, 4472167.017, 609, 'Urbana de fondo'], 

    ['048', 'Castellana', 441455.003, 4476789.943, 676, 'Urbana de tráfico'], 

    ['049', 'Parque del Retiro', 442095.972, 4473986.767, 662, 'Urbana de fondo'], 

    ['050', 'Plaza Castilla', 441622.45, 4479674.926, 728, 'Urbana de tráfico'], 

    ['054', 'Ensanche de Vallecas', 448055.403, 4469329.231, 630, 'Urbana de fondo'], 

    ['055', 'Urbanización Embajada', 450784.046, 4479256.762, 619, 'Urbana de fondo'], 

    ['056', 'Plaza Fernández Ladreda', 439003.502, 4470704.937, 605, 'Urbana de tráfico'], 

    ['057', 'Sanchinarro', 444026.471, 4482834.185, 700, 'Urbana de fondo'], 

    ['058', 'El Pardo', 434382.749, 4485555.056, 616, 'Suburbana'], 

    ['059', 'Juan Carlos I', 448379.789, 4479557.516, 669, 'Suburbana'], 

    ['060', 'Tres Olivos', 441559.491, 4483537.375, 715, 'Urbana de fondo']] 

 

# Adding points and updating the fields 

fields = ["SHAPE@XY", "stnID", "stnName", "stnType", "stnElev", "MLAQI"] 

 

#      Fetching Data from the madrid city council URL 

source = "http://www.mambiente.munimadrid.es/opendata/horario.txt" 

with urllib.request.urlopen(source) as response: 

    byteData = response.read().decode('utf-8') # decode from byte format 

# store the decoded data in a 2D list 

rawData =[] 

kmt = byteData.split() 

for k in kmt: 

    rawData.append(k.split(",")) 

 

pldata = madpoldataaggregCT.aggrData(rawData) 

dWI = madpolindexcalculation.dataIndices(pldata) 

 

def usedStnData(a, b): 

    # retrieve only stations with MLAQI measurements 

    stnLocUsed = [] 

    kt = len(a) 

    i = 0 

    for i in range(kt): 

        if a[i][0] in b: 

            listVal = a[i] 

            stnLocUsed.append(listVal) 

            i += 1 

    # update the used stations with the index 

    ktused = len(stnLocUsed) 

    j = 0 

    for j in range(ktused): 

        indIndex = b.index(stnLocUsed[j][0])+1 

        stnLocUsed[j].append(b[indIndex]) 

        j += 1 

    # print stnLocUsed 

    return stnLocUsed 

    pass  
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# organise the data according to feature class structure using draftData 

draftData = [] 

shpData = usedStnData(stnLoc, dWI) 

for rowStn in shpData: 

    ptLoc = (rowStn[2], rowStn[3]) 

    ptID = rowStn[0] 

    ptNam = rowStn[1] 

    ptTy = rowStn[5] 

    ptEl = rowStn[4] 

    ptInd = rowStn[6] 

    ptdec = (ptLoc, ptID, ptNam, ptTy, ptEl, ptInd) 

    draftData.append(ptdec) 

# insert the data into the feature class 

with arcpy.da.InsertCursor(empData, fields) as updLyr: 

        for row in draftData: 

            updLyr.insertRow(row) 

 

#           IDW Interpolation 

# local variables for IDW interpolation 

in_feat = "testmadrid" 

zField = "MLAQI" 

out_feat = "surfacemadrid" 

IDW_Layer = "IDW_Layer" 

Output_raster = "" 

cellSize = 65 

power = 2 

# search neighborhood 

majSemiaxis = 6000 

minSemiaxis = 6000 

angle = 0 

maxNeighbors = 10 

minNeighbors = 3 

sectorType = "EIGHT_SECTORS" 

searchNeighbourhood = arcpy.SearchNeighborhoodStandard(majSemiaxis, min-

Semiaxis, 

                                                       angle, maxNeighbors, 

                                                       minNeighbors, sec-

torType) 

# Enable Geostatistical Analyst license 

arcpy.CheckOutExtension("GeoStats") 

# IDW interpolation 

arcpy.IDW_ga(in_feat, zField, IDW_Layer, Output_raster, cellSize, power, 

searchNeighbourhood) 

# Creating pollution shapes from interpolation 

tempEnvironment0 = arcpy.env.extent 

arcpy.env.extent = "424753.6621 4462565.9412 456039.9542 4499364.5676" 

arcpy.GALayerToContour_ga(IDW_Layer, "FILLED_CONTOUR", out_feat, "DRAFT", 

"MANUAL", "", "50;100;150;200") 

arcpy.env.extent = tempEnvironment0 

# Delete the IDW_Layer 

arcpy.Delete_management(IDW_Layer) 
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# Clipping local variables 

clip_infeat = out_feat 

clip_feat = "DISTRITOS" 

clip_outfeat = "clippedFeat" 

xy_tolerance = "" 

# Clipping out the required extents 

arcpy.Clip_analysis(clip_infeat, clip_feat, clip_outfeat, xy_tolerance) 

# reproject Features 

clipProjected = "clipFeatProj" 

arcpy.Project_management("clippedFeat", "clipFeatProj", "PRO-

JCS['WGS_1984_Web_Mercator_Auxiliary_Sphere',GEOGCS['GCS_WGS_1984',DA-

TUM['D_WGS_1984',SPHE-

ROID['WGS_1984',6378137.0,298.257223563]],PRIMEM['Greenwich',0.0],UNIT['De-

gree',0.0174532925199433]],PROJECTION['Mercator_Auxiliary_Sphere'],PARAME-

TER['False_Easting',0.0],PARAMETER['False_Northing',0.0],PARAMETER['Cen-

tral_Meridian',0.0],PARAMETER['Standard_Parallel_1',0.0],PARAMETER['Auxil-

iary_Sphere_Type',0.0],UNIT['Meter',1.0]]", "ETRS_1989_To_WGS_1984", "PRO-

JCS['ETRS_1989_UTM_Zone_30N',GEOGCS['GCS_ETRS_1989',DA-

TUM['D_ETRS_1989',SPHE-

ROID['GRS_1980',6378137.0,298.257222101]],PRIMEM['Greenwich',0.0],UNIT['De-

gree',0.0174532925199433]],PROJECTION['Transverse_Mercator'],PARAME-

TER['False_Easting',500000.0],PARAMETER['False_Northing',0.0],PARAME-

TER['Central_Meridian',-3.0],PARAMETER['Scale_Factor',0.9996],PARAME-

TER['Latitude_Of_Origin',0.0],UNIT['Meter',1.0]]", "NO_PRESERVE_SHAPE", "", 

"NO_VERTICAL") 

# Add barrier attribute fields 

def addRFields(featLyr): 

    nFieldName = "Name" 

    if len(arcpy.ListFields(featLyr, nFieldName)) == 0: 

        arcpy.AddField_management(featLyr, nFieldName, "TEXT") 

    nFieldName = "BarrierType" 

    if len(arcpy.ListFields(featLyr, nFieldName)) == 0: 

        arcpy.AddField_management(featLyr, nFieldName, "SHORT") 

    nFieldName = "Attr_TravelTime" 

    if len(arcpy.ListFields(featLyr, nFieldName)) == 0: 

        arcpy.AddField_management(featLyr, nFieldName, "FLOAT") 

# check if fields are added 

addRFields(clipProjected) 

 

barfields = ["Classes", "Name", "BarrierType", "Attr_TravelTime"] 

 

with arcpy.da.UpdateCursor(clipProjected, barfields) as updbLyr: 

        for row in updbLyr: 

            row[2] = 1 

            if row[0]==0: 

                row[1],row[3] = "Good Category", 0.25 

            elif row[0]==1: 

                row[1],row[3] = "Acceptable Category", 0.75 

            elif row[0]==2: 

                row[1],row[3] = "Poor Category", 1.25 

            elif row[0]==3: 

                row[1],row[3] = "Very Poor Category", 1.75 

            # update all the row fields 

            updbLyr.updateRow(row) 

# seperate the shape into seperate index categories 

sepFeat = clipProjected 

arcpy.Select_analysis(sepFeat, "Good", "Classes = 0") 

arcpy.Select_analysis(sepFeat, "Acceptable", "Classes = 1") 

arcpy.Select_analysis(sepFeat, "Poor", "Classes = 2") 

arcpy.Select_analysis(sepFeat, "VeryPoor", "Classes = 3") 

print ("This is the last index category")  
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7.5 Map processing service 

# Map processing service 

 

# -*- coding: utf-8 -*- 

import arcpy 

import os 

 

arcpy.env.overwriteOutput = True 

 

# Referencing the project and its contents 

projLoc = 'C:\\MadridPollution\\ToneDev\\' 

aprx = arcpy.mp.ArcGISProject(projLoc+"ToneDev.aprx") 

aprxMap = aprx.listMaps("Map")[0] 

 

# remove existing layers from the map inside the project 

lyrs = aprxMap.listLayers() 

for lyr in lyrs: 

    aprxMap.removeLayer(lyr) 

 

# add the updated layers to the map inside the project 

aprxMap.addDataFromPath(projLoc + "Madrid_Sensors.gdb\\VeryPoor") 

aprxMap.addDataFromPath(projLoc + "Madrid_Sensors.gdb\\Poor") 

aprxMap.addDataFromPath(projLoc + "Madrid_Sensors.gdb\\Acceptable") 

aprxMap.addDataFromPath(projLoc + "Madrid_Sensors.gdb\\Good") 

 

 

# Reference symbology sources 

symb1 = projLoc + "Good.lyrx" 

symb2 = projLoc + "Acceptable.lyrx" 

symb3 = projLoc + "Poor.lyrx" 

symb4 = projLoc + "VeryPoor.lyrx" 

 

# apply symbology to the current layers in the document 

doclyrs = aprxMap.listLayers() 

arcpy.ApplySymbologyFromLayer_management(doclyrs[0], symb1) 

arcpy.ApplySymbologyFromLayer_management(doclyrs[1], symb2) 

arcpy.ApplySymbologyFromLayer_management(doclyrs[2], symb3) 

arcpy.ApplySymbologyFromLayer_management(doclyrs[3], symb4) 

 

aprx.save() 

del aprx 
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7.6 Publishing service 

# Publishing service 

 

# -*- coding: utf-8 -*- 

import arcpy, os 

from arcgis.gis import GIS 

 

arcpy.env.workspace = os.path.join('C:\\', 'MadridPollution', 'ToneDev') 

arcpy.env.overwriteOutput = True 

# location of the map document 

wrkspc = 'C:\\MadridPollution\\ToneDev\\' 

serviceName = "madridPollutionSurface" 

portal = "http://www.arcgis.com" # Can also reference a local portal 

user = "twesigye_uji" 

password = "y20tplt18jabs" 

# Set sharing options 

shrOrg = True 

shrEveryone = True 

shrGroups = "" 

 

# paths for the required files 

SDdraft = os.path.join(wrkspc, serviceName + ".sddraft") 

SD = os.path.join(wrkspc, serviceName + ".sd") 

thumbn  = os.path.join(wrkspc, "MLAQI.jpg") 

 

# provide summary and tags of the service 

summary = 'Pollution surface for madrid city generated from MLAQI' 

tags = 'Public health, Madrid city, air pollution, air quality' 

 

# delete the SDDraft and SD files if they exist on the system. 

if os.path.exists(SDdraft): 

    arcpy.Delete_management(SDdraft) 

if os.path.exists(SD): 

    arcpy.Delete_management(SD) 

 

# Location of the project and map 

aprx = arcpy.mp.ArcGISProject(wrkspc + "ToneDev.aprx") 

aprxMap = aprx.listMaps("Map")[0] 

 

arcpy.mp.CreateWebLayerSDDraft(aprxMap, SDdraft, serviceName, 

'MY_HOSTED_SERVICES', 'FEATURE_ACCESS', 

                               'Madrid', True, True, '', '', '', summary, 

tags, '', '', '') 

 

# Create service definition 

arcpy.StageService_server(SDdraft, SD) 

 

# connect to the portal 

print("Connecting to {}".format(portal)) 

gis = GIS(portal, user, password) 

 

# Find the SD, update it, publish /w overwrite and set sharing 

sdItem = gis.content.search("{} AND owner:{}".format(serviceName, user), 

                            item_type="Service Definition")[0] 

 

sdItem.update(data=SD, thumbnail=thumbn) 

fs = sdItem.publish(overwrite=True) 

 

if shrOrg or shrEveryone or shrGroups: 

  print("Setting sharing options...") 

  fs.share(org=shrOrg, everyone=shrEveryone, groups=shrGroups) 

print("Finished updating and sharing: {} - ID: {}".format(fs.title, fs.id))  

 


