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1) Introduction: What are 2D materials? 
 

Ever since the discovery of graphene in 2004 (Novoselov, 2004), there has been 
increasing interest in 2D materials owing to their distinct electronic, photonic 
and mechanical properties. So far, graphene is still the most known 2D 
material. However, it faces some limitations for this use in applications which 
include a band gap, for example. This has triggered research on other 2D 
materials. Some 500 2D materials are already expected to be found. 

Presently, known 2D materials include: 

- Graphene – Xenes1 (Dirac physics) (Ruijsenaars, 2006)  
- TMDs (Nature, 2014) 

- Semiconductors QWs (quantum wells) (Materials, 2017) (Bastard, 1988) 
 

Graphene: properties and applications2 
 

The properties of graphene are well known nowadays: 

 It has a width of 3,5Å 
 In photonics terms: when the light incides over a graphene layer, itself 

absorbs 2,3% of the white light. 
 Its bandgap is between 0-0,25eV 

 Experiments Kerr effect3 
 There are transition metals dichalcogenides (TMDs) that may fills its 

gap 

Some applications: 

 It is used on optoelectronic devices (which is challenging, because of its 
lack or absence of natural GAP) 

 On photonics (In spite of the graphene it is probably the best 2D 
materials on the photonics field, likewise the scientist must go further 
and try to find a better material on this field) 

 

 

 

 

                                                           
1 Xenes (Silicene, Germanene, Stanene, Phosphorene, Borophene, for instance) 
2(Virendra Singha, 2011),  (Photonics, 2016) (Rosei, 2017)  
3 Kerr effect: it is the change of the refraction index when it applies over a material an external electric field. Also called Non-linear 
electro-optic effect. (∆n= λ K 𝐸 ) 
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Xenes, semiconductors & TMDs the other familiars 2D of 
graphene 

What are Xenes? 
 

They are 2D structures of the correspondent 3D material. For instance, Silicon 
forms Silicene and this is arranged in a hexagonal way containing a crystalline 
atomically thin structure. 

The Xenes share with graphene the same Dirac physics. 

Semiconductors QWs4  
 

In general a quantum well is a potential well with only discrete energy values. 

The classic model used to demonstrate a quantum well is to confine particles, 
which were originally free to move in 3D, to 2D, by forcing them to occupy a 
planar region. The effects of quantum confinement take place when the 
quantum well thickness becomes comparable to the de Broglie wavelength of 
the electrons and holes, leading to energy levels called “energy subbands”. As 
well the carriers may only have discrete energy values. 

 

 

 

 

 

The semiconductors utilised here are: 

III-V: The famous III-V semiconductors are all those with relation to Gallium, 
for instance: GaAs, GaP, GaN and so on. 

II-VI: The II-IV semiconductors comprise the compounds containing Zn, Cd, 
and Hg as the cations and O, S, Se, and Te as the anions. 

Both sort of semiconductors turn into less covalent as it goes down in the 
periodic table. 

Transition metal dichalcogenides (TMDs) 
 

The TMDs are atomically thin semiconductors with a structure: MX25 

                                                           
4 (Emmanuel Lhuillier, 2015) 

Figure 1. Quantum well geometry 
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It is used as alternative to the absence of natural GAP problems that presents 
the graphene. However, detailed understanding of their optical and electronic 
behaviour lags behind their use in devices, and only now the effects of charge-
carrier confinement in these 2D structures are being quantified.  

With the TMDs it might be possible stack vertically various layers one above 
another, to create the so-called: Van der Waals heterostructure. First of all, 
you would put a MoSe2, immediately you would introduce an h-BN dielectric, 
and finally another layer of MoSe2. The h-BN dielectric is employed as a 
support for metal catalyst due to its chemical, thermal, acid-base stability and 
high thermal conductance. 

To sum up where it is found in the electromagnetic spectrum each kind of 
material: 

  

                                                                                                                                                                          
5 M: Mo, W; X: S, Se, Te and so on. 

Figure 2. How some materials are distributed on the electromagnetic spectrum. 
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Beyond topological and spin-orbit properties which may arise in Xenes 
because of their Dirac physics, in general 2D materials present very different 
properties from their 3D counterparts. The next page table summarizes some 
of the most relevant ones. 
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6 (Xinghua Hong, 2015); (Smith) 

7 (Jin-Young Kim, 2014) 
8 (Fischetti, 1991) 
9 (Bohayra Mortazavi, 2017) 
10 (Ng, 1995) 
11 (Po-Hsin Shih, 2016) 
12 (Xiao Li, 2015); (Rusen Yan, 2014); (Young); (Bablu Mukherjee, 2015) 

3D 2D 

Electron 
mobility 
(room T) 

(3D)(cm2/Vs) 

Electron 
mobility 
(room T) 

(2D)(cm2/Vs) 

Young's 
Modulus 
(TPa)(3D) 

Young's 
Modulus 
(TPa)(2D) 

Thermal 
conductivity 
(W/mK)(3D) 

Thermal 
conductivity  
(W/mK)(2D) 

Lattice 
constant 
(Å)(3D) 

Lattice 
constant 
(Å)(2D) 

Relative 
Permittivity 

(εr) (3D) 

Relative 
Permittivity 

(εr) (2D) 

Graphite6 Graphene7 20000 320000 
0,0041-
0,0276 

1 8,7-114 3000-5000 
3,567 

(diamond) 

a=2,461 
37,9 51 

b=4,260 

Si8 Silicene9 1500 257000 
10-6-

5x10-5 
0,0617  0,2-2,55 150-200 

5,431 
(diamond) 

a=3,880 
11,7 34,33 

b=6,710 

Ge10 Germanene11 3900 624000 0,103 0,0440  60,2 16,5 
5,658 

(diamond) 

a=4,030 
16 ~ 15 

b=6,970 

- MoS212 - 200 - 0,33 - 34,5 - a=3,1475 - ~ 15 

Table 1. Comparison table between 2D & 3D materials and MoS2 TMD 
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How it may appreciate on the previous table, certain values change drastically 
depending on its kind of dimensions, 3D or 2D. The question arises of why the 
physics and chemistry of 2D and 3D materials is so different. To this end, we 
will analyse the electronic properties of the most elementary of all atoms: the 
hydrogen atom. We will revisit the 3D resolution of the Schrödinger equation 
for this species. Next we will derive again solutions assuming the hydrogen 
atom is bound to live in a 2D universe. 

We will study the implications that this has on the electronic properties, the 
optical spectrum, the formation of molecules and the interaction between 
electrons.  

We would like to note that the interest of this study goes beyond an 
exceptionally interesting academic exercise. 2D hydrogen is currently being 
used to interpret the properties observed in 2D materials. (Alexey Chernikov, 
2014) (S. Ithurria, 2011) 
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2) Hydrogen atom in 3D 

The mechano-quantic study of the hydrogen atom is truly important because 
their wave functions work as base to an approximated quantum treatment on 
the rest of elements in the periodic table. Now, we will start by evaluating the 
most general case of the monoelectronics species with nuclear charge Ze 
following a similar derivation to that have been done on (Rajadell) (Levine, 2001). 
If mN and me represents, respectively, the core and the electron masses, the 
Schrödinger equation follows as, 

−
ℏ

2𝑚
∇ −

ℏ

2𝑚
∇ + 𝑉(𝑟) 𝜓 , = 𝐸𝜓 ,  (1) 

where 

∇ =
𝜕

𝜕𝑥
+

𝜕

𝜕𝑦
+

𝜕

𝜕𝑧
 

xN, yN, zN are the core coordinates 

∇ =
𝜕

𝜕𝑥
+

𝜕

𝜕𝑦
+

𝜕

𝜕𝑧
 

xe, ye, ze are the electron coordinates 

𝑉(𝑟) = −𝐾
(𝑍𝑒)𝑒

𝑟
  (2)      

 

𝑟 = (𝑥 − 𝑥 ) + (𝑦 − 𝑦 ) + (𝑧 − 𝑧 )  

(The potential energy of the system depends only on the distance r between 
the core and the electron – it is central due to the force between both particles 
-) 

𝜓 , = 𝜓(𝑥 , 𝑦 , 𝑧 , 𝑥 , 𝑦 , 𝑧 ) 

The coordinates of the system come defined by  

 

 

 

 

 

 

 
Figure 3. Coordinates of 3D system 
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Where, 

 𝑥 = 𝑥 + 𝑥                            𝑋
𝑚 𝑥 + 𝑚 𝑥

𝑀
 

            

𝑦 = 𝑦 + 𝑦                             𝑌
𝑚 𝑦 + 𝑚 𝑦

𝑀
  

  

 𝑧 = 𝑧 + 𝑧                             𝑍
𝑚 𝑧 + 𝑚 𝑧

𝑀
  

(Here 𝑀 =  𝑚e+𝑚N is the total mass of the system, and xCM, yCM, zCM the 
coordinates of the centre of mass) 

Operating the two masses m1 and m2, we may get the next expression to the 
kinetic energy for the three dimensions: 

𝑇 =
𝑀

2

𝑑𝑋

𝑑𝑡
+

𝑑𝑌

𝑑𝑡
+

𝑑𝑍

𝑑𝑡
+

𝜇

2

𝑑𝑥

𝑑𝑡
+

𝑑𝑦

𝑑𝑡
+

𝑑𝑧

𝑑𝑡
13, 14 

𝑇 =
𝑝

2𝑀
+

𝑝

2𝜇
  (3)  

The potential energy (2), only depends on the internal coordinates (x, y, z), 
therefore, 

𝑉(𝑟) = −𝐾
(𝑍𝑒)𝑒

𝑥 + 𝑦 + 𝑧
       

𝑟 = (𝑥 − 𝑥 ) + (𝑦 − 𝑦 ) + (𝑧 − 𝑧 ) = 𝑥 + 𝑦 + 𝑧  

The classical equations (2) & (3), allow us to write the Hamiltonian as follows, 

ℋ = −
ℏ

2𝑀
∇ −

ℏ

2𝜇
∇ + 𝐾

(𝑍𝑒)𝑒

𝑟
 (4) 

The bracket term depends on the internal coordinates (x, y, z). So we can 
make the following variables separation, 

𝜓 , = 𝜓 𝑋 , 𝑌 , 𝑍 , 𝑥 , 𝑦 , 𝑧 = 𝜓 (𝑋 , 𝑌 , 𝑍 )𝜓 𝑥 , 𝑦 , 𝑧  

 

Then the Schrödinger equation for the term associated to the centre of mass 
and relative motion results, respectively, 

                                                           
13 We replace the subscript “N” by “CM” because mN>>>me and then XCM ≅ xN, and the same logic for 
the replacing of the subscript “e” by “µ”, since we have µ=me. 
14 𝜇 =  in other words, 𝜇 is the reduced mass 
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−
ℏ

2𝑀
∇ 𝜓 = 𝐸 𝜓  (5)  

−
ℏ

2𝜇
∇ + 𝐾

(𝑍𝑒)𝑒

𝑟
𝜓 = 𝐸 𝜓  (6) 

Now, equation (5) describes the free particle; on the other hand, the (6) 
equation describes the relative movement between core and electron. We just 
want the last equation (the (5) one leads to a constant value that it is not 
concerning us right now), then, removing every single subscript of the (6) 
equation we could rewrite 

−
ℏ

2𝜇
∇ + 𝐾

(𝑍𝑒)𝑒

𝑟
𝜓 = 𝐸𝜓 (7) 

At this point we cannot do any additional variable separation; however, if it 
uses spherical coordinates (suggested by the spherical symmetry of the 
potential -central force-) it is still possible this variable separation. 

The Laplace’s operator, in spherical coordinates, results from the expression, 

∇ = 𝑟 + sin 𝜃 +  (8) (Liston, 2013) 

Keeping in mind the angular momentum equation in spherical coordinates 

and defining the operator 𝐷 as follows 

𝐷 =
𝜕

𝜕𝑟
𝑟

𝜕

𝜕𝑟
 

𝐿 = −ℏ
1

sin 𝜃

𝜕

𝜕𝜃
sin 𝜃

𝜕

𝜕𝜃
+

1

sin 𝜃

𝜕

𝜕𝜑
 

The Laplacian operator (8) would remain as 

∇ =
1

𝑟
𝐷 −

𝐿

ℏ
 (9) 

According to (9) & (7) equations we could write the Schrödinger equation 

𝐷𝜓 +
2𝜇𝑟

ℏ
𝐸 + 𝐾

(𝑍𝑒)𝑒

𝑟
𝜓 =

𝐿

ℏ
𝜓 (10) 

Where the right term operator in the equation depends on the coordinates θ 
and φ, whereas the set of operators that appear on the other side just depend 
on the coordinate r. This permits us to do the following variable separation in 
the wave function ψ: 

𝜓(𝑟, 𝜃, 𝜑) = 𝑅(𝑟)𝑌(𝜃, 𝜑)(11) 

Replacing (11) in the Schrödinger equation (10) and immediately dividing on 
the resulting equality by (11), it results 
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1

𝑅(𝑟)
𝐷𝑅(𝑟) +

2𝜇𝑟

ℏ
𝐸 + 𝐾

(𝑍𝑒)𝑒

𝑟
𝑅(𝑟) =

1

𝑌(𝜃, 𝜑)

𝐿

ℏ
𝑌(𝜃, 𝜑) (12) 

Now, to get the previous equation (12) occur, both sides of the equality have to 
be the same constant value, then  

1

𝑅
𝐷𝑅 +

2𝜇𝑟

ℏ
𝐸 + 𝐾

(𝑍𝑒)𝑒

𝑟
𝑅 = 𝛾 → 𝐷𝑅 +

2𝜇𝑟

ℏ
𝐸 + 𝐾

(𝑍𝑒)𝑒

𝑟
𝑅 = 𝛾𝑅  (13) 

1

𝑌(𝜃, 𝜑)

𝐿

ℏ
𝑌 = 𝛾 →  𝐿 𝑌 = ℏ 𝛾𝑌 (14) 

Where one may realise that equation (14) is similar to the spherical harmonics 
equation. So we can conclude 

𝐿 𝑌 = 𝑙(𝑙 + 1)ℏ 𝑌 →  𝛾 = 𝑙(𝑙 + 1)(15) 

So taking (15) and carrying it to (13) equation it obtains 

𝐷 +
2𝜇𝑟

ℏ
𝐸 + 𝐾

(𝑍𝑒)𝑒

𝑟
− 𝑙(𝑙 + 1) 𝑅 = 0 (16)  

With the objective to transform the differential equation (16) to may identify it 
with any standard differential equation: 

i) We take into account the definition of the Laplace’s operator: 

𝐷 =
𝜕

𝜕𝑟
𝑟

𝜕

𝜕𝑟
= 2𝑟

𝜕

𝜕𝑟
+ 𝑟

𝜕

𝜕𝑟
≡ 2𝑟

𝑑

𝑑𝑟
+ 𝑟

𝑑

𝑑𝑟
  (17)15 

ii) Afterwards, it does the constant replacing by the use of the Bohr’s 
radius equation, a016, on the r variable. 

𝑎 =
𝜀 ℎ

𝜇𝜋𝑒
    ⎯⎯⎯⎯  𝑎 =

ℎ

4𝜋 𝐾𝜇𝑒
=

ℏ

𝐾𝜇𝑒
  (18)   

With both expressions, (17) & (18) it could obtain 

𝑅 +
2

𝑟
𝑅 +

2𝐸

𝐾𝑒 𝑎
+

2𝑍

𝑎

1

𝑟
−

𝑙(𝑙 + 1)

𝑟
𝑅 = 0 (19) 17 

Once solved (19) differential equation by Laguerre polynomials it obtains the 
following expression 

𝐸 = −
𝑍 𝑒 𝐾

2𝑎

1

𝑛
      (𝑤𝑖𝑡ℎ 𝑛 = 1,2,3, … ) (20) 

                                                           
15 We can turn into the partial derivatives in total derivatives, because those, it only applies on the r 
variable. 
16 The Bohr’s radius is the first orbit to the hydrogen atom according to Bohr’s model. 
17 R’ (first “r” derivative) & R’’ (second “r” derivative) 
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0 10 20

Rnl

r/a

1s

0 10 20

Rnl

r/a

2s&2p
R20

R21

0 10 20

Rnl

r/a

3s,3p&3d
R30
R31
R32

and 

0 ≤ 𝑙 ≤ 𝑛 − 1 (21) 

The R(r) functions, obtained as differential equation solutions (19), are the 
Associated Laguerre Polynomials, 

For instance, to the 1s orbital (hydrogen atom); (n=1; l=0) 

𝐿 (𝜌) = 𝑒
𝑑

𝑑𝜌
(𝜌𝑒 ) = 𝑒 (𝑒 − 𝜌𝑒 ) = 1 − 𝜌 (22.1) 

𝐿 = 𝐿 =
𝜕

𝜕𝜌
𝐿 (𝜌) =

𝜕

𝜕𝜌
(1 − 𝜌) = −1 (22.2) 

𝑅 , = −
2𝑍

𝑛𝑎

(𝑛 − 𝑙 − 1)!

2𝑛[(𝑛 + 𝑙)!]
𝑒  𝜌  𝐿 (22.3);             𝜌 =

2𝑍𝑟

𝑛 𝑎
(22.4) 

𝑅 , = 2
𝑍

𝑎
𝑒   (22) 

Radial wave functions belonging to a different “n” value are orthogonal and, if 
they are normalized it may be performed as 

〈𝑅 , |𝑅 , 〉 = 𝑅 , (𝑟)𝑅 , (𝑟)𝑟 𝑑𝑟 = 𝛿 ,  (23) 

On the next figures are drawn some radial wave functions for the hydrogen 
atom 

  

 

  

 

 

 

 

 

 

Finally, the wave functions to monoelectronic atomic species might be written 
in the next form 

𝜓 , , (𝑟, 𝜃, 𝜑) = 𝑅 , (𝑟)𝑌(𝜃, 𝜑) = 𝑅 , (𝑟)Θ , (𝜃)Φ(𝜑) 

Figures 4, 5, 6. Hydrogen 3D orbitals from to 1s to 3d 
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0 5 10 15 20

r2 Rnl
2

r/a

1s

0 10 20

r2 Rnl
2

r/a

2s&2p

r^2R20^2

r^2R21^2

0 10 20

r2 Rnl
2

r/a

3s,3p&3d

r^2R30^2

r^2R31^2

r^2R32^2

Orthonormality requirement 

〈𝜓 , , (𝑟, 𝜃, 𝜑)|𝜓 , , (𝑟, 𝜃, 𝜑)〉 = 𝛿 , 𝛿 , 𝛿 ,  

The probability to find an electron into a coordinates r,θ,φ comprised between 
r and r+dr, θ and θ+dθ, φ and φ+dφ, respectively, results from the expression 

|𝜓| 𝑑𝜏 = |𝑅 , (𝑟)| |𝑌 , (𝜃, 𝜑)| 𝑟 sin 𝜃 𝑑𝑟𝑑𝜃𝑑𝜑 

We ought to keep in mind that the spherical harmonics are normalized, 

∫ ∫ |𝑌 , (𝜃, 𝜑)| sin 𝜃 𝑑𝜃𝑑𝜑=1 

So finally, we can conclude that the radial distribution function is as follows 

𝑅 , (𝑟) 𝑟  

Examples about representations of some orbitals 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

Once seen most of the deduction about 3D hydrogen atom we could proceed to 
study the 2D hydrogen atom.  

  

Figures 7, 8, 9. Hydrogen 3D Probability distribution from to 1s to 3d 
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3) Hydrogen atom in 2D 

We next derive equations for the 2D hydrogen atoms. The procedure we follow 
is largely based on analogies with the 3D case (Section 2). We begin by the 
Schrödinger equation, 

𝐻𝜓 , = 𝐸 𝜓 , ⟹ −
ℏ

2𝑚
∇ −

ℏ

2𝑚
∇ + 𝑉(𝑟) 𝜓 , = 𝐸𝜓 ,  (24) 

Where 

∇ =
𝜕

𝜕𝑥
+

𝜕

𝜕𝑦
 

xN & yN are the coordinates of the core 

∇ =
𝜕

𝜕𝑥
+

𝜕

𝜕𝑦
 

and xe & ye are the electron coordinates. 

Now, the potential energy equation is the same as in 3D, just leaving out the z 
axis, 

𝑉(𝑟) = −𝐾
(𝑍𝑒)𝑒

𝑥 + 𝑦
= −𝐾

(𝑍𝑒)𝑒

𝑟
       

and  

𝑟 = 𝑥 + 𝑦 = (𝑥 − 𝑥 ) + (𝑦 − 𝑦 )  

The potential energy of the system how it is known only depends on the 
distance r between core and electron. 

𝜓 , = 𝜓(𝑥 , 𝑦 , 𝑥 , 𝑦 ) 

Once defined which elements there are into Hamiltonian, let us define the 
coordinates of our 2D system, 

  

  

N 

e - 

x 

y 
y 

x 

N (xN,yN) 

CM (xCM,yCM) 

e - (xe,ye) 

r 

Figures10, 11. Coordinates of the 2D system 
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Before continuing with the calculations, we need to first obtain the coordinates 
of the centre of mass to x and y.  

We suppose x1 and x2 represents the momentary positions of the masses m1 

and m2, respectively, respect the centre of mass. So we define the internal 
coordinates as 

𝑥 = 𝑥 − 𝑥  

𝑥 =
𝑚 𝑥 + 𝑚 𝑥

𝑚 + 𝑚
 →  𝑀𝑥 = 𝑚 𝑥 + 𝑚 𝑥  (25.1) 

where 𝑀 = 𝑚 + 𝑚 . 

Next, we are going to obtain x1 and x2 values: 

Obtaining of x1 

𝑥 = 𝑥 − 𝑥 (25.2) 

Taking (25.2) and carrying it to (25.1) 

𝑀𝑥 = 𝑚 𝑥 + 𝑚 𝑥 − 𝑚 𝑥 → 𝑀𝑥 + 𝑚 𝑥 = (𝑚 + 𝑚 )𝑥  

Resulting  

𝑥 = 𝑥 +
𝑚

𝑀
𝑥 (25.3) 

And keeping on obtaining of x2 

𝑥 = 𝑥 + 𝑥 (25.4) 

Taking (25.4) and also carrying it to (25.1) 

𝑀𝑥 = 𝑚 𝑥 + 𝑚 𝑥 + 𝑚 𝑥 → 𝑀𝑥 − 𝑚 𝑥 = (𝑚 + 𝑚 )𝑥  

Giving as result 

𝑥 = 𝑥 −
𝑚

𝑀
𝑥 (25.5) 

Taking into account that the kinetic energy is: 

𝑇 =
1

2
𝑚𝑣  (25.6) 

Then, we are going to start operating on kinetic energy in a one-dimensional 
system 

𝑇 =
1

2
𝑚𝑣 =

1

2
𝑚

𝜕𝑥

𝜕𝑡
+

1

2
𝑚

𝜕𝑥

𝜕𝑡
(25.7) 
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Now, we may obtain the following expressions from (25.3) & (25.5) and carry 
them to (25.7) equation 

𝜕𝑥

𝜕𝑡
=

𝜕𝑥

𝜕𝑡
+

𝑚

𝑀

𝜕𝑥

𝜕𝑡
→

𝜕𝑥

𝜕𝑡
=

𝜕𝑥

𝜕𝑡
+

𝑚

𝑀

𝜕𝑥

𝜕𝑡
  

𝜕𝑥

𝜕𝑡
=

𝜕𝑥

𝜕𝑡
−

𝑚

𝑀

𝜕𝑥

𝜕𝑡
→

𝜕𝑥

𝜕𝑡
=

𝜕𝑥

𝜕𝑡
−

𝑚

𝑀

𝜕𝑥

𝜕𝑡
 

𝑇 =
1

2
𝑚

𝜕𝑥

𝜕𝑡
+

𝑚

𝑀

𝜕𝑥

𝜕𝑡
+

1

2
𝑚

𝜕𝑥

𝜕𝑡
−

𝑚

𝑀

𝜕𝑥

𝜕𝑡
 

Resulting the kinetic energy as, 

𝑇 =
1

2
𝑚

𝜕𝑥

𝜕𝑡
+

𝑚

2

𝑚

𝑀

𝜕𝑥

𝜕𝑡
+

1

2
𝑚

𝜕𝑥

𝜕𝑡
−

𝑚

2

𝑚

𝑀

𝜕𝑥

𝜕𝑡
 

Since rearranging the previous expression we might obtain 

𝑇 =
1

2
(𝑚 + 𝑚 )

𝜕𝑥

𝜕𝑡
+

𝑚

2

𝑚

𝑀
(𝑚 + 𝑚 )

𝜕𝑥

𝜕𝑡
 

𝑇 =
𝑀

2

𝜕𝑥

𝜕𝑡
+

𝜇

2

𝜕𝑥

𝜕𝑡
≡

𝑝

2𝑀
+

𝑝

2𝜇
 (25) 

So, making reference to kinetic energy part of equation (7) we can rewrite it as 

𝑇 =
𝑀

2

𝜕𝑥

𝜕𝑡
+

𝜇

2

𝜕𝑥

𝜕𝑡
 

𝑇 =
𝑝

2𝑀
+

𝑝

2𝜇
 

Where  &  correspond to translation kinetic energy of the system centre 

of mass & relative motion, respectively 

We can extrapolate toward a 2D equation,  

𝑇 =
𝑝

2𝑀
+

𝑝

2𝑀
+

𝑝

2𝜇
+

𝑝

2𝜇
 

Next, we proceed to reconvert this classical equation in a quantum equation, 
taking into account that  

𝑝 →  −𝑖ℏ
𝑑

𝑑𝑞
 

𝑝 →  −ℏ
𝑑

𝑑𝑞
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We further add the potential energy we treat, the electrostatic energy. So we 
can write the Hamiltonian in 2D, 

𝐻 = −
ℏ

2𝑀
∇ −

ℏ

2𝜇
∇ − 𝐾

(𝑍𝑒)𝑒

𝑟
 

Then, we can separate the internal coordinates from the centre of mass 
coordinates obtaining, 

𝐻 = −
ℏ

2𝑀
∇ −

ℏ

2𝜇
∇ + 𝐾

(𝑍𝑒)𝑒

𝑟
 (26) 

Where the bracket term only depends on the internal coordinates (x,y)18. So we 
can make the following variables separation: 

𝜓 , = 𝜓 𝑥 , 𝑦 , 𝑥 , 𝑦 = 𝜓 (𝑥 , 𝑦 )𝜓 (𝑥 , 𝑦 ) 

After all, the Schrödinger equation for the associated terms to the centre of 
mass and relative movement result, respectively, 

−
ℏ

2𝑀
∇ 𝜓 (𝑥 , 𝑦 ) = 𝐸 𝜓 (𝑥 , 𝑦 ) (27) 

−
ℏ

2𝜇
∇ + 𝐾

(𝑍𝑒)𝑒

𝑟
𝜓 𝑥 , 𝑦 = 𝐸 𝜓 𝑥 , 𝑦 (28) 

Only is taken the second equation for the obtaining of the hydrogen atom 
energy.19 

So, our Schrödinger equation is, 

−
ℏ

2𝜇
∇ + 𝐾

(𝑍𝑒)𝑒

𝑟
𝜓 = 𝐸𝜓 (29) 

Once reached this point we cannot make more variables separation, unless we 
change our relative coordinates (x, y) by polar coordinates20.  

                                                           
18 Keeping our eyes on CM and µ subscripts, we could think: What about the previous 
subscripts N and e? What happened with them? The idea for both cases is clear 
enough. How it is known the core mass (𝑚 = 1,672623𝑥10 𝑘𝑔) is larger than the 
electron mass(𝑚 = 9,10939𝑥10 𝑘𝑔) so the approximation is mp >>me. We conclude 

then, for xCM:𝑥 =
≫

⎯⎯⎯⎯ 𝑥 ≅ 𝑥  and the same for µ:𝜇 =
≫

⎯⎯⎯⎯ 𝜇 ≅ 𝑚    

 
19 Knowing that the Hamiltonian comes defined by 𝐻 = 𝐻 + 𝐻  we may disregard the 
𝐻  term since in spectroscopy Δ𝐸 is used. In addition, the 𝐻 term is constant due it 
comes described by the free particle model. Finally, if we solve this Hamiltonian, we 

would obtain as eigenvalue 𝐸 =
ℏ

 where 𝑘 =  (m=whole number) is a constant as 

the Ek is. 
 
20 Suggested by the spherical form of the potential in 3D and thus the circular form of the potential in 2D 
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Therefore we proceed with the obtaining of our 2D Laplacian in polar 
coordinates21 to later make other variables separation. 

∇ =
𝜕

𝜕𝑥
+

𝜕

𝜕𝑦
=

1

𝑟

𝜕

𝜕𝑟
+

𝜕

𝜕𝑟
+

1

𝑟

𝜕

𝜕𝜑
 (30) 

Keeping in mind that the (30) equation gives to us an operator with both 

terms, radial and angular, we can distinguish them defining 𝐴 as follows: 

𝐴 =
1

𝑟

𝜕

𝜕𝑟
+

𝜕

𝜕𝑟
 (31) 

where the Laplacian operator comes defined by 

∇ = 𝐴 +
1

𝑟

𝜕

𝜕𝜑
 (32) 

According to (32) equation we can write the Hamiltonian as 

𝐻 = −
ℏ

2𝜇
𝐴 −

ℏ

2𝜇

1

𝑟

𝜕

𝜕𝜑
− 𝐾

(𝑍𝑒)𝑒

𝑟
 (33) 

and the (29) equation as 

−
ℏ

2𝜇
𝐴𝜓 −

ℏ

2𝜇

1

𝑟

𝜕 𝜓

𝜕𝜑
− 𝐾

(𝑍𝑒)𝑒

𝑟
𝜓 = 𝐸𝜓 (34) 

Now, reordering and multiplying by −
ℏ

 

𝑟 𝐴𝜓 +
𝜕 𝜓

𝜕𝜑
+

2𝜇𝑟

ℏ
𝐾

(𝑍𝑒)𝑒

𝑟
+ 𝐸 𝜓 = 0 (35) 

we can observe that exists a radial and an angular part. Thus it proceeds to 
put the radial part (r) in a side and the angular part (φ) on the other side of the 
equation, 

𝑟 𝐴𝜓 +
2𝜇𝑟

ℏ
𝐾

(𝑍𝑒)𝑒

𝑟
+ 𝐸 𝜓 = −

𝜕 𝜓

𝜕𝜑
 (36) 

Then knowing that 𝜓 = 𝑅(𝑟)𝑌(𝜑) and leaving out the functions independents 
as much to the radial part as to the angular part we may arrive to the 
following equation: 

𝑌(𝜑) 𝑟 𝐴𝑅(𝑟) +
2𝜇𝑟

ℏ
𝐾

(𝑍𝑒)𝑒

𝑟
+ 𝐸 𝑅(𝑟) = −𝑅(𝑟)

𝜕 𝑌(𝜑)

𝜕𝜑
(37) 

Continuing with a multiplication of  
( ) ( )

 on (37) equation. We obtain, 

                                                           
21 Laplacian 2D obtaining it is found in annex (A.1) 
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1

𝑅(𝑟)
𝑟 𝐴𝑅(𝑟) +

2𝜇𝑟

ℏ
𝐾

(𝑍𝑒)𝑒

𝑟
+ 𝐸 𝑅(𝑟) = −

1

𝑌(𝜑)

𝜕 𝑌(𝜑)

𝜕𝜑
(38) 

In order to (38) give meaning to the equation; both sides of the equality have to 
be constant. In other words, both sides are equal to the same constant. For 
instance: 

1

𝑅
𝑟 𝐴𝑅 +

2𝜇𝑟

ℏ
𝐾

(𝑍𝑒)𝑒

𝑟
+ 𝐸 𝑅 = Ω ⟶ 𝑟 𝐴𝑅 +

2𝜇𝑟

ℏ
𝐾

(𝑍𝑒)𝑒

𝑟
+ 𝐸 𝑅 = Ω𝑅 (39) 

−
1

𝑌

𝜕 𝑌

𝜕𝜑
= Ω ⟶

𝜕 𝑌

𝜕𝜑
= −Ω𝑌(40) 

Once reached this point we have a problem, we do not know what the Ω value 
is, so we are going to use symmetry to try to find that value focusing on the 
(40) equation. 

First of all we need to check if we can use the symmetry to obtain Ω value. 
Knowing that the electron movement with respect to the core draws a 

circumference implies that exist an infinitesimal rotation axis (𝐶 ): 

  𝐶 , 𝜎  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12. Electron movement respect to core 

y 

x 𝐶  

𝜎  

Figure 13. Symmetry elements 

Represents an axis going 
out from the paper plane 
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And if there are infinitesimal rotation axes, there also exists infinitesimal 
vertical planes. So we can conclude that our symmetry point group could be a 
𝐶 . Next, we know that a rotation could be described by the following 
equation: 

𝑌 = 𝑒  (41) 22 

With “m” as whole number. If we would apply our symmetry operation 𝐶  to 
(41) we will obtain, 

𝐶  𝑒 = 𝑒 𝑒 = 𝑒 ( ) (42) 

Function (42) represents, 

 

 

 

 

𝑒                                                               𝐶                                                                  𝑒 ( )               

 

 

Knowing how it is the behaviour of the rotation symmetry operation on the 
function mentioned before, we just need to verify if our rotation symmetry 

operation commutes with our Hamiltonian  𝐻 =  to make possible that an 

eigenfunction from one operator be compatible with the other. Fortunately, it 
is like this, 

[𝐻 , 𝐶 ]𝑌(𝜑) = 0   23 

So, we can also affirm that 𝑒  is 𝐶  base24and it is the general form of 
equation (40) eigenfunction  𝑌 as well. We have to point out that the orbital 
distribution is quite different in 2D respect to the orbital distribution in 3D, as 
one can see by comparing equation (41) with the spherical harmonics 
obtaining in the 3D case. 

Now, making reference to equation (40) we can, right now, solve what the Ω 
value is, 

                                                           
22 It uses this kind of function because this functions describe the periodic movement of a rotation since 
is ranged between 0 and 2π. By means of Euler we have:  𝑌 = 𝑒𝑖𝑚𝜑 = cos 𝑚𝜑 + 𝑖𝑠𝑖𝑛 𝑚𝜑. In addition, m 
is always a whole number, that it is explained in the annex C.1) 
23 Deduction in the annex (B.1) 
24 Verification proof in annex (C.2) 

ϕ ϕ φ 

Figure 14. How affects the rotation operator on 𝑒   
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𝜕 𝑌

𝜕𝜑
= −(−𝑚 )𝑌 →  Ω = −𝑚 (43) 

Carrying Ω value to equation (39) it is obtained, 

𝑟 𝐴𝑅 +
2𝜇𝑟

ℏ
𝐾

(𝑍𝑒)𝑒

𝑟
+ 𝐸 𝑅 = 𝑚 𝑅 (44) 

where reordering, we would have, 

𝑟 𝐴𝑅 +
2𝜇𝑟

ℏ
𝐾

(𝑍𝑒)𝑒

𝑟
+ 𝐸 − 𝑚 𝑅 = 0 (45) 

Regarding  𝐴, we are going to replace it by its content (31), on (45): 

𝑟 + 𝑟 +
ℏ

𝐾
( )

+ 𝐸 − 𝑚 𝑅 = 0 (46)  

Now, we are going to postulate that the solution of the 2D hydrogen 1s orbital 
it is quite similar to the 3D hydrogen, apart from the exponent. If in the 3D 
case we had equation (22), now we would have, 

𝑅 = 𝑁 𝑒  (47) 

Where 𝑁  is the radial normalization, b is the 2D parameter and lastly 𝑎  is the 
Bohr’s radius. Next, we take (47) to the equation (46), 

𝑟

𝜕 𝑁 𝑒

𝜕𝑟
+ 𝑟

𝜕 𝑁 𝑒

𝜕𝑟
+

2𝜇𝑟

ℏ
𝐾

(𝑍𝑒)𝑒

𝑟
+ 𝐸 − 𝑚 𝑁 𝑒 = 0 (48) 

It is done the correspondents derivatives and this results on, 

𝑟 −
𝑏

𝑎
𝑁 𝑒 + 𝑟

𝑏

𝑎
𝑁 𝑒 +

2𝜇𝑟

ℏ
𝐾

(𝑍𝑒)𝑒

𝑟
+ 𝐸 − 𝑚 𝑁 𝑒 = 0 

𝑟 −
𝑏

𝑎
+ 𝑟

𝑏

𝑎
+

2𝜇𝑟

ℏ
𝐾

(𝑍𝑒)𝑒

𝑟
+ 𝐸 − 𝑚 = 0 (49) 

Taking into account that we are dealing with a hydrogen atom 1s orbital we 
can make the “m” term equal to zero. Besides, terms are reordered according 
to “r” power, leading to, 

𝑏

𝑎
+

2𝜇𝐸

ℏ
𝑟 +

2𝜇

ℏ
𝐾(𝑍𝑒)𝑒 −

𝑏

𝑎
𝑟 = 0 (50) 

Because equation (50) must hold for any value of r, we can make both terms 
separately equal to zero, then obtaining b: 

2𝜇

ℏ
𝐾(𝑍𝑒)𝑒 −

𝑏

𝑎
= 0 → 𝑏 =

2𝜇𝐾𝑍𝑒 𝑎

ℏ
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If we go further taking into account that 𝑒 = 𝐾𝑒  and  𝑎 = ℏ
𝜇𝑒

, b results 

as, 

𝑏 =
2𝜇𝐾𝑍𝑒 𝑎

ℏ
  ⎯⎯⎯⎯   𝑏 =

2𝜇𝑍𝑒 𝑎

ℏ
   

ℏ

⎯⎯⎯⎯⎯⎯⎯   𝑏 = 2𝑍 . (51) 

In order to obtain the Energy value, we use the same procedure as before. The 
first term of the (50) equation is solved, then obtaining E: 

+
ℏ

= 0 → 𝐸 = −
ℏ

  

ℏ

⎯⎯⎯⎯⎯⎯⎯ 𝐸 −    ⎯⎯  𝐸 = −  . (52) 

Next, to corroborate that (52) Energy equation is right; we verify its validity by 
means of virial theorem. Now, it is followed by the next series of operations:  

1) 〈𝑇〉 value 

 𝜓∗𝑇𝜓 𝑑𝐴   ⎯⎯⎯⎯⎯⎯ 𝜓∗𝑇𝜓  𝑟𝑑𝑟𝑑𝜑 (𝑇. 1) 

To make the calculation more accurate, we proceed to calculate the 𝑇𝜓 term, 

𝑇𝜓 = −
ℏ

2𝜇
∇ 𝜓 ⎯⎯ −

ℏ

2𝜇

1

𝑟

𝜕𝑅𝑌

𝜕𝑟
+

𝜕 𝑅𝑌

𝜕𝑟
+

1

𝑟

𝜕 𝑅𝑌

𝜕𝜑
 (𝑇. 2) 

Knowing the functions definition 𝑅 = 𝑁 𝑒  and 𝑌 = 𝑁 𝑒  we might reorder 

it (T.1) as 

∇ 𝜓 =
𝑁 𝑒

𝑟

𝜕𝑁 𝑒

𝜕𝑟
+ 𝑁 𝑒

𝜕 𝑁 𝑒

𝜕𝑟
+

𝑁 𝑒

𝑟

𝜕 𝑁 𝑒

𝜕𝜑
 

Operating the derivatives and extracting the independent values, we get: 

∇ 𝜓 = 𝑁 𝑁
𝑒

𝑟
−

𝑏

𝑎
𝑒 + 𝑒

𝑏

𝑎
𝑒 −

𝑒

𝑟
𝑚 𝑒  

∇ 𝜓 = 𝑁 𝑁 𝑒 𝑒 −
𝑏

𝑟𝑎
+

𝑏

𝑎
−

𝑚

𝑟
(𝑇. 3) 

Now it is multiplied by its conjugated function  𝜓∗,   

𝜓∗∇ 𝜓 = 𝑁 𝑁 𝑒 𝑒 𝑒 −
𝑏

𝑟𝑎
+

𝑏

𝑎
−

𝑚

𝑟
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Next, we make m equal to zero; according to we are on the 1s’ orbital, 

𝜓∗∇ 𝜓 = 𝑁 𝑁
𝑏

𝑎
−

1

𝑟
+

𝑏

𝑎
𝑒  (𝑇. 4) 

Take (T.4) to (T.1) equation 

〈𝑇〉 = −
ℏ

2𝜇
𝑁 𝑁

𝑏

𝑎
𝑑𝜑 −

𝑟

𝑟
𝑒 𝑑𝑟 +

𝑏

𝑎
𝑟𝑒 𝑑𝑟   

It is integrated and it is obtained: 

〈𝑇〉 = −
ℏ

2𝜇
𝑁 𝑁

𝑏

𝑎
2𝜋 −

𝑎

2𝑏
+

𝑎

4𝑏
  (𝑇. 5) 

Now, would be a perfect occasion to obtain both normalizations, 

𝑁 𝑑𝜑 = 1 → 𝑁  2𝜋 = 1 → 𝑁 =
1

√2𝜋
 

𝑁 𝑟𝑒 𝑑𝑟 = 1 → 𝑁
𝑎

2𝑏
= 1 → 𝑁 =

2𝑏

𝑎
⎯⎯ 𝑁 =

4𝑍

𝑎
 

Finally, the normalizations are replaced on (T.5) equation, 

〈𝑇〉 = −
ℏ

2𝜇

1

2𝜋

4 𝑍

𝑎

𝑏

𝑎
2𝜋 −

𝑎

2𝑏
+

𝑎

4𝑏
 → 〈𝑇〉 = −

ℏ

2𝜇

1

2𝜋

4 𝑍

𝑎

𝑏

𝑎

2𝜋𝑎

𝑏
−

1

2
+

1

4
 

〈𝑇〉 = −
ℏ

2𝜇

4 𝑍

𝑎
−

1

4
≡ 2

ℏ

𝜇

𝑍

𝑎

ℏ

⎯⎯⎯⎯⎯⎯⎯ 〈𝑇〉 =
2𝑍 𝑒

𝑎
 

2) It is known that 〈𝐸〉 = 〈𝑇〉 + 〈𝑉〉 where 〈𝑇〉 and 〈𝐸〉 come defined as, 

〈𝐸〉 = −
2𝑍 𝑒

𝑎
 ; 〈𝑇〉 =

2𝑍 𝑒

𝑎
 

So, the potential energy is, 

〈𝑉〉 = 〈𝐸〉 − 〈𝑇〉 = −
2𝑍 𝑒

𝑎
−

2𝑍 𝑒

𝑎
= −

4𝑍 𝑒

𝑎
 

3) In addition, it is also known that 2〈𝑇〉 = 𝑛〈𝑉〉 25where “n” is the order of 
the homogenous function representing the potential energy, in this case 
represented by the electrostatic potential, so 

〈𝑉〉 =
2〈𝑇〉

𝑛
⎯⎯

〈 〉

⎯⎯⎯⎯⎯⎯⎯ 〈𝑉〉 =
2

−1

2𝑍 𝑒

𝑎
≡ −

4𝑍 𝑒

𝑎
 

                                                           
25 The order of the homogenous function would be equal to minus zero, because: 

𝑉 = 𝐾
(𝑍𝑒)𝑒

𝑟
= 𝐾(𝑍𝑒)𝑒 𝑟 ⎯ 𝑉 = 𝐾(𝑍𝑒)𝑒 𝑟  
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2 vs r R2D
2

Therefore, our energies obey the virial theorem and according to it, we can 
make a series of calculations on a trustworthy way. Now, we find that we can 
make the following questions: 

1) What is the probability to find an electron between core and the first 
Bohr radius in 2D? 

|𝜓| 𝑑𝐴 = [𝑅 (𝑟)] [𝑌 (𝜑)]  𝑟𝑑𝑟𝑑𝜑26 

As the polar harmonics are normalized we have then: 

[𝑌 (𝜑)] 𝑑𝜑 = 1 

Just remaining: 

[𝑅 (𝑟)]  𝑟𝑑𝑟 =
4𝑍

𝑎
𝑟 𝑒 𝑑𝑟 =

4𝑍

𝑎

𝑒

4 𝑍
𝑎 −

4𝑍𝑟

𝑎
− 1   

2𝐷 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = [𝑒 (−4𝑍 − 1) − 𝑒 (−1)] ⎯ 2𝐷 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 0,9084 ≡ 90,84% 

In 3D, the probability to find an electron is 0,3233 or 32,33%27. In the follow 
figure we may compare both probabilities as much in 2D as in 3D, 

 

 

 

 

 

 

 

 

 

 

 

 

                                                           
26 Jacobian obtaining on annex A.2) 
27 Obtaining of 3D probability on annex D.1)  

Figure15. Comparison of the probability to find an electron between 2D and 3D 
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It is observed 2D probability is higher than 3D probability, this likely be due to 
the electron is more tightly bound to the nucleus than in 3D. In addition, the 
difference according to space is halved from 3D to 2D.28  

Now the electron ground state energies as much in 2D as in 3D are, 

𝐸 = 𝐼. 𝐸. (2𝐷) = −
2𝑍 𝑒

𝑎
= −54,423 𝑒𝑉 (53)29 

𝐸 = 𝐼. 𝐸. (3𝐷) = − = −13,606 𝑒𝑉 (Levine, 2001)   

It is observed that the 2D energy is higher than 3D energy. Therefore we would 
have to apply a 4 times greater energy to ionize the hydrogen atom or in other 
words, to pull out its electron. 

 

 

  

                                                           
28 In fact, as one can notice by comparing eq. (22)  and eq. (47) (both without normalizations), the 
ground state wave function of the 2D hydrogen electron is like that of the 3D one but replacing the 
usual 3D Bohr radius, 𝑎  , by an effective 2D Bohr radius, 𝑎∗  , which turns out to be simply 𝑎∗ =

𝑎
2 . 

29 𝐸 = −  is the general equation for 3D ionization energy 

eV 3D 2D
0
-5
-10
-15
-20
-25
-30
-35
-40
-45
-50
-55
-60

|∆𝐸| = 40,817 𝑒𝑉 

Figure16. Comparison between 1s orbital (3D) and 1s’ orbital (2D) 

𝐼. 𝐸. (3𝐷) 

𝐼. 𝐸. (2𝐷) 



- 25 - 
 

Some differences between the 2D and 3D hydrogen atom 
 

Similar procedure for other higher energy states where the series of energies 
and orbitals obtained differ systematically from the 3D case. The following 
table summarizes them30: 

 

 

 

 

 

 

 

 

 

By inspection of Table 2, one can infer a general expression for the energy of 
2D hydrogenic atoms: 

𝐸 = −
2𝑍 𝑒

(2𝑛 − 1) 𝑎
 (54)  

Where n is the quantum number ( 𝑛 = 1,2,3, …)  

                                                           
30 All the calculations can be found in annex E.1) 

Table2. Different hydrogen 2D properties about energies and orbitals  

Figure 17. Comparison of energetic levels between 2D and 3D 
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The orbital symmetry regarding on their energies would be, for 2D and 3D 
respectively, 
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5

5
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10 5 5 10

10

5

5

10

10 5 5 10

10

5

5

10

10 5 5 10

10

5

5

10

𝑠 𝑜𝑟𝑏𝑖𝑡𝑎𝑙 (𝑚 = 0) 

𝑝 𝑜𝑟𝑏𝑖𝑡𝑎𝑙𝑠 (𝑚 = ±1) 

 

𝑑 𝑜𝑟𝑏𝑖𝑡𝑎𝑙𝑠 (𝑚 = ±2) 

 

𝑑 𝑜𝑟𝑏𝑖𝑡𝑎𝑙𝑠 (𝑚 = ±2, ±1, 0) 

 

𝑝 𝑜𝑟𝑏𝑖𝑡𝑎𝑙𝑠 (𝑚 = ±1, 0) 

 

𝑠 𝑜𝑟𝑏𝑖𝑡𝑎𝑙 (𝑚 = 0) 

Figure 18. Comparison of orbitals between 2D and 3D. (a) 2D, (b) 3D 



- 27 - 
 

3D 2D

eV

0
-2
-4
-6
-8

-10
-12
-14
-16
-18
-20
-22
-24
-26
-28
-30
-32
-34
-36
-38
-40
-42
-44
-46
-48
-50
-52
-54

3s,3p,3d  (-1,511 eV)

2s,2p (-3,401 eV)

1s (-13,606 eV)

1s' (-54,423 eV)

2s',2p' (-6,047 eV)

3s',3p',3d'  (-2,177 eV)

1𝑠 ← 2𝑠, 2𝑝 
Δ𝐸 ← = −10,205 𝑒𝑉

1𝑠 ← 3𝑠, 3𝑝, 3𝑑 
Δ𝐸 ← = −12,095 𝑒𝑉

2𝑠, 2𝑝 → 3𝑠, 3𝑝, 3𝑑 
Δ𝐸 ← = −1,89 𝑒𝑉

1𝑠′ ← 2𝑠′, 2𝑝 ′
Δ𝐸 ← = −48,376 𝑒𝑉

1𝑠′ ← 3𝑠′, 3𝑝′, 3𝑑′ 
Δ𝐸 ← = −52,246 𝑒𝑉

2𝑠′, 2𝑝′ ← 3𝑠′, 3𝑝′, 3𝑑′ 
Δ𝐸 ← = −3,87 𝑒𝑉

4s,4p,4d,4f  (-0,850 eV)

1𝑠 ← 4𝑠, 4𝑝, 4𝑑, 4𝑓 
Δ𝐸 ← = −12,756 𝑒𝑉

4s',4p',4d',4f'  (-1,111 eV)

2𝑠, 2𝑝 ← 4𝑠, 4𝑝, 4𝑑, 4𝑓 
Δ𝐸 ← = −2,551 𝑒𝑉

3𝑠, 3𝑝, 3𝑑 ← 4𝑠, 4𝑝, 4𝑑, 4𝑓 
Δ𝐸 ← = −0,661 𝑒𝑉

1𝑠 ← 4𝑠, 4𝑝, 4𝑑, 4𝑓 
Δ𝐸 ← = −53,312 𝑒𝑉

2𝑠, 2𝑝 ← 4𝑠, 4𝑝, 4𝑑, 4𝑓 
Δ𝐸 ← = −4,936 𝑒𝑉

3𝑠′, 3𝑝′, 3𝑑′ ← 4𝑠′, 4𝑝′, 4𝑑′, 4𝑓′ 
Δ𝐸 ← = −1,066 𝑒𝑉

Further differences between the 2D and 3D hydrogen atom 
 

In this section we illustrate further differences between the electronic properties of 3D 
and 2D hydrogenic atoms 

-Energetic differences:  
· Emission spectrum differences: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To obtain all this energies we only have to take into account the equation (54) 
for 2D energies and equation (ref.29) for 3D energies. Lastly, we would 
calculate the difference between states, to cover all the electron transitions. 

For instance: Electronic transition from 2s excited state to 1s ground state in 2D. 

(Emission process) 

First of all, we would obtain the single energies for 2s and 1s: 

𝐸 = −
2𝑍 𝑒

(2𝑛 − 1) 𝑎
⎯ 𝐸 = −2ℎ𝑎𝑟𝑡𝑟𝑒𝑒𝑠 ≡ −54.423𝑒𝑉 31 

𝐸 = −
2𝑍 𝑒

(2𝑛 − 1) 𝑎
⎯ 𝐸 = −

2

9
ℎ𝑎𝑟𝑡𝑟𝑒𝑒𝑠 ≡ −6.047𝑒𝑉32 

                                                           
31 1ℎ𝑎𝑟𝑡𝑟𝑒𝑒 = 27.212𝑒𝑉 

Figure 19. Emission spectrum comparison between 2D and 3D. 
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Now, it is made the difference between these states obtaining,  

∆𝐸 ← = 𝐸 − 𝐸 = −
16

9
ℎ𝑎𝑟𝑡𝑟𝑒𝑒𝑠 ≡ −48.376𝑒𝑉 

So, in this way you could obtain all the electronic transitions for every single 

orbital. 

 

 

 

 

 

 

 

 

 

 

 

                                                                                                                                                                          
32 Note as the 2s & 2p are degenerated, the energies would be the same and therefore the energy 
difference will be the same as well. 

Figure 20, 21, 22. Comparison of the emission spectrum between 2D and 3D plotted as Paschen’s, Balmer’s & 
Lyman’s series respectively. 

 

Series de Lyman (UV)
3D

λ (nm)
0 10 20 30 40 50 60 70 80 90 100 120 130

2D

λ (nm)

0 10 20 30 40 50 60 70 80 90 100 120 130

1𝑠′ ← 2𝑠′, 2𝑝 ′
𝜆 ← = 25𝑛𝑚

1𝑠′ ← 3𝑠′, 3𝑝′, 3𝑑′ 
𝜆 ← = 24𝑛𝑚 1𝑠 ← 4𝑠, 4𝑝, 4𝑑, 4𝑓 

𝜆 ← = 23𝑛𝑚

1𝑠 ← 2𝑠, 2𝑝 
Δ𝜆 ← = 121𝑛𝑚

1𝑠 ← 3𝑠, 3𝑝, 3𝑑 
Δ𝜆 ← = 103𝑛𝑚

1𝑠 ← 4𝑠, 4𝑝, 4𝑑, 4𝑓 
Δ𝜆 ← = 97𝑛𝑚

Series de Balmer (UV-Vis)
3D

λ (nm)

250 300 350 400 450 500 550 600 650 700
2D

λ (nm)

250 300 350 400 450 500 550 600 650 700

2𝑠, 2𝑝 ← 3𝑠, 3𝑝, 3𝑑 
𝜆 ← = 656𝑛𝑚

2𝑠, 2𝑝 ← 4𝑠, 4𝑝, 4𝑑, 4𝑓 
𝜆 ← = 486𝑛𝑚

2𝑠′, 2𝑝′ ← 3𝑠′, 3𝑝′, 3𝑑′ 
𝜆 ← = 320𝑛𝑚

2𝑠, 2𝑝 ← 4𝑠, 4𝑝, 4𝑑, 4𝑓 
𝜆 ← = 251𝑛𝑚

Series de Paschen (IR)
3D

λ (nm)

800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000
2D

λ (nm)

800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000

3𝑠, 3𝑝, 3𝑑 ← 4𝑠, 4𝑝, 4𝑑, 4𝑓 
𝜆 ← = 1876𝑛𝑚

3𝑠′, 3𝑝′, 3𝑑′ ← 4𝑠′, 4𝑝′, 4𝑑′, 4𝑓′ 
𝜆 ← = 1163𝑛𝑚
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1 H He

2 Li Be B C N O F Ne

3 Na Mg Al Si P S Cl Ar Sc Ti V Cr Mn Fe Co Ni Cu Zn

4 K Ca Ga Ge As Se Br Kr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu

5 Rb Sr In Sn Sb Te I Xe La Hf Ta W W - - - - - - - - - - - - - - - - - - -

6 Cs Ba - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

s

p

d

f

· Periodic table differences (until Z=74) 
 

3D 

 

 

 

 

 

 

2D 

 

 

As can be observed on 2D periodic table, for simplicity we do not take into account 
with the Aufbau principle as it does on 3D periodic table.  

1 H He

2 Li Be B C N O

3 F Ne Na Mg Al Si P S Cl Ar

4 K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge

5 As Se Br Kr Rb Sr Y Zr Nb Mo Tc Ru Rh Pd

6 Ag Cd In Sn Sb Te I Xe Cs Ba La Ce Pr Nd

7 Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Hf Ta W

s

p

d

f
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4) The 𝑯𝟐  molecule33 
 

We next study the formation of the simplest possible molecule in a 2D 

universe, the planar 𝐻  molecule. Again by comparison with the well-known 

case of 3D 𝐻 , we will get a flavour of how different chemistry and reactivity 
would be in 2D.  

First of all, we define the geometry of the system: 

 

 

 

 

 

 

 

𝑟 = 𝑥 + 𝑦  

𝑟 = (𝑥 +
𝑅

2
) + 𝑦 ;  𝑟 = (𝑥 −

𝑅

2
) + 𝑦  

Next, it does the following test to continue with the calculations: 

𝑆 = ⟨𝜙 |𝜙 ⟩ = 1                          𝑖𝑓  𝑎 = 𝑏 

Where 𝜙 =
√

𝑒  and 𝜙 =
√

𝑒 . Note 𝜙  and 𝜙   have atomic units 

(𝑎 = 1 𝑜𝑟 𝑎∗ = 1/2). 

To verify the previous equality it has to make Rab equal to zero, so we have, 

𝑆 = ⟨𝜙 |𝜙 ⟩ = ⟨𝑁𝑒 |𝑁𝑒 ⟩ = 𝑁 ⟨𝑒 |𝑒 ⟩34 

𝑁 𝑒 𝑒  𝑑𝐴 ≡ 𝑁 𝑟  𝑒 𝑒  𝑑𝑟 𝑑𝜑 (55) 

For simplicity, we may leave out the subscripts and (55) results such as 

                                                           
33 Other way to treat 𝐻  molecule is reported in the annex F.3) 
34 Notice 𝑒  is just the 2D hydrogen 1s wavefunction without their normalization. 

y 

x 

x’ 

y’ 
rb ra 

Rab A B 

Figure 23. A & B are nuclei, ra & rb are the distance of the nuclei A & B with the electron and Rab is the 
distance between nuclei. 
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𝑆 ≡ 𝑁 𝑟𝑒  𝑑𝑟𝑑𝜑 
√

⎯⎯⎯⎯⎯  𝑆 = 1 35 

Then we can proceed changing the coordinates from polar to Cartesian 
obtaining the following expressions: 

𝜙 =
4

√2𝜋
𝑒  

𝜙 =
4

√2𝜋
𝑒  

Now, it obtains the overlap integral between both nuclei in an infinite space, 

𝑆 ≡
4

√2𝜋
𝑒  𝑒 𝑑𝑥𝑑𝑦 = 1 

Knowing that in 3D molecule 𝐻  the Req (equilibrium distance) is 2 Bohrs 
(Levine, 2001), we could extrapolate this information in order to obtain the 2D 
𝐻  molecule Req. As we want to cover the whole space that occupies the 2D 
𝐻  molecule, we are going to suppose, from the 2 Bohrs data, the whole space 
could be arbitrarily covered by 3 Bohrs where theoretically has to be similar to 
an infinite space. 

𝑆 ≡
4

√2𝜋
𝑒  𝑒 𝑑𝑥𝑑𝑦 = 0,999964 ≈ 1 

Once deduced the [-3, 3] limits are practically the same than [−∞, ∞] it may 
does all the calculations based on infinite limits. So the overlap integral has 
the next behaviour, 

 

 

 

 

 

 

 

Where whenever it increases the Rab, decreases the overlap. Therefore the 
function obtained has congruence because it is what was expected. 

                                                           
35 The calculations have been done by Mathematica 10 and all the commands used are in the annex F.1) 
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U/hartrees U/hartrees 

Next it is obtained the Haa & Hab36 

𝐻 = 𝜙 𝐻 𝜙 = 𝜙∗ 𝐻𝜙  𝑑𝐴 (56) 

𝐻 = 𝜙 𝐻 𝜙 = 𝜙∗ 𝐻𝜙  𝑑𝐴 (57) 

Those integrals are carried to the bonding and antibonding energies equations 
which have been obtained and may be seen in the annex F.2). 

𝐸 =
𝐻 + 𝐻

1 + 𝑆
+

1

𝑅
; 𝐸 =

𝐻 − 𝐻

1 − 𝑆
+

1

𝑅
  

The U (Rab) curves to 2D and 3D electronic state 1s of 𝐻  respectively are, 

 

 

 

 

 

 

 

 

 

In those graphics it is observed the huge energy that has the 2D 𝐻  (-70,75eV) 
regarding to 3D 𝐻  (-16.32eV) and besides, the proximity of the electron to the 
hydrogen atoms leading to believe the great difference on the electrostatic 
energies between 2D and 3D. This is also a consequence of the enhanced e-
nucleus interaction in 2D systems, and it implies 2D molecules should display 
much superior reactivity than 3D analogues. 

On the other hand, 2D materials are expected to have higher melting point as 
well as stronger mechanical properties (compression, Young modulus and so 
on) than their 3D counterparts, since these properties often scale proportional 
to 𝑅  . (Naumann, 2009) 

  

                                                           
36 As we have a homonuclear molecule we can affirm that Haa=Hbb or Hab=Hba. 

R/bohrs 

R/bohrs 

2D 3D 

𝐸  

𝐸  
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Difference about rotational constant between 3D and 2D 
 

Let us start by the rotational constant definition, 

𝐵 =
ℎ

8𝜋 𝐼
 (58) 

Where h is just the Planck’s constant and I the inertial moment what comes 
given by, 

𝐼 = 𝜇𝑅  (59) 

Knowing 𝜇 is the reduced mass and that we are treating 𝐻 , the reduced mass 
may be written as follows, 

𝜇 =
𝑚 𝑚

𝑚 + 𝑚
=

𝑚

2𝑚
→ 𝜇 =

𝑚

2
 (60) 

Taking (60) to (59) and (59) to (58), it may obtains the next expression, 

𝐵 =
ℎ

4𝜋 𝑚  𝑅
 (61) 

So, once to this point we could obtain the rotational constant for both 
dimensions. 

𝐵 = 9,031𝑥10 𝑠 37 

And if we go beyond we might obtain the Δ𝐸 ⟶ , where by definition it is equal 
to 2B, then 

Δ𝐸 → = 𝜐 = 2𝐵 ⟶ Δ𝐸 → = 1804,74𝐺𝐻𝑧  

And on the other hand we have, 

Δ𝐸 → = 𝜐 = 2𝐵 ⟶ Δ𝐸 → = 20052𝐺𝐻𝑧  

Where 𝐵 = 1,003𝑥10 𝑠 . So we could conclude with the following relation, 

10Δ𝐸 → ≅ Δ𝐸 →  (62) 

This implies that the rotational spectroscopy in 2D still in the 
microwave spectrum, but now, with a 10 times larger separation 
between lines than it was in 3D  

                                                           
37 To calculate B, we need to turn into from the Bohr unit to I.S. (meters). So, if 1Bohr is 0,529177Å then 
0,529177Å is 0,529177x10-10m 
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5) 2D helium atom 
 

We have seen in the previous section electron-nucleus interaction in 2D are 
stranger than usual, and this has important implications e.g. in the formation 
of molecules. The question arises whether the same is true for electron-
electron interactions and if this has implications for polielectronic 2D atoms 
too. To this issue, in this address section we will study the helium atom. 

The helium atom has two electrons and a nuclear charge +2e. We suppose 
that the core is stationary, and we will establish the coordinates system at the 
nucleus. The electron 1 & 2 coordinates are (x1, y1, z1) and (x2, y2, z2). If we take 
the nuclear charge as +Ze instead of +2e, we could treat ions with the helium 
configuration as H-, Li+, Be2+. The Hamiltonian would be, 

𝐻 = −
ℏ

2𝜇
∇ −

ℏ

2𝜇
∇ −

𝑍𝑒

𝑟
−

𝑍𝑒

𝑟
+

𝑒

𝑟
 (63) 

Where 𝜇 as we have already seen is like the electron mass and is independent 
use one terminology or another (electron mass or relative mass), r1 and r2 are 
the distance between electron 1 and 2 to the core, and r12 is just the distance 
between both electrons. The two first terms are the electrons kinetic energy. 
The third and fourth terms are the electron potential energy. Finally the last 
term is the Coulomb interaction between electrons. 

The Schrödinger equation has four independent variables, one for each 
electron. In polar coordinates we have,  

𝜓 = 𝜓(𝑟 , 𝜑 , 𝑟 , 𝜑 )(64) 

The 2D polar Laplacian comes given by (30), replacing r, φ by ri, φi where i is 
the subscript of the electron on treatment. The r12 variable may be written as, 

𝑟 = (𝑥 − 𝑥 ) + (𝑦 − 𝑦 )  (65) 

Now, r12 is the responsible term that avoid we may separate on any 
coordinates system, so we only could use approximate methods. We shall 
study this problem with two different approaches of increasing complexity and 
accuracy: 1st order perturbational method38 & variational method. 

 
 
 
 
 
 
 
 

                                                           
38 By simplicity we will call it from here on out: Perturbational method 
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Perturbational method 
 

First of all we need to know that the Hamiltonian might be divided in two 
terms, 

𝐻 = 𝐻 + 𝐻  (66) 

The first term will give us as eigenvalue the hydrogenoid atom energy in regard 
with both independent electrons. It may describes, 

𝐻 = −
ℏ

2𝜇
∇ −

𝑍𝑒

𝑟
−

ℏ

2𝜇
∇ −

𝑍𝑒

𝑟
 (67) 

It is observed that,  

𝐻 = −
ℏ

2𝜇
∇ −

𝑍𝑒

𝑟
, 𝐻 = −

ℏ

2𝜇
∇ −

𝑍𝑒

𝑟
 

The second Hamiltonian is the perturbative term, what will correct the energy 
result. 

𝐻 =
𝑒

𝑟
 (68) 

We are going to start defining the system coordinates, 

 

 

 

 

 

 

 

  

 

 

 

 

 

𝜑  

𝜑  

𝜑  

𝑟  

𝑟  

𝑟  

𝑒  

𝑒  

y 

x 
+2𝑒Figure 24. The nucleus is the blue circle, e1 and e2 are the yellow circles, r1 and r2 are the distance of 

electrons 1 & 2 with the nucleus and r12 is the distance between electrons. 
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Let us introduce about the wave function (64), we need to antisymmetrize it 
with the Slater determinant, 

𝜓 = 𝐴𝜓 =
1

√2

𝜙 𝛼 𝜙 𝛽
𝜙 𝛼 𝜙 𝛽

=
1

√2
[𝜙 𝜙 (𝛼𝛽 − 𝛽𝛼)]39 

To check that the wave function 𝜓  is equal to 𝜙 𝜙  ,we are going to start by 
observe if is obeyed the ortonormality condition focusing mainly on the spin 
part, 

⟨𝜓 |𝜓 ⟩ =
1

√2
[𝜙 𝜙 (𝛼𝛽 − 𝛽𝛼)]

1

√2
[𝜙 𝜙 (𝛼𝛽 − 𝛽𝛼)]

=
⟨𝜙 𝜙 |𝜙 𝜙 ⟩

2
[⟨𝛼𝛽|𝛼𝛽⟩ − ⟨𝛼𝛽|𝛽𝛼⟩ − ⟨𝛽𝛼|𝛼𝛽⟩ + ⟨𝛽𝛼|𝛽𝛼⟩]

⟨ | ⟩
⎯⎯⎯

⟨ | ⟩
⎯⎯⎯  

⟨𝜙 𝜙 |𝜙 𝜙 ⟩

2
 2 

⟨ | ⟩
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯  ⟨𝜓 |𝜓 ⟩ = 1 40 

How it is known, the equation (67) gives us as eigenvalue the hydrogenoid 
atom energy (54). To obtain (68), the expectation value, we use atomic units, 

𝐽 = 𝜓
𝑒

𝑟
 𝜓

 ( . .)
⎯⎯⎯⎯⎯⎯⎯  𝜓

1

𝑟
 𝜓  

𝜓
1

𝑟
 𝜓 = 𝜓  𝜓  𝑟 𝑟

1

𝑟
 𝑑 𝑟 𝑑𝑟 𝑑𝜑 𝑑𝜑  (69) 

By means of cosine theorem we can achieve the following, 

𝑟 = 𝑟 + 𝑟 − 2𝑟 𝑟 cos(𝜑 − 𝜑 ) 

So (68) results as, 

𝜓
1

𝑟
 𝜓 = 𝜓 𝜓 𝑟 𝑟

1

𝑟 + 𝑟 − 2𝑟 𝑟 cos(𝜑 − 𝜑 )
 𝑑 𝑟 𝑑𝑟 𝑑𝜑 𝑑𝜑  (69) 

Now, with the intention to reduce the dimensionality of this multiple integral 
we are going to make a variables change, 

𝜑 = 𝜑 + 𝜑  

𝜑 = 𝜑 − 𝜑  

Where 𝑑𝜑 𝑑𝜑 =  𝑑𝜑 𝑑𝜑 . 41 So (70) results as 

                                                           
39 𝜓  is the wave function antisymmetrized 
40It is skipped  this checking, but it is easily demonstrable 
41It has taken account the following equalities, 

𝜑
1

=
𝜑+ 𝜑−

2
;  𝜑

2
=

𝜑+ 𝜑−

2
; 
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𝜓
1

𝑟
 𝜓 = 𝜓 𝜓 𝑟 𝑟

1

2 𝑟 + 𝑟 − 2𝑟 𝑟 cos(𝜑 )
 𝑑 𝑟 𝑑𝑟 𝑑𝜑 𝑑𝜑  (71)42 

Finally as an Ionization Potential we have, 

𝐼. 𝑃. = 𝐸 − 𝐸 = (𝐸 + 𝐸 + 𝐽 ) − 𝐸  

Where 𝐸  and 𝐸  are the monoelectronic energy already known and 𝐽  is the 
Coulomb integral, so 

𝐼. 𝑃. = 𝐸 + 𝐽 = −2𝑍 + 𝜓
1

𝑟
 𝜓 = −8 + 4.71 = −3.29ℎ𝑎𝑟𝑡𝑟𝑒𝑒𝑠 = −89.527𝑒𝑉 

Variational method 
 

This method consists on the addition of one term that is called 𝛼. The 𝛼 term 
might be associated to the screening effect what will be responsible of the 
decreasing on the effective nuclear charge, 𝛼 will be ranged from 0 to 1, where 
for the hydrogen atom (only one electron) 𝛼 would be 1, and as soon as the 
electron amount increase, this parameter will go down. 

It does the same calculations what we have done in the previous method, the 
difference how is already mentioned is 𝛼, then the wave function has the 
following form: 

𝜓(𝑟, 𝜑) =
4𝑍

√2𝜋
𝑒  

To obtain the I.P. we would do the same what we have done on the 
perturbational method, 

1- Antisymmetrize the wavefunction with the Slater determinant. 
2- It would be obtained the hydrogenoid energy without the electronic 

repulsion energy. The hydrogenoid atom energy equation is, 
 

𝐸 = 2𝑍 𝛼 − 4𝑍 𝛼 
 

3- Next, just it is solved the Coulomb integral (𝐽 ) . Afterwards we would 
have to minimize the energy value and at this value of energy, take the 

𝛼 value(𝛼 = 0.85)43. 
𝐸 = 𝐸 + 𝐸 + 𝐽 44 

 

                                                           
42 It is observed the change on the integral range in regard with the angles. The explanation is left out of 
this study. Besides, this equation has been solved numerically using Mathematica. J12=4.71hartrees. See 
annex G.1) 
43 Some curiosities about the 𝛼 value on the annex G.3) 
44 Variational method J12 =4.37hartrees. See annex G.1) 
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3D 2D

eV

0
-4
-8

-12
-16
-20
-24
-28
-32
-36
-40
-44
-48
-52
-56
-60
-64
-68
-72
-76
-80
-84
-88
-92
-96

-100

𝐸 = −13.605 𝑒𝑉 

𝐸 = −54.423 𝑒𝑉 

𝐸 = −24.587 𝑒𝑉 

𝐸 = −98.780 𝑒𝑉 

∆𝐸 = 10.982 𝑒𝑉 

∆𝐸 = 44.357 𝑒𝑉 

4- To finish, it is obtained the Ionization Potential, 

𝐼. 𝑃. = 𝐸 + 𝐽 = −2𝑍 𝛼 + 𝜓
1

𝑟
 𝜓 = −3.63ℎ𝑎𝑟𝑡𝑟𝑒𝑒𝑠 = −98.780𝑒𝑉 

Lastly, we could say that the variational method improves the electrostatic 
repulsion energy from the perturbational method by 7,22%45 

Having reached this point, we could compare the energies between hydrogen 
and helium atoms46, 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We realise that the energy differences in 2D & 3D between hydrogen & helium 
are proportional between them by approximately a 4 factor, 

∆𝐸2𝐷

∆𝐸3𝐷
=

44.357𝑒𝑉

10.982𝑒𝑉
≅ 4 → ∆𝐸2𝐷 ≅ 4 ∆𝐸3𝐷  (72) 

So, if we would want to know 2D energies, just taking into account (72) we 
could know the 2D energy wished. (At least, in the case of hydrogen and 
helium) 

  

                                                           
45 %𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 = 1 −

( )

( )
𝑥100 = 7.218% 

46 The energy used is the calculated by variational method, because it is the enhanced energy value. 
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Conclusions 
 

The 2D science material is still in its infancy nowadays but, despite this, the 
scientists have already collected so much information about it. We have 
checked out e.g. Young modulus, thermal conductivity, electronic mobility, 
lattice constants, and relative permittivity (Table 1) finding an unbelievable 
properties on some 2D materials, which have really showed to be better than 
their 3D counterparts. From the study of this materials, arise the use of 
bidimensional models with the well-known simplest atom: the hydrogen atom.  

We have seen the 2D hydrogen atom presents a strong interaction electron-
nucleus. As a consequence of this, it generates more stability, taking place 4 
times larger Ionization Energy, exactly: -54,423 eV, than 3D hydrogen atoms: -
13,605 eV. In addition, it has been found a particular orbital distribution 
where the s orbitals are similar to the 3D, fitting as much 2 electrons. 
However, from the p orbital to next orbitals, just 4 electrons could be fit there, 
giving a periodic table more than unusual. Regarding with the hydrogen 2D 
emission spectrum, it has found that the transitions occur a lower 
wavelengths than in 3D hydrogen atom emission spectrum. Nevertheless, 
Paschen’s, Balmer’s and Lyman’s series still similar to 3D. 

With relation to the 𝐻  molecule, we have found out that the 2D energy and 
3D energy at equilibrium distance differ, approximately, by a 4 factor. This 
huge energy belonging to 2D 𝐻  molecule results in large stability, causing an 
increasing on their mechanical properties as the Young modulus, 
compressivity and included as well, higher melting point. Besides, as far as 
rotational spectroscopy is concerned, it still is in the microwave spectrum, 
only differing with the 3D 𝐻  molecule that the difference between their 
rotational lines are 10 times larger than they are in 3D (eq. 62). 

Finally, it has done two different treatments to obtain the helium 2D Ionization 
Energy: 1st order perturbational method & Variational method; where the 
variational method has improved the perturbational method by 7 points, 
approximately. Also, it is noticed that the energetic difference between 
hydrogen and helium atoms in 2D are 4 times, approximately, larger than they 
are in 3D (eq. 71). 
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Annex 
 

A.1) Polar 2D Laplacian obtaining 
 

First of all, it defines the system and the conversion from Cartesian 
coordinates to polar coordinates, 

 

𝑟 = 𝑥 + 𝑦  ;  𝜑 = 𝑎𝑟𝑐𝑡𝑔 =
𝑦

𝑥
 

𝑥 = 𝑟𝑐𝑜𝑠𝜑 ; 𝑦 = 𝑟𝑠𝑖𝑛𝜑 

 

 

 

Now, it is prepared the equation for the variables changing regarding to x and 
to y: 

𝜕

𝜕𝑥
=

𝜕

𝜕𝑟

𝜕𝑟

𝜕𝑥
+

𝜕

𝜕𝜑

𝜕𝜑

𝜕𝑥
(𝑎. 1) 

𝜕

𝜕𝑦
=

𝜕

𝜕𝑟

𝜕𝑟

𝜕𝑦
+

𝜕

𝜕𝜑

𝜕𝜑

𝜕𝑦
 (𝑎. 2) 

𝜕

𝜕𝑥
=

𝜕

𝜕𝑟

𝜕𝑟

𝜕𝑥

𝜕𝑟

𝜕𝑥
+

𝜕

𝜕𝑟

𝜕 𝑟

𝜕𝑥
+

𝜕

𝜕𝜑

𝜕𝜑

𝜕𝑥

𝜕𝜑

𝜕𝑥
+

𝜕

𝜕𝜑

𝜕 𝜑

𝜕𝑥
 (𝑎. 3) 

𝜕

𝜕𝑦
=

𝜕

𝜕𝑟

𝜕𝑟

𝜕𝑦

𝜕𝑟

𝜕𝑦
+

𝜕

𝜕𝑟

𝜕 𝑟

𝜕𝑦
+

𝜕

𝜕𝜑

𝜕𝜑

𝜕𝑦

𝜕𝜑

𝜕𝑦
+

𝜕

𝜕𝜑

𝜕 𝜑

𝜕𝑦
(𝑎. 4) 

With the chain rule is obtained the following derivative series for x: 

𝜕𝑟

𝜕𝑥
= 2𝑥 ·

1

2
(𝑥 + 𝑦 ) / ≡

𝑥

𝑥 + 𝑦
⟹

𝜕𝑟

𝜕𝑥
=

𝑥

𝑟
(𝑎. 3.1) 

𝜕 𝑟

𝜕𝑥
= (𝑥 + 𝑦 ) / + 𝑥 −

2𝑥

2
(𝑥 + 𝑦 ) / =

1

𝑟
−

𝑥

𝑟
=

1

𝑟
1 −

𝑥

𝑟
 (𝑎. 3.2) 

𝜕𝜑

𝜕𝑥
=

1

1 +
𝑦

𝑥

· −
𝑦

𝑥
≡ −𝑦(𝑥 + 𝑦 ) ⟹

𝜕𝜑

𝜕𝑥
= −

𝑦

𝑟
 (𝑎. 3.3) 

𝜕 𝜑

𝜕𝑥
= −𝑦2𝑥(−1)(𝑥 + 𝑦 ) =

2𝑥𝑦

𝑟
 (𝑎. 3.4) 

r 



- 41 - 
 

And the same for y: 

𝜕𝑟

𝜕𝑦
= 2𝑦 ·

1

2
(𝑥 + 𝑦 ) /

≡
𝑦

𝑥 + 𝑦
⟹

𝜕𝑟

𝜕𝑦
=

𝑦

𝑟
(𝑎. 4.1) 

𝜕 𝑟

𝜕𝑦
= (𝑥 + 𝑦 ) / + 𝑦 −

2𝑦

2
(𝑥 + 𝑦 ) / =

1

𝑟
−

𝑦

𝑟
=

1

𝑟
1 −

𝑦

𝑟
 (𝑎. 4.2) 

𝜕𝜑

𝜕𝑦
=

1

1 +
𝑦

𝑥

· −
𝑥

𝑥
≡ 𝑥(𝑥 + 𝑦 ) ⟹

𝜕𝜑

𝜕𝑥
= −

𝑥

𝑟
 (𝑎. 4.3) 

𝜕 𝜑

𝜕𝑥
= 𝑥2𝑥(−1)(𝑥 + 𝑦 ) =

2𝑥𝑦

𝑟
 (𝑎. 4.4) 

Now, knowing that = 𝑐𝑜𝑠𝜑;  = 𝑠𝑖𝑛𝜑  may define (a.3.1) (a.3.2) (a.3.3) (a.3.4) & 

(a.4.1) (a.4.2) (a.4.3) (a.4.4) in the following way, 

 
𝜕𝑟

𝜕𝑥
= 𝑐𝑜𝑠𝜑 (𝑎. 3.1.1) 

𝜕 𝑟

𝜕𝑥
=

1

𝑟
[1 − 𝑐𝑜𝑠 𝜑] =

1

𝑟
𝑠𝑖𝑛 𝜑(𝑎. 3.2.1) 

𝜕𝜑

𝜕𝑥
= −

𝑠𝑖𝑛𝜑

𝑟
 (𝑎. 3.3.1) 

𝜕 𝜑

𝜕𝑥
=

2𝑐𝑜𝑠 𝜑𝑠𝑖𝑛 𝜑

𝑟
 (𝑎. 3.4.1) 

𝜕𝑟

𝜕𝑦
= 𝑠𝑖𝑛𝜑 (𝑎. 4.1.1) 

𝜕 𝑟

𝜕𝑦
=

1

𝑟
[1 − 𝑠𝑖𝑛 𝜑] =

1

𝑟
𝑐𝑜𝑠 𝜑 (𝑎. 4.2.1) 

𝜕𝜑

𝜕𝑦
=

𝑐𝑜𝑠𝜑

𝑟
 (𝑎. 4.3.1) 

𝜕 𝜑

𝜕𝑦
= −

2𝑐𝑜𝑠 𝜑𝑠𝑖𝑛 𝜑

𝑟
 (𝑎. 4.4.1) 

The Laplacian definition is, 

∇ =
𝜕

𝜕𝑥
+

𝜕

𝜕𝑦
 (𝑎. 5) 

Where (a.5), would result as, 

∇ =
𝜕

𝜕𝜑

𝜕𝜑

𝜕𝑥
+

𝜕𝜑

𝜕𝑦
+

𝜕

𝜕𝜑

𝜕 𝜑

𝜕𝑥
+

𝜕 𝜑

𝜕𝑦
+

𝜕

𝜕𝑟

𝜕𝑟

𝜕𝑥
+

𝜕𝑟

𝜕𝑦
+

𝜕

𝜕𝑟

𝜕 𝑟

𝜕𝑥
+

𝜕 𝑟

𝜕𝑦
 (𝑎. 5.1) 
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In order to obtain the final expression of the 2D Laplacian it just has to 
replace the previous expressions on (a.5.1) resulting, 

∇ =
𝜕

𝜕𝑥
+

𝜕

𝜕𝑦
=

1

𝑟

𝜕

𝜕𝑟
+

𝜕

𝜕𝑟
+

1

𝑟

𝜕

𝜕𝜑
 (𝑎. 6) 

A.2) Jacobian obtaining 
 

𝑥 = 𝑟𝑐𝑜𝑠𝜑  

𝑦 = 𝑟𝑠𝑖𝑛𝜑 

 

 

 

Knowing that the area differential is: 𝑑𝐴 = 𝐽 𝑑𝑟𝑑𝜑, we just have to obtain the 

Jacobian, then 

𝐽 =

𝜕𝑥

𝜕𝑟

𝜕𝑦

𝜕𝑟
𝜕𝑥

𝜕𝜑

𝜕𝑦

𝜕𝜑

=
𝑐𝑜𝑠𝜑 𝑠𝑖𝑛𝜑

−𝑟𝑠𝑖𝑛𝜑 𝑟𝑐𝑜𝑠𝜑
= 𝑟𝑐𝑜𝑠 𝜑 − (−𝑟𝑠𝑖𝑛 𝜑) = 𝑟(𝑐𝑜𝑠 𝜑 + 𝑠𝑖𝑛 𝜑) ≡ 𝑟 

So finally we have: 

𝑑𝐴 = 𝑟𝑑𝑟𝑑𝜑  
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B.1) Deduction about if the Hamiltonian shares a set of 

eigenfunctions with symmetry operator 𝑪
𝝓  that represents a 𝝓 

rotation into a circumference, ranged between 0 and 2𝝅.  
  

 

First of all, we define, 

𝐻 =
𝜕

𝜕𝜑
(𝑏. 1)                 𝑌(𝜑) = 𝑒 (𝑏. 2) 

In other hand, we have the change produced by 𝐶  over 𝑌(𝜑), since,  

𝐶  𝑌(𝜑) =  𝑌(𝜑 + 𝜙) (𝑏. 3) 

As 𝑌(𝜑 + 𝜙) indeed, contain two variables, and it has an exponential form 
(b.2), the two variables function it may reconverts in two functions containing 
just one variable, therefore we have, 

𝑌(𝜑 + 𝜙) = 𝑌(𝜑)𝑌(𝜙) = 𝑒 𝑒  

So, the equality (b.3) would result as, 

𝐶  𝑌(𝜑) = 𝐶  𝑒 =  𝑒 𝑒  (𝑏. 3.1) 

This equality (b.3.1) we will be taken into account later. 

Now, we will verify if the operator that response in the presence of a rotation 

axis 𝐶  commutes with the, so far defined, as Hamiltonian (b.1), 

[𝐻 , 𝐶 ]𝑌(𝜑) = 𝐶 𝑌(𝜑) − 𝐶 𝑌(𝜑) = 𝐶 𝑒 − 𝐶 𝑒  (𝑏. 4) 

It is observed that the first term in the equation (b.4) is equivalent to (b.3.1), 

[𝐻 , 𝐶 ]𝑌(𝜑) = 𝑒 𝑒 − 𝐶 𝑒  (𝑏. 4.1) 

After it is left out from the derivatives, those independent terms to 𝜑 result in,  
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[𝐻 , 𝐶 ]𝑌(𝜑) = 𝑒 𝑒 − 𝐶 𝑒  (𝑏. 4.2) 

Next the derivatives are operated 

𝜕𝑒

𝜕𝜑
= 𝑖𝑚𝑒  ⟹  

𝜕 𝑒

𝜕𝜑
= −𝑚 𝑒  (𝑏. 5) 

Now, it is carried the expression (b.5) to the expression (b.4.2) giving as a 
result, 

[𝐻 , 𝐶 ]𝑌(𝜑) = −𝑒 𝑚 𝑒 + 𝐶 𝑚 𝑒  (𝑏. 4.3)  

Reordering (b.4.3) as follows, 

[𝐻 , 𝐶 ]𝑌(𝜑) = −𝑚 𝑒 𝑒 + 𝑚 𝐶 𝑒 (𝑏. 4.3.1) 

It is observed the equivalence (b.3.1) in the equation (b.4.3.1), then, it is 
replaced resulting like this, 

[𝐻 , 𝐶 ]𝑌(𝜑) = −𝑚 𝑒 𝑒 + 𝑚 𝐶 𝑒 𝑒 = 0 

Finally, we can affirm that both operators commute.  
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C.1) Why is “m” a whole number? 
 

The explanation is simple, the exponential 𝑒  that represents the rotation, 
indeed is ranged between 0 and 2𝜋, so 

𝑒  
[ , ]

⎯⎯  𝑒 ( ) = 𝑒 𝑒 = 𝑒  

Therefore, to accomplish the previous equality, necessarily has to be 𝑒 = 1. 
Next applying Euler we have, 

𝑒 = 𝑐𝑜𝑠 2𝜋𝑚 + 𝑖𝑠𝑖𝑛 2𝜋𝑚 = 1 

The sinus function always is null in 0, 𝜋, 2𝜋, 3𝜋, … 𝑚𝜋 and the cosines function 
always is the unity when it has an angle of  0, 2𝜋, 4𝜋, 6𝜋, … 𝑚𝜋 

Finally it is concluded that m is a whole number that is ranged between 0 to 
infinity. 

C.2) Proof that 𝒆𝒊𝒎𝝓 it is 𝑪 𝒗 base 
 

Study function: (𝜙) = 𝑒 ;  𝜙 = 0 ; Symmetry elements: 𝐸, 𝐶 , 𝐶 , 𝜎  

1)  How do the symmetry operators behave over the coordinates? 

𝐸[𝜙] = [𝜙] ; 𝐶 [𝜙] = [𝜙 + 𝜋] ; 𝐶 [𝜙] = [𝜙 + 𝜃]; 𝜎 [𝜙] = [𝜙 + 𝜃] 

2) How do the symmetry operators behave over the function? 
 

m=0  → 𝒆𝟎 = 𝟏 

𝜎 𝑓([𝜙]) = 𝑓 𝐸 [𝜙] = 𝑓 𝐸[𝜙] = 𝑓([𝜙]) = 𝑒 = 𝑒 = 1 = 𝟏 · 𝑓 

𝜎 𝑓([𝜙]) = 𝑓 𝐶 [𝜙] = 𝑓 𝐶 [𝜙] = 𝑓([𝜙 + 𝜋]) = 𝑒 ( ) = 𝑒 = 1 = 𝟏 · 𝑓 

𝜎 𝑓([𝜙]) = 𝑓 𝐶 [𝜙] = 𝑓 𝐶 [𝜙] = 𝑓([𝜙 + 𝜃]) = 𝑒 ( ) = 𝑒 = 1 = 𝟏 · 𝑓 

𝜎 𝑓([𝜙]) = 1 

𝜎 ∗ 𝑓([𝜙]) = −1 

m=1 → 𝒆𝒊𝟏𝝓 

𝜎 𝑓([𝜙]) = 𝑓 𝐸 [𝜙] = 𝑓 𝐸[𝜙] = 𝑓([𝜙]) = 𝑒 = 𝟏 · 𝑓 

𝜎 𝑓([𝜙]) = 𝑓 𝐶 [𝜙] = 𝑓 𝐶 [𝜙] = 𝑓([𝜙 + 𝜋]) = 𝑒 ( ) = 𝑒 𝑒 = (−𝟏) · 𝑓 

𝐸𝑢𝑙𝑒𝑟 → 𝑒 = (𝑐𝑜𝑠 𝜋 + 𝑖𝑠𝑖𝑛 𝜋) = −1  

𝜎 𝑓([𝜙]) = 𝑓 𝐶 [𝜙] = 𝑓 𝐶 [𝜙] = 𝑓([𝜙 + 𝜃]) = 𝑒 ( ) = 𝑒 𝑒

= (𝒄𝒐𝒔 𝜽 + 𝒊𝒔𝒊𝒏 𝜽) · 𝑓 

𝐸𝑢𝑙𝑒𝑟 → 𝑒 = (𝑐𝑜𝑠 𝜃 + 𝑖𝑠𝑖𝑛 𝜃)  
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m=-1 →  𝒆𝒊( 𝟏)𝝓 

𝜎 𝑓([𝜙]) = 𝑓 𝐸 [𝜙] = 𝑓 𝐸[𝜙] = 𝑓([𝜙]) = 𝑒 ( ) = 𝟏 · 𝑓 

𝜎 𝑓([𝜙]) = 𝑓 𝐶 [𝜙] = 𝑓 𝐶 [𝜙] = 𝑓([𝜙 + 𝜋]) = 𝑒 ( )( ) = 𝑒 𝑒 = (−𝟏) · 𝑓 

𝐸𝑢𝑙𝑒𝑟 → 𝑒 = (𝑐𝑜𝑠 𝜋 − 𝑖𝑠𝑖𝑛 𝜋) = −1  

𝜎 𝑓([𝜙]) = 𝑓 𝐶 [𝜙] = 𝑓 𝐶 [𝜙] = 𝑓([𝜙 + 𝜃]) = 𝑒 ( )( ) = 𝑒 𝑒

= (𝒄𝒐𝒔 𝜽 − 𝒊𝒔𝒊𝒏 𝜽) · 𝑓 𝐸𝑢𝑙𝑒𝑟 → 𝑒 = (𝑐𝑜𝑠 𝜃 − 𝑖𝑠𝑖𝑛 𝜃)  

𝒎 = |𝟏| ⟶ 𝒆𝒊|𝟏|𝝓 

𝜎 𝑓([𝜙]) = 𝑒 𝑒 = 𝑐𝑜𝑠 𝜙 + 𝑖𝑠𝑖𝑛 𝜙 + 𝑐𝑜𝑠 𝜙 − 𝑖𝑠𝑖𝑛𝜙 = 2𝑐𝑜𝑠𝜙 ⎯ 𝜎 𝑓([𝜙]) = 𝟐 

𝜎 𝑓([𝜙]) = 𝑒 𝑒 𝑒 𝑒 ⎯⎯⎯⎯⎯⎯ 𝑐𝑜𝑠 𝜋 + 𝑖𝑠𝑖𝑛 𝜋 + 𝑐𝑜𝑠 𝜋 − 𝑖𝑠𝑖𝑛 𝜋 =  −𝟐 

𝜎 𝑓([𝜙]) = 𝑒 𝑒 𝑒 𝑒 ⎯⎯⎯⎯⎯⎯ 𝑐𝑜𝑠 𝜃 + 𝑖𝑠𝑖𝑛 𝜃 + 𝑐𝑜𝑠 𝜃 − 𝑖𝑠𝑖𝑛 𝜃 = 𝟐𝒄𝒐𝒔 𝜽 

𝜎 𝑓([𝜙]) = 𝟎 

 

m=2  → 𝒆𝒊𝟐𝝓 

 

𝜎 𝑓([𝜙]) = 𝑓 𝐸 [𝜙] = 𝑓 𝐸[𝜙] = 𝑓([𝜙]) = 𝑒 = 𝟏 · 𝑓 

𝜎 𝑓([𝜙]) = 𝑓 𝐶 [𝜙] = 𝑓 𝐶 [𝜙] = 𝑓([𝜙 + 𝜋]) = 𝑒 ( ) = 𝑒 𝑒 = 𝟏 · 𝑓 

𝐸𝑢𝑙𝑒𝑟 → 𝑒 = (𝑐𝑜𝑠 2𝜋 + 𝑖𝑠𝑖𝑛 2𝜋) = 1  

𝜎 𝑓([𝜙]) = 𝑓 𝐶 [𝜙] = 𝑓 𝐶 [𝜙] = 𝑓([𝜙 + 𝜃]) = 𝑒 ( ) = 𝑒 𝑒

= (𝒄𝒐𝒔 𝟐𝜽 + 𝒊𝒔𝒊𝒏 𝟐𝜽) · 𝑓 

𝐸𝑢𝑙𝑒𝑟 → 𝑒 = (𝑐𝑜𝑠 2𝜃 + 𝑖𝑠𝑖𝑛 2𝜃)  

 

 

m=-2  → 𝒆𝒊( 𝟐)𝝓 

 

𝜎 𝑓([𝜙]) = 𝑓 𝐸 [𝜙] = 𝑓 𝐸[𝜙] = 𝑓([𝜙]) = 𝑒 ( ) = 𝟏 · 𝑓 

𝜎 𝑓([𝜙]) = 𝑓 𝐶 [𝜙] = 𝑓 𝐶 [𝜙] = 𝑓([𝜙 + 𝜋]) = 𝑒 ( )( ) = 𝑒 𝑒 = (−𝟏) · 𝑓 

𝐸𝑢𝑙𝑒𝑟 → 𝑒 = (𝑐𝑜𝑠 2𝜋 − 𝑖𝑠𝑖𝑛 𝜋) = 1  

𝜎 𝑓([𝜙]) = 𝑓 𝐶 [𝜙] = 𝑓 𝐶 [𝜙] = 𝑓([𝜙 + 𝜃]) = 𝑒 ( )( ) = 𝑒 𝑒

= (𝒄𝒐𝒔 𝟐𝜽 − 𝒊𝒔𝒊𝒏 𝟐𝜽) · 𝑓 

𝐸𝑢𝑙𝑒𝑟 → 𝑒 = (𝑐𝑜𝑠 2𝜃 − 𝑖𝑠𝑖𝑛 2𝜃)  
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𝒎 = |𝟐| ⟶ 𝒆𝒊|𝟐|𝝓 

𝜎 𝑓([𝜙]) = 𝑒 𝑒 = 𝑐𝑜𝑠 2𝜙 + 𝑖𝑠𝑖𝑛 2𝜙 + 𝑐𝑜𝑠 2𝜙 − 𝑖𝑠𝑖𝑛 2𝜙

= 2 𝑐𝑜𝑠 2𝜙 ⎯ 𝜎 𝑓([𝜙]) = 𝟐 

𝜎 𝑓([𝜙]) = 𝑒 𝑒 𝑒 𝑒 ⎯⎯⎯⎯⎯⎯⎯⎯ 𝑐𝑜𝑠 2𝜋 + 𝑖𝑠𝑖𝑛 2𝜋 + 𝑐𝑜𝑠 2𝜋 − 𝑖𝑠𝑖𝑛 2𝜋 = 𝟐 

𝜎 𝑓([𝜙]) = 𝑒 𝑒 𝑒 𝑒 ⎯⎯⎯⎯⎯⎯⎯⎯ 𝑐𝑜𝑠 2𝜃 + 𝑖𝑠𝑖𝑛 2𝜃 + 𝑐𝑜𝑠 2𝜃 − 𝑖𝑠𝑖𝑛 2𝜃

= 𝟐𝒄𝒐𝒔 𝟐𝜽 

𝜎 𝑓([𝜙]) = 𝟎 

Keeping in mind that 𝜎  has always a conjugated plane 𝜎 ∗ starting from the 
value 𝑚 = ±1, ±2, ±3, … we may consider the planes equal to zero. 

Character table of 𝐶   

 

D.1) Obtaining of 3D probability to find an electron 
 

𝑅 𝑟 =
4

𝑎
𝑒 ⁄ 𝑟 𝑑𝑟 =

4

𝑎
𝑒 ⁄ −

𝑟 𝑎

2
−

2𝑟𝑎

4
−

2𝑎

8
 

3𝐷 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 4[𝑒 (−5 4⁄ ) − (−1 4⁄ )] = 0,3233 ≡ 32,33% 

 

E.1) Obtaining of radial functions and angular functions with its 
corresponding normalizations 
 

The way to proceed in the obtaining of the radial functions is beginning by the 
last quantum number in the orbital which has no constant value out of the 
exponent, so finally carried out to the (46) equation. Let us start by 2s&2p, 

2𝑝 𝑜𝑟𝑏𝑖𝑡𝑎𝑙 → 𝑅(𝑟) = 𝑟𝑒  𝑎𝑛𝑑 𝑚 = 1 
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The derivatives required are: 

𝜕𝑅(𝑟)

𝜕𝑟
= 𝑒 − 𝑏𝑟𝑒 ; 

𝜕 𝑅(𝑟)

𝜕𝑟
= −2𝑏𝑒 + 𝑏 𝑟𝑒   

Once the (46) equation replace the derivatives and is reordered by “r” it results 
as, 

𝑏 +
2𝐸

𝑎 𝑒
𝑟 + −3𝑏 +

2𝑍

𝑎
𝑟 + [1 − 𝑚 ]𝑟 = 0 

With the 𝑟  term is obtained b: 

−3𝑏 +
2𝑍

𝑎
= 0 → 𝑏 =

2𝑍

3𝑎
 

And now, with the 𝑟  term is obtained the Energy: 

𝑏 +
2𝐸

𝑎 𝑒
= 0 ⎯⎯⎯⎯⎯ 𝐸 = −

2

9

𝑍 𝑒

𝑎
 

We continue with, 

2𝑠 𝑜𝑟𝑏𝑖𝑡𝑎𝑙 → 𝑅(𝑟) = 𝑟𝑒 − 𝑐𝑒   𝑎𝑛𝑑 𝑚 = 0 

The derivatives required are: 

𝜕𝑅(𝑟)

𝜕𝑟
= 𝑒 − 𝑏𝑟𝑒 + 𝑐𝑏𝑒 ; 

𝜕 𝑅(𝑟)

𝜕𝑟
= −2𝑏𝑒 + 𝑏𝑟 𝑒 − 𝑐𝑏 𝑒  

Once the (46) equation replace the derivatives and is reordered by “r” it results 
as, 

𝑏 +
2𝐸

𝑎 𝑒
𝑟 + −3𝑏 − 𝑐𝑏 +

2𝑍

𝑎
−

2𝐸𝑐

𝑎 𝑒
𝑟 + 1 + 𝑐𝑏 −

2𝑍𝑐

𝑎
𝑟 = 0 

Knowing that every constant value is the same to every single orbital we can 
deduce “c” taking into account the “r” term, 

1 + 𝑐𝑏 −
2𝑍𝑐

𝑎
= 0 ⎯⎯⎯⎯⎯⎯ 𝑐 =

3𝑎

4𝑍
 

In addition, as the energy is degenerated we would obtain again: 

𝑏 +
2𝐸

𝑎 𝑒
= 0 ⎯⎯⎯⎯⎯ 𝐸 = −

2

9

𝑍 𝑒

𝑎
 

Once obtained the 2s&2p constants and energies, we carry on with the 3s, 3p 
& 3d orbitals constants and energies: 

3𝑑 𝑜𝑟𝑏𝑖𝑡𝑎𝑙 → 𝑅(𝑟) = 𝑟 𝑒  𝑎𝑛𝑑 𝑚 = 2 

The derivatives required are: 
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𝜕𝑅(𝑟)

𝜕𝑟
= 2𝑟𝑒 − 𝑏𝑟 𝑒 ;

𝜕 𝑅(𝑟)

𝜕𝑟
= 2𝑒 − 4𝑏𝑟𝑒 + 𝑏 𝑟 𝑒  

The (46) equation once replaced the derivatives and reordered by “r” results as, 

𝑏 +
2𝐸

𝑎 𝑒
𝑟 + −5𝑏 +

2𝑍

𝑎
𝑟 + [2 + 2 − 𝑚 ]𝑟 = 0 

With the 𝑟  term is obtained b: 

−5𝑏 +
2𝑍

𝑎
= 0 → 𝑏 =

2𝑍

5𝑎
 

And now, together with the 𝑟  term the energy obtained is: 

𝑏 +
2𝐸

𝑎 𝑒
= 0 ⎯⎯⎯⎯⎯ 𝐸 = −

2

25

𝑍 𝑒

𝑎
 

Then, we may obtain the “d” constant value by 3p orbital, so 

3𝑝 𝑜𝑟𝑏𝑖𝑡𝑎𝑙 → 𝑅(𝑟) = 𝑟 𝑒 − 𝑟𝑐𝑒  𝑎𝑛𝑑 𝑚 = 1 

The derivatives required are: 

𝜕𝑅(𝑟)

𝜕𝑟
= 2𝑟𝑒 − 𝑏𝑟 𝑒 − 𝑐𝑒 + 𝑏𝑐𝑟𝑒 ;  

𝜕 𝑅(𝑟)

𝜕𝑟
= 2𝑒 − 4𝑏𝑟𝑒 + 𝑏 𝑟 𝑒 + 2𝑏𝑐𝑒 − 𝑏 𝑐𝑟𝑒  

The (46) equation once replaced the derivatives and reordered by “r” results as 
follows, 

𝑏 +
2𝐸

𝑎 𝑒
𝑟 + −5𝑏 − 𝑐𝑏 +

2𝑍

𝑎
−

2𝐸𝑐

𝑎 𝑒
𝑟 + 4 + 3𝑏𝑐 −

2𝑍𝑐

𝑎
− 𝑚 𝑟 + −𝑐 −

2𝐸𝑐

𝑎 𝑒
− 𝑚 𝑐 𝑟 = 0 

With the 𝑟  term is obtained c: 

4 + 3𝑏𝑐 −
2𝑍𝑐

𝑎
− 𝑚 = 0 ⎯ ⎯⎯⎯⎯⎯⎯ 𝑐 =

15𝑎

4𝑍
 

And the energy will be the same as the 3d orbital is, 

−5𝑏 − 𝑐𝑏 +
2𝑍

𝑎
−

2𝐸𝑐

𝑎 𝑒
= 0

𝑏=2𝑍
5𝑎0

⎯⎯⎯⎯⎯⎯⎯  
𝑐=

15𝑎0
4𝑍

⎯⎯⎯⎯⎯⎯⎯⎯ 𝐸 = −
2

25
𝑍2𝑒′2

𝑎0
 

Finally with the 3s orbital we can obtain the constant that is left, 

3𝑠 𝑜𝑟𝑏𝑖𝑡𝑎𝑙 → 𝑅(𝑟) = 𝑟 𝑒 − 𝑟𝑐𝑒 + 𝑑𝑒  𝑎𝑛𝑑 𝑚 = 0 

The derivatives required are below: 

𝜕𝑅(𝑟)

𝜕𝑟
= 2𝑟𝑒 − 𝑏𝑟 𝑒 − 𝑐𝑒 + 𝑏𝑐𝑟𝑒 − 𝑑𝑏𝑒 ;  
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𝜕 𝑅(𝑟)

𝜕𝑟
= 2𝑒 − 4𝑏𝑟𝑒 + 𝑏 𝑟 𝑒 + 2𝑏𝑐𝑒 − 𝑏 𝑐𝑟𝑒 + 𝑑𝑏 𝑒  

The (46) equation once replaced the derivatives and reordered by “r” results as, 

𝑏 +
2𝐸

𝑎 𝑒
𝑟 + −5𝑏 +

2𝑍

𝑎
−

2𝐸𝑐

𝑎 𝑒
𝑟 + 4 + 3𝑏𝑐 − 𝑐𝑏 + 𝑑𝑏 −

2𝑍𝑐

𝑎
+

2𝐸𝑑

𝑎 𝑒
𝑟 + −𝑐 − 𝑑𝑏 +

2𝐸𝑑

𝑎 𝑒
𝑟 = 0 

With the 𝑟 term is obtained d: 

−𝑐 − 𝑑𝑏 +
2𝐸𝑑

𝑎 𝑒
= 0 ⎯⎯⎯⎯⎯⎯  ⎯⎯⎯⎯⎯⎯ 𝑑 =

75𝑎

16𝑍
 

And the energy how it is known, is degenerated, so 

4 + 3𝑏𝑐 − 𝑐𝑏 + 𝑑𝑏 −
2𝑍𝑐

𝑎
+

2𝐸𝑑

𝑎 𝑒
= 0

𝑏=2𝑍
5𝑎0

⎯⎯⎯⎯⎯⎯⎯  
𝑐=

15𝑎0
4𝑍

⎯⎯⎯⎯⎯⎯⎯⎯

𝑑=
75𝑎0

2

16𝑍2

⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ 𝐸 = −
2

25
𝑍2𝑒′2

𝑎0
 

E.2) Normalizations  
 

-Radial part- 

2s orbital 

𝑁 𝑟 𝑒 𝑑𝑟 − 𝑐 𝑟𝑒 𝑑𝑟 = 1 ⟶ 𝑁
3!

2 𝑏
− 𝑐

1!

2 𝑏
= 1 ⎯⎯⎯⎯⎯ ⎯⎯⎯⎯⎯ 𝑁 =

16√5

45

𝑍

𝑎
 

2p orbital 

𝑁 𝑟 𝑒 𝑑𝑟 = 1 ⟶ 𝑁
3!

2 𝑏
= 1 ⎯⎯⎯⎯⎯⎯ 𝑁 =

2√6

27

𝑍

𝑎
 

3s orbital 

𝑁 𝑟 𝑒 𝑑𝑟 − 2𝑐 𝑟 𝑒 𝑑𝑟 + 2𝑑 𝑟 𝑒 𝑑𝑟 + 𝑐 𝑟 𝑒 𝑑𝑟 − 2𝑐𝑑 𝑟 𝑒 𝑑𝑟 + 𝑑 𝑟𝑒 𝑑𝑟 = 1 

𝑁
5!

2 𝑏
− 2𝑐

4!

2 𝑏
+ 2𝑑

3!

2 𝑏
+ 𝑐

3!

2 𝑏
− 2𝑐𝑑

2!

2 𝑏
+ 𝑑

1!

2 𝑏
= 1 ⎯⎯⎯⎯⎯  ⎯⎯⎯⎯⎯⎯ ⎯⎯⎯⎯⎯⎯⎯⎯⎯ 𝑁 =

64

125√111

𝑍

𝑎
 

3p orbital 

𝑁 𝑟 𝑒 𝑑𝑟 + 𝑐 𝑟 𝑒 𝑑𝑟 − 2𝑐 𝑟 𝑒 𝑑𝑟 = 1 ⟶ 

𝑁
5!

2 𝑏
+ 𝑐

3!

2 𝑏
− 2𝑐

4!

2 𝑏
= 1 ⎯⎯⎯⎯⎯ ⎯⎯⎯⎯⎯ 𝑁 =

64

125√30

𝑍

𝑎
 

3d orbital 

𝑁 𝑟 𝑒 𝑑𝑟 = 1 ⟶ 𝑁
5!

2 𝑏
= 1 ⎯⎯⎯⎯⎯⎯ 𝑁 =

32

125√30

𝑍

𝑎
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-Angular part- 

The angular part will be always the same in every single orbital because a 
single imaginary function multiplied by its conjugated will be 1, so we will  
always have the same result, then 

𝑁 𝑒 𝑒 𝑑𝜑 = 𝑁 𝑑𝜑 = 1 ⟶ 𝑁 2𝜋 = 1 → 𝑁 =
1

√2𝜋
 

F.1) Mathematica calculations 
  



- 52 - 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

F.2) Secular equations 
 

We have the following system, 

 

  

 

Every single core has a particular behaviour (𝜙  & 𝜙 ), and the global 
behaviour comes given by the following LCAO, 

𝜓 = 𝑐 𝜙 + 𝑐 𝜙  (𝑓. 2.1) 

Next, the energy can be obtained using the following expression, 

𝐸 =
𝜓 𝐻 𝜓

⟨𝜓|𝜓⟩
 (𝑓. 2.2) 

Now taking (f.2.1) to (f.2.2), 

𝐸 =
𝑐 𝜙 + 𝑐 𝜙 𝑐 𝐻𝜙 + 𝑐 𝐻𝜙

⟨𝑐 𝜙 + 𝑐 𝜙 |𝑐 𝜙 + 𝑐 𝜙 ⟩
=

𝑐 𝜙 𝐻𝜙 + 2𝑐 𝑐 𝜙 𝐻𝜙 + 𝑐 𝜙 𝐻𝜙

𝑐 + 2𝑐 𝑐 𝑆 + 𝑐
 

⎯⎯⎯⎯⎯⎯⎯⎯ 𝐸 =
𝑐 𝐻 + 2𝑐 𝑐 𝐻 + 𝑐 𝐻

𝑐 + 2𝑐 𝑐 𝑆 + 𝑐
 (𝑓. 2.3) 

A B 
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Now (f.2.3) is reordered obtaining the following expression, 

𝑐 𝐸 + 2𝑐 𝑐 𝑆 𝐸 + 𝑐 𝐸 = 𝑐 𝐻 + 2𝑐 𝑐 𝐻 + 𝑐 𝐻  (𝜅) 

Next the energy is minimized in (𝜅), 

𝜕𝜅

𝜕𝑐
= 0 = 2𝑐 𝐸 + 2𝑐 𝑆 𝐸 = 2𝑐 𝐻 + 2𝑐 𝐻  (𝜅. 1) 

𝐸 =
𝑐 𝐻 + 𝑐 𝐻

𝑐 + 𝑐 𝑆
 (𝜉. 1) 

𝜕𝜅

𝜕𝑐
= 0 = 2𝑐 𝐸 + 2𝑐 𝑆 𝐸 = 2𝑐 𝐻 + 2𝑐 𝐻  (𝜅. 2) 

𝐸 =
𝑐 𝐻 + 𝑐 𝐻

𝑐 + 𝑐 𝑆
 (𝜉. 2) 

Then we can order 𝐸 & 𝐸  respectively to solve the secular equations: 

𝑐 𝐻 + 𝑐 𝐻 − 𝑐 𝐸 − 𝑐 𝑆 𝐸 = 0  

𝑐 𝐻 + 𝑐 𝐻 − 𝑐 𝐸 + 𝑐 𝑆 𝐸 = 0 

Continuing with the reordering according to 𝑐 & 𝑐  ,we might obtain, 

(𝐻 − 𝐸)𝑐 + (𝐻 − 𝑆 𝐸)𝑐 = 0 

(𝐻 − 𝑆 𝐸)𝑐 + (𝐻 − 𝐸)𝑐 = 0 

In addition to this, if we take into account 𝐻 , which is a homonuclear 
molecule we can affirm 𝐻 = 𝐻 , so when we try to solve the previous 
equations all it turns easier to solve, 

(𝐻 − 𝐸)𝑐 + (𝐻 − 𝑆 𝐸)𝑐 = 0 

(𝐻 − 𝑆 𝐸)𝑐 + (𝐻 − 𝐸)𝑐 = 0 

Next a determinant is prepared to obtain energy values: 

𝐻 − 𝐸 𝐻 − 𝑆 𝐸
𝐻 − 𝑆 𝐸 𝐻 − 𝐸

= 0 

[𝐻 − 𝐸] − [𝐻 − 𝑆 𝐸] = 0 ⟶ [𝐻 − 𝐸] = ±[𝐻 − 𝑆 𝐸] (𝛼)  

If we make (𝛼) positive we will obtain antibonding energy and if it makes (𝛼) 
negative we will obtain bonding energy, 

(𝛼) positive: 

𝐸 =
𝐻 − 𝐻

1 − 𝑆
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(𝛼) negative: 

𝐸 =
𝐻 + 𝐻

1 + 𝑆
 

ADDITIONAL 
Now if we replace 𝐸  in the secular equations it may obtain, 

𝑐

𝑐
= 1 ⟶ 𝑐 = 𝑐  

On the other hand, if we replace 𝐸  in the secular equations it is obtained, 

   
𝑐

𝑐
= −1 ⟶ 𝑐 = −𝑐  

Knowing which is the relation regarding normalization constants, we are going 
to proceed on the obtaining of their values. Taking into account the 
normalization condition we will obtain them, 

⟨𝜓|𝜓⟩ = 𝑐 + 2𝑐 𝑐 𝑆 + 𝑐 = 1 

If 𝑐 = 𝑐 : 

2𝑐 + 2𝑐 𝑆 = 1 ⟶ 𝑐 = 𝑐 =
1

2[1 + 𝑆 ]
 

If 𝑐 = −𝑐 : 

2𝑐 − 2𝑐 𝑆 = 1 ⟶ 𝑐 =
1

2[1 − 𝑆 ]
= −𝑐 = −

1

2[1 − 𝑆 ]
 

It concludes then, 

𝐸 ⟶ 𝜓 = 𝑐 𝜙 + 𝑐 𝜙 = 𝑐 (𝜙 + 𝜙 ) ⟶ 𝜓 =
1

2[1 + 𝑆 ]
(𝜙 + 𝜙 )  

𝐸 ⟶ 𝜓 = 𝑐 𝜙 − 𝑐 𝜙 = 𝑐 (𝜙 − 𝜙 ) ⟶ 𝜓 =
1

2[1 − 𝑆 ]
(𝜙 − 𝜙 )  
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F.3) 𝑯𝟐 𝒎𝒐𝒍𝒆𝒄𝒖𝒍𝒆 (𝒆𝒍𝒍𝒊𝒑𝒕𝒊𝒄𝒂𝒍 𝒄𝒐𝒐𝒓𝒅𝒊𝒏𝒂𝒕𝒆𝒔) 
 

To start with, let me introduce the system, 

 

 

 

 

 

𝑟 = 𝑥 + 𝑦  

To make the variables change, we need to take into account the following 
equalities: 

𝑢 =
𝑟 + 𝑟

𝑅
;  𝑣 =

𝑟 − 𝑟

𝑅
 

Once known the previous equalities, it may obtain, 

𝑟 =
1

2
𝑅 (𝑢 + 𝑣)  &  𝑟 =

1

2
𝑅 (𝑢 − 𝑣)       (𝑓. 3.1) & (𝑓. 3.2) 

And now, making reference to 1s wave function for nuclei A & B, 

𝜙 =
4

√2𝜋
𝑒 ;  𝜙 =

4

√2𝜋
𝑒  

We could carry (f.3.1) & (f.3.2) to the 1s wave functions, where we may obtain, 

𝜙 =
4

√2𝜋
𝑒 ( );  𝜙 =

4

√2𝜋
𝑒 ( ) 

Next, we need to obtain the following parameters:47 

1) 2D elliptical Laplacian, 

∇ =
4

𝑅 (𝑢 − 𝑣 )
(𝑢 − 1)

𝜕

𝜕𝑢
+ 𝑢

𝜕

𝜕𝑢
+ (1 − 𝑣 )

𝜕

𝜕𝑣
− 𝑣

𝜕

𝜕𝑣
 

2) Area differential for an ellipse, 

𝑑𝐴 = 𝑑𝑥𝑑𝑦 = 𝐽 𝑑𝑢𝑑𝑣 ≡
𝑅

2

𝑢 − 𝑣

[(𝑢 − 1)(𝑣 − 1)] /
𝑑𝑢𝑑𝑣 

Now, it is obtained Sab, Haa and Hab, 

                                                           
47It will be detailled at the end of the section F.3)  

rb 

Rab 
x 

y 

A B 

ra 

-x 
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𝑆 = ⟨𝜙 |𝜙 ⟩ = 𝜙 𝜙  𝑑𝐴 ( 𝑓. 3.3) 

𝐻 = 𝜙 𝐻 𝜙 = 𝜙∗ 𝐻𝜙  𝑑𝐴 (𝑓. 3.4) 

𝐻 = 𝜙 𝐻 𝜙 = 𝜙∗ 𝐻𝜙  𝑑𝐴 (𝑓. 3.5) 

Note: The integration is done to x axis between [1, ∞] and to y axis 
between[−1,1]. In addition, because of the x axis we will need to multiply by 2, 
because only it is considered in one side of the space. In other words, it is just 
taken into account the x positive values and so we need as many the positives 
as the negatives. 

The calculations done by Mathematica 10 are: 

 

Here is observed the overlap behaviour what is congruent with the expected 
(y=overlap, x=internuclear distance). 

Next we proceed with Haa and Hab obtaining, 
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2 4 6 8 10

3.0

2.5

2.0

1.5

1.0

0.5

0.0

 

 

 

 

 

Now those integrals are carried to the next expressions, 

𝐸 =
𝐻 + 𝐻

1 + 𝑆
+

1

𝑅
; 𝐸 =

𝐻 − 𝐻

1 − 𝑆
+

1

𝑅
 

Obtaining the following graphic, 

 

 

 

 

 

 

 

 

 

-Differential area element  for an ellipse  
 

 

 

 

 

 

𝑥 ⟶
1

2
𝑅 𝑢𝑣 

𝑦 ⟶
1

2
𝑅 [(𝑢 − 1)(1 − 𝑣 )] /  

Rab/bohrs 

U/hartrees 

Rab 
x 

y 

A B 

ra 

-x 
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Knowing that the differential area element is: 𝑑𝐴 = 𝐽 𝑑𝑢𝑑𝑣, we just have to 

obtain the Jacobian, then 

𝐽 =

𝜕𝑥

𝜕𝑢

𝜕𝑦

𝜕𝑢
𝜕𝑥

𝜕𝑣

𝜕𝑦

𝜕𝑣

=

1

2
𝑅 𝑣

𝑅

4

2𝑢(1 − 𝑣 )

[(𝑢 − 1)(1 − 𝑣 )]

1

2
𝑅 𝑢

𝑅

4

2𝑣(1 − 𝑢 )

[(𝑢 − 1)(1 − 𝑣 )]

=
1

2
𝑅 𝑢

𝑅

4

2𝑢(1 − 𝑣 )

[(𝑢 − 1)(1 − 𝑣 )]
−

1

2
𝑅 𝑣

𝑅

4

2𝑣(1 − 𝑢 )

[(𝑢 − 1)(1 − 𝑣 )]

=
𝑅

2

𝑢 − 𝑣 𝑢

[(𝑢 − 1)(1 − 𝑣 )]
−

𝑅

2

𝑣 − 𝑣 𝑢

[(𝑢 − 1)(1 − 𝑣 )]
≡

𝑅

2

2
𝑢2 − 𝑣2

[(𝑢2 − 1)(𝑣2 − 1)]1/2
 

So finally we have: 

𝑑𝐴 =
𝑅

2

2 𝑢2 − 𝑣2

[(𝑢2 − 1)(𝑣2 − 1)]1/2
𝑑𝑢𝑑𝑣  

-Elliptical 2D Laplacian obtaining (Mathematica 10) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Where, 

𝑐𝑢1 =
𝜕

𝜕𝑢
; 𝑐𝑢2 =

𝜕

𝜕𝑢
; 𝑐𝑣1 =

𝜕

𝜕𝑣
; 𝑐𝑣2 =

𝜕

𝜕𝑣
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G.1) Perturbational & Variational method J12 obtaining 
 

Perturbational method: 
 

 

 

 

Variational method: 
 

 

 

 

 

Therefore, if the I.P. is −3.63452ℎ𝑎𝑟𝑡𝑟𝑒𝑒𝑠 and 𝐸 + 𝐸 = −8ℎ𝑎𝑟𝑡𝑟𝑒𝑒𝑠, then 
𝐽 = −3.63452 + 8 = 4.36548ℎ𝑎𝑟𝑡𝑟𝑒𝑒𝑠 
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0.2 0.4 0.6 0.8 1.0

2.0

1.5

1.0

0.5

G.2) Where do the Slater’s rules come from? 
We are going to put some examples to visualize better where the Slater’s rules 
come from, 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝐻 < 𝐻𝑒 < 𝐿𝑖 < 𝐵𝑒   

𝛼: 0.7 < 0.85 < 0.9 < 0.925  

𝑍: 1 < 2 < 3 < 4 

Evar 

𝛼 

0.2 0.4 0.6 0.8 1.0

30

25

20

15

10

5

0.2 0.4 0.6 0.8 1.0

50

40

30

20

10

𝐻     𝛼 = 0.7; 𝑍 = 𝑍𝛼 = 0.7 

𝐸 = 0.009 ℎ𝑎𝑟𝑡𝑟𝑒𝑒𝑠 

𝐿𝑖     𝛼 = 0.9; 𝑍 = 𝑍𝛼 = 2.7 

𝐸 = −11.28 ℎ𝑎𝑟𝑡𝑟𝑒𝑒𝑠 

𝐵𝑒  𝛼 = 0.925; 𝑍 = 𝑍𝛼 = 3.7 

𝐸 = −22.92 ℎ𝑎𝑟𝑡𝑟𝑒𝑒𝑠 

Evar 

Evar 

𝛼 

𝛼 
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Alpha is given as a fraction of unity in relation with the effective nuclear 
charge that the electrons perceive with regard to the nucleus. We might call 
alpha as the non-shielding parameter according to: the largest it is the least 
shielding exists. It is observed that all the examples above obey the Slater’s 
rules. 𝑍 = 𝑍𝛼 = 𝑍 − 𝜎. The Slater’s rules say: for all the electrons that may be 
found in the 1s orbital of two-electron atom, the shielding will be 𝜎 = 0.30 and 
that is observed when we take into account the relation: 𝑍𝛼 = 𝑍 − 𝜎. 
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