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APPROXIMATION OF INTEGRATION MAPS OF VECTOR

MEASURES AND LIMIT REPRESENTATIONS OF BANACH

FUNCTION SPACES

EDUARDO JIMÉNEZ FERNÁNDEZ, ENRIQUE A. SÁNCHEZ PÉREZ,
AND DIRK WERNER

Abstract. We study when the integration maps of vector measures can be
computed as pointwise limits of their finite rank Radon-Nikodým derivatives.
We will show that this can sometimes be done, but there are also principal
cases in which this cannot be done. The positive cases are obtained using the
circle of ideas of the approximation property for Banach spaces. The negative
ones are given by means of an adequate use of the Daugavet property. As
an application, we analyse when the norm in a space of integrable functions
L1(m) can be computed as a limit of the norms of the spaces of integrable
functions with respect to the Radon-Nikodým derivatives of m.

1. Introduction

Let X be a Banach space and m be an X-valued countably additive vector
measure. Consider the space L1(m) of (scalar) integrable functions with respect to
m. In this paper we are interested in the analysis of the (pointwise) approximation
by means of finite rank operators of the associated integration map Im : L1(m) →
X . Actually, we will choose nets of finite rank operators of a special class, which
are the finite rank Radon-Nikodým derivatives of m.

We will show that this can be done in the case that we consider weakly compact
operators having values in a space that has the approximation property. This allows
us to prove a positive result for a big class of usual examples, as for instance when
X is a reflexive space. However, there are cases – and some of them can even be
considered as canonical – in which these results cannot be applied. Martingale type
procedures also allow us to find approximations of integration maps by finite rank
operators for some of these situations, for example the identity map (considered as
an integration operator) when m is a (scalar) probability measure without atoms,
and so the space L1(m) is a classical Lebesgue L1-space. However, we show also
that the unconditional pointwise approximation by series of finite rank operators
has some constraints, and cannot be expected in general. For doing this, we will use
the circle of ideas of the Daugavet property. A Banach space X is said to have the
Daugavet property if every rank one operator T : X → X satisfies the Daugavet
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MTM2012-36740-C02-02). E.A. Sánchez Pérez was supported by Ministerio de Economı́a, Indus-
tria y Competitividad (Spain) (project MTM2016-77054-C2-1-P).

1

http://arxiv.org/abs/1704.06481v1
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equation, that is ‖Id + T ‖ = 1 + ‖T ‖. In recent years, great efforts have been
made for studying the Daugavet property for Banach spaces and Banach lattices,
and its natural extension to other operators different from the identity map, which
are the so-called Daugavet centers. The reader can find also information about the
Daugavet equation for general maps [5] and the references therein.

The reason why this property is relevant for us is that the Daugavet equation as
an estimate of the norm of the sum of a pair of operators may be used for estab-
lishing clear criteria of when a particular map cannot be approximated pointwise
unconditionally by series of finite rank operators; see for example Theorem 2.9 in [4].
Therefore, for establishing some limits to the approximation by finite rank maps,
we are interested in analysing when the integration operator Im : L1(m) → X

satisfies the Daugavet equation.

2. Preliminaries

The notation that we use is standard. If X is a Banach space, we write BX for
its closed unit ball, and X∗ for its dual space. Let (Ω,Σ, µ) be a positive finite
measure space, and write L0(µ) for the space of all measurable real functions on Ω
(functions which are equal µ-a.e. are identified). We say that a Banach space X(µ)
of functions in L0(µ) is a Banach function space with respect to µ if χΩ ∈ X(µ),
and for each pair of measurable functions f, g, if |f | ≤ |g| with g ∈ X(µ), then
f ∈ X(µ) and ‖f‖ ≤ ‖g‖. We will write X instead of X(µ) if the measure µ is
fixed in the context. We say that X(µ) is σ-order continuous if for every sequence
of functions fn ∈ X(µ) with fn ↓ 0 it follows that ‖fn‖X(µ) → 0. We will also
use the following (non standard) notation. If µ and ν are measures on the same
measurable space and ν is absolutely continuous with respect to µ, we will write
X(µ) ⋐ Y (ν) if the operator that maps the class of µ-a.e. equal functions of f to
the class of ν-a.e. equal functions of the same f is continuous.

Throughout the paper m : Σ → X will be a countably additive vector measure,
where E is a Banach space; the reader can find all the information that is needed
– and shortly explained below – on vector measures and integration in [6, 14].
For each element x∗ ∈ X∗ the formula 〈m,x∗〉(A) := 〈m(A), x∗〉, A ∈ Σ, defines
a (countably additive) scalar measure. We write |〈m,x∗〉| for its variation. The
function ‖m‖ given on a set A ∈ Σ by

‖m‖(A) = sup{|〈m,x′〉|(A) : x∗ ∈ X∗, ‖x∗‖ ≤ 1}

is called the semivariation of m. It is equivalent to the variation if m is a scalar
measure. A (vector or scalar valued) measure m is absolutely continuous with
respect to µ if µ(A) = 0 implies ‖m‖(A) = 0; in this case we write m ≪ µ. It is
well known that there is always a (non-unique) measure of the form |〈m,x∗〉| such
that m is absolutely continuous with respect to it; we will call such a measure a
Rybakov measure for m. Let µ be a finite measure; we say that a Banach space
valued vector measure m : Σ → X is equivalent to µ if for all A ∈ Σ, µ(A) = 0 if
and only if ‖m‖(A) = 0.

The space L1(m) of integrable functions with respect to m is a Banach func-
tion space over any Rybakov measure; throughout the paper, we will fix one of
them, which will usually be denoted by µ. The elements of this space are (classes
of µ-a.e. measurable) functions f that are integrable with respect to each scalar
measure 〈m,x∗〉, and for every A ∈ Σ there is an element

∫

A
f dm ∈ X such that
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〈
∫

A
f dm, x∗〉 =

∫

A
f d〈m,x∗〉 for every x∗ ∈ X∗; the space L1(m) of m-a.e. equal

m-integrable functions is an order continuous Banach lattice endowed with the
norm

‖f‖L1(m) := sup
x∗∈BX∗

∫

|f | d|〈m,x∗〉|, f ∈ L1(m),

and the m-a.e. order. The associated integration operator Im : L1(m) → X is
defined by Im(f) :=

∫

Ω f dm, where f ∈ L1(m). It is linear and continuous and
‖Im‖ = 1.

A continuous operator T : X → X on a Banach space is said to satisfy the
Daugavet equation if the following formula holds,

‖Id + T ‖ = 1 + ‖T ‖.

A Banach space X is said to satisfy the Daugavet property if ‖Id + T ‖ = 1 + ‖T ‖
is satisfied for every rank one operator. It is well known that, if this happens,
then the same equation holds for each weakly compact or merely Radon-Nikodým
operator [9]. Recall that a subset A of a Banach space is said to have the Radon-
Nikodým property if every closed convex subset B ⊆ A is the closed convex hull
of its denting points; an operator T is said to be a Radon-Nikodým operator if the
closure of T (BX) has the Radon-Nikodým property. Weakly compact operators
belong to this class.

The reader can find a review on the classical results on the Daugavet property
in [16]; for the case of Banach lattices of functions, which is particularly important
for this paper, see [1, 2] and the references therein. The following generalization of
the notion of Daugavet property will be used. Following [4, Definition 1.2], we say
that a continuous linear operator G : X → Y between Banach spaces is a Daugavet
center if ‖G + T ‖ = ‖G‖ + ‖T ‖ is fulfilled for every rank-1 operator T : X → Y .
For this notion and the main properties which are necessary for this paper, see also
[3, 4].

3. Approximation of weakly compact integration operators of a
vector measure by its finite rank Radon-Nikodým derivatives

The approximation of weakly compact operators by means of finite rank opera-
tors is closely related to the approximation property of the Banach space X where
the operators are defined, or to this property for its dual space X∗. A series of
papers (e.g., [12]) recently published have shown that X∗ has the approximation
property if and only if for every Banach space Z and every weakly compact operator
T : Z → X there is a net of finite rank operators Tα : Z → X of norm ‖Tα‖ ≤ ‖T ‖
converging to T pointwise. The problem goes back to the memoir of Grothendieck
[7, p. 184], and these developments have provided some useful tools and solutions
to some long-standing questions that will provide the key for our arguments. The
question is: When and how can an integration map of a vector measure be approx-
imated by nets of finite rank operators? As the reader will see, the result will be
used to study when, given a vector measure m, the norm of each element in the
corresponding space of integrable functions can be approximated as a limit of a net
of the natural finite components of Im, which we call finite rank Radon-Nikodým
derivative operators of m.
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3.1. Integration operators and Radon-Nikodým derivatives of vector mea-

sures. Let us start our analysis by establishing several results regarding the set
of Radon-Nikodým derivatives of the scalarizations of a given vector measure. Let
m : Σ → E be a (countably additive) vector measure.

Lemma 3.1. Consider a vector measure m : Σ → X and a fixed finite measure µ

equivalent to m representing the duality (that is for f ∈ L1(m) and g ∈ (L1(m))′,
the Köthe dual, 〈f, g〉 :=

∫

fg dµ; it may be a Rybakov measure). Then for every
x∗ ∈ X∗,

I∗m(x∗) = ϕm
x∗ :=

d〈m,x∗〉

dµ
∈ (L1(m))′,

where d〈m,x∗〉
dµ

represents the Radon-Nikodým derivative of the measure A 7→ 〈m(A), x∗〉

with respect to µ. Moreover, ‖ϕm
x∗‖(L1(m))′ ≤ ‖x∗‖X∗ for all x∗ ∈ X∗.

Proof. Take a function f ∈ L1(m) and x∗ ∈ X∗. Then, since f is m-integrable and
〈m,x∗〉 ≪ µ, we have

〈Im(f), x∗〉 =

∫

f d〈m,x∗〉 =

∫

f
d〈m,x∗〉

dµ
dµ =

∫

fϕm
x∗dµ.

Since this is well-defined for each f ∈ L1(m), we have that ϕm
x∗ ∈ (L1(m))′; more

specifically,
∣

∣

∣

∫

f
d〈m,x∗〉

dµ
dµ

∣

∣

∣
≤ ‖f‖L1(m) ·

∥

∥

∥

d〈m,x∗〉

dµ

∥

∥

∥

(L1(m))′
.

Moreover,

‖ϕm
x∗‖(L1(m))′ = sup

f∈B
L1(m)

∣

∣

∣

∫

f
d〈m,x∗〉

dµ
dµ

∣

∣

∣
= sup

f∈B
L1(m)

∣

∣

∣

〈

∫

f dm, x∗
〉∣

∣

∣

≤ sup
f∈B

L1(m)

∥

∥

∥

∫

f dm
∥

∥

∥
· ‖x∗‖X∗ ≤ ‖x∗‖X∗ . �

Note, however, that the map x∗ 7→ ϕm
x∗ need not be injective in general.

3.2. Pointwise convergence of nets of norms to the norm in L1(m). In this
section we prove the main general result concerning convergence of nets of norms
of spaces L1(mη) to ‖ · ‖L1(m).

Fix a finite measure µ. Let {Xτ (µτ ) : τ ∈ Λ} be a net of spaces, where all the
measures µτ are absolutely continuous with respect to µ. We will study when a
Banach function space X(µ) such that X(µ) ⊆

⋂

τ∈ΛXτ (µτ ) can be computed as
a pointwise limit of the norms as limτ ‖f‖Xτ(µτ ) = ‖f‖X(µ) for all f ∈ X(µ).

In what follows we are interested in analysing the properties under which we have
that a net of vector measures {mτ} gives that the norm in L1(m) is a pointwise
limit of {L1(mτ )}. We need to introduce some new elements.

Let A ∈ Σ. We define hA as the function in L∞(µ) given by hA = χA − χAc ;
that is, the definition makes sense µ-a.e. We will denote by H all the (classes of)
functions defined in this way.

Lemma 3.2. Let m : Σ → X be a countably additive vector measure. For all
functions f ∈ L1(m), we have

‖f‖L1(m) = sup
A∈Σ

∥

∥

∥

∫

fhA dm
∥

∥

∥

X
.
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Proof. This is a consequence of a direct calculation; we write A(x∗) for the mea-
surable set, depending on x∗, where the Radon-Nikodým derivative of 〈m,x∗〉 with
respect to |〈m,x∗〉| equals 1. Then

‖f‖L1(m) = sup
x∗∈BX∗

∫

|f | d|〈m,x∗〉|

= sup
x∗∈BX∗

∫

f(χ{sign(f)>0} − χ{sign(f)≤0})(χA(x∗) − χA(x∗)c) d〈m,x∗〉

= sup
x∗∈BX∗

[

∫

f (χ{sign(f)>0}∩A(x∗)}∪{sign(f)≤0}∩A(x∗)c}) d〈m,x∗〉

−

∫

f (χ{sign(f)>0}∩A(x∗)c}∪{sign(f)≤0}∩A(x∗)}) d〈m,x∗〉
]

.

Since the sets appearing in the characteristic functions in the expression above are
complementary and using the fact that the function is integrable with respect to
m, we have that this expression is

≤ sup
x∗∈BX∗ , A∈Σ

〈

∫

fhA dm, x∗
〉

= sup
A∈Σ

∥

∥

∥

∫

fhA dm
∥

∥

∥

X
.

The converse inequality is a direct consequence of the fact that |f | = |f hA| for
all A ∈ Σ, ‖ · ‖L1(m) is a lattice norm, and the straightforward inequality

∥

∥

∥

∫

fhA dm
∥

∥

∥

X
≤ ‖fhA‖L1(m) = ‖f‖L1(m). �

Lemma 3.3. Let m,m1 : Σ → X be a couple of vector measures and consider a
function f ∈ L1(m) ∩ L1(m1). Then

∣

∣

∣

∥

∥f‖L1(m) − ‖f‖L1(m1)

∣

∣

∣
≤ sup

A∈Σ

∥

∥

∥

∫

fhA dm−

∫

fhA dm1

∥

∥

∥

X
.

Proof. Consider the linear space VM of all countably additive vector measures from
Σ to X . Fix a simple function f . The function φf : H × VM → X given by the
formula

φf (hA,m) :=

∫

f hA dm ∈ X

is well-defined. Note that

m 7→ sup
A∈Σ

∥

∥

∥

∫

f hA dm
∥

∥

∥

X

is a seminorm on VM . Consequently, if m,m1 ∈ VM we have that
∣

∣

∣
sup
A∈Σ

∥

∥

∥

∫

f hA dm
∥

∥

∥

X
− sup

A∈Σ

∥

∥

∥

∫

f hA dm1

∥

∥

∥

X

∣

∣

∣
≤ sup

A∈Σ

∥

∥

∥

∫

f hA d (m−m1)
∥

∥

∥

X

for all simple functions. Thus, as a consequence of Lemma 3.2, we get
∣

∣

∣

∥

∥f‖L1(m) − ‖f‖L1(m1)

∣

∣

∣
≤ sup

A∈Σ

∥

∥

∥

∫

fhA dm−

∫

fhA dm1

∥

∥

∥

X

for all simple functions. Since simple functions are dense in both spaces for the
norm, we get the result for all the functions in L1(m) ∩ L1(m1). �
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The next result provides our first general approximation theorem, which can
be applied to any net of Banach space valued vector measures. Notice that no
requirements on X are imposed. Later on in this section we will show that this
situation can always be given – that is, there always exists such a net for any vector
measure – whenever X has the approximation property and the integration map
is weakly compact. Recall from Lemma 3.1 the definition of the Radon-Nikodým
derivatives ϕm

x∗ of the measure m.

Theorem 3.4. Let m,mη : Σ → X be countably additive vector measures all of
them absolutely continuous with respect to µ, with η ∈ Λ, a directed set such that
L1(m) ⊆

⋂

η∈Λ L1(mη) with norm one for the inclusion in each space L1(mη).

Assume that we have one of the following requirements for the net {mη : η ∈ Λ}:

(i) For each f ∈ L1(m),

lim
η

sup
A∈Σ

∥

∥

∥

∫

fhA dm−

∫

fhA dmη

∥

∥

∥
= 0.

(ii) For each x∗ ∈ X∗,

lim
η

ϕ
mη

x∗ = ϕm
x∗

in the weak* topology.

Then for each f ∈ L1(m),

lim
η∈Λ

‖f‖L1(mη) = ‖f‖L1(m).

Proof. Assume first that (i) holds. Then the result is a consequence of Lemma 3.3.
Using the inequality given there and taking into account that each m-integrable
function is mη-integrable, we get that for a fixed f in L1(m),

∣

∣

∥

∥f‖L1(m) − ‖f‖L1(mη)

∣

∣ ≤ sup
A∈Σ

∥

∥

∥

∫

fhA dm−

∫

fhA dmη

∥

∥

∥

X
→η 0.

Suppose now that (ii) holds. Fix f ∈ L1(m) and ε > 0. Taking into account
Lemma 3.1 we know that there are x∗ ∈ BX∗ and A ∈ Σ such that

∫

fhA d〈m,x∗〉 ≥ ‖f‖L1(m) − ε.

Then, using the pointwise limit condition, we find

lim
η

ϕ
mη

x∗ (fhA) = ϕm
x∗(fhA) =

∫

fhA d〈m,x∗〉 ≥ ‖f‖L1(m) − ε.

Since for all η we have that
∫

fhA d〈mη, x
∗〉 ≤ ‖f‖L1(mη), we obtain that there is

η0 ∈ Λ such that for all η ≥ η0,

‖f‖L1(mη) + ε ≥ ‖f‖L1(m) − ε.

On the other hand, ‖f‖L1(m) ≥ ‖f‖L1(mη), and since this happens for each ε > 0
we obtain

‖f‖L1(m) = lim
η

‖f‖L1(mη). �



APPROXIMATION OF INTEGRATION MAPS OF VECTOR MEASURES 7

3.3. Approximation of weakly compact integration maps. The arguments
in the previous sections lead to the main result of this section. We want to know if
it is possible to approximate the integration map by means of finite rank operators.
In fact, we want to know how well an integration map Im : L1(m) → X can be
approximated using the natural associated finite rank operators, which are the finite
rank Radon-Nikodým derivatives of m to be defined later on. Let us start with an
easy case – vector measures with values in a Banach space with a Schauder basis –
in order to show the arguments that we use.

Example 3.5. Let us consider now the approximation of integration operators of
vector measures with values in a Banach space with a Schauder basis. Let us show
that in this case, nothing is required for obtaining a pointwise approximation of the
norm of the space L1(m). Let us explain this case, which allows a specific treatment
using some ad hoc constructed tools.

Let X = ℓ be a Banach space with a normalized monotone Schauder basis
{ei}

∞
i=1; hence we assume that the basic constant is 1. We can define the sequence

of biorthogonal functionals {e∗i }
∞
i=1 in ℓ∗ as usual: for each i, j ∈ N, e∗i (ej) = δi,j ,

Kronecker’s delta of i and j. For a fixed natural number n, write Pn for the basis
projection on the n-dimensional space generated by the first n vectors, that is

Pn(x) :=

n
∑

i=1

〈x, e∗i 〉 ei ∈ ℓ, x ∈ ℓ;

we have ‖Pn‖ ≤ 1 by assumption. Consider a countably additive vector measure
m : Σ → ℓ and construct the finite dimensional components mn of the measure by

mn(A) := (Pn ◦m)(A) =

n
∑

i=1

〈m(A), e∗i 〉 ei ∈ ℓ, A ∈ Σ, n ∈ N.

This clearly provides a sequence of countably additive vector measures. Take a
function f ∈ L1(m). Then we have that for each fixed A ∈ Σ

∥

∥

∥

∫

fhA dm
∥

∥

∥

ℓ
= lim

n

∥

∥

∥
Pn

(

∫

fhA dm
)∥

∥

∥

ℓ
= lim

n

∥

∥

∥

∫

fhA dmn

∥

∥

∥

ℓ
.

Thus,

‖f‖L1(m) = sup
A∈Σ

∥

∥

∥

∫

fhA dm
∥

∥

∥

ℓ
= sup

A∈Σ

(

lim
n

∥

∥

∥

∫

fhA dmn

∥

∥

∥

ℓ

)

.

On the other hand, using that ‖Pn‖ ≤ 1, we obtain

sup
A∈Σ

∥

∥

∥

∫

fhA dm
∥

∥

∥

ℓ
≥ sup

A∈Σ

∥

∥

∥
Pn

(

∫

fhA dm
)∥

∥

∥

ℓ
= sup

A∈Σ

∥

∥

∥

∫

fhA dmn

∥

∥

∥

ℓ

for every n ∈ N, and so

‖f‖L1(m) = sup
A∈Σ

(

lim
n

∥

∥

∥

∫

fhA dmn

∥

∥

∥

ℓ

)

≤ lim
n

(

sup
A∈Σ

∥

∥

∥

∫

fhA dmn)
∥

∥

∥

ℓ

)

≤ ‖f‖L1(m).

This proves the result.

The same arguments prove the following general result.

Proposition 3.6. Let m be a vector measure. Consider a net (Pη) of operators
Pη : X → X that converges pointwise to the identity map in X, and such that for
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all η, ‖Pη‖ ≤ 1. Consider the vector measures mη := Pη◦m. Then L1(m) ⋐ L1(mη)
for all η and for all f ∈ L1(m),

‖f‖L1(m) = lim
η

‖f‖L1(mη).

The natural finite rank maps in the setting of the vector measures are the ones
that can be written as finite sums of products of vectors on X by Radon-Nikodým
derivatives of the scalarizations of the vector measure, that is, finite rank operators
as

Rm(·) =

n
∑

i=1

ϕm
x∗

i
(·)xi =

n
∑

i=1

d〈m,x∗
i 〉

dµ
(·)xi.

We will call this kind of operator a finite rank Radon-Nikodým derivative operator
of m.

Theorem 3.7. Let m : Σ → X a countably additive vector measure such that Im
is weakly compact, where X has the approximation property. Then there is a net of
finite rank Radon-Nikodým derivative operators (Rα

m)α of norm ≤ 1 that converges
to Im in the strong operator topology. That is, for every f ∈ L1(m)

lim
α

Rα
m(f) =

∫

f dm = Im(f).

Proof. We use Theorem 1.2 in [11], in which the famous Davis-Figiel-Johnson-
Pe lczýnski factorization technique for weakly compact operators is used. Suppose
that X has the approximation property. Assume that ‖Im‖ = 1. Lemma 1.1 in
[11] gives that there is a reflexive Banach space XK that is embedded in X with
inclusion map JK : XK → X in such a way that Im(BL1(m)) ⊆ BXK

. That is, there

is a factorization of T as JK ◦ I0m through XK , where I0m : L1(m) → XK is the
integration map when restricted in the range to XK , and ‖JK‖ ≤ 1. In the proof of
Theorem 1.2 of [11] it can be seen that there exists a net (Aα) of finite rank operators
from XK to X such that supα ‖Aα‖ ≤ 1, with Aα(I0m(f)) → JK(I0m(f)) for all
f ∈ L1(m). Define Rα

m(f) := Aα◦I
0
m(f). Each Aα has the form Aα =

∑n
i=1 z

∗
i ⊗xi.

Since XK is reflexive and JK is injective (cf. Lemma 1.1 in [11]) we have that
J∗
K has dense range. Hence we may assume that z∗i = J∗

Kx∗
i , and we still have

supα ‖Aα‖ ≤ 1 and Aα(I0m(f)) → JK(I0m(f)) for all f ∈ L1(m). Now we see that

Aα(I0m(f)) =

n
∑

i=1

xi

〈

z∗i ,

∫

f dm
〉

=

n
∑

i=1

xi

〈

x∗
i ,

∫

f dm
〉

=

n
∑

i=1

〈

f,
d〈m,x∗

i 〉

dµ

〉

xi;

in the first instance,
∫

f dm is taken in XK and in the second in X .
This gives the result. �

The following is the main positive result regarding approximation of the norm
of a space L1(m) by means of the finite dimensional components of the integration
map Im. Recall that, for an operator T : L1(m) → X , the associated vector
measure is given by mT (A) = T (χA), A ∈ Σ.

Corollary 3.8. Let m : Σ → X be a countably additive vector measure such that
Im is weakly compact, where X has the approximation property. Then there is a
net of finite rank Radon-Nikodým derivative operators (Rα

m)α such that

lim
α

‖f‖L1(mα) = ‖f‖L1(m), f ∈ L1(m),

where mα is the vector measure associated to Rα
m.
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Proof. Consider the net of finite rank operators (Rα
m)α of norm ≤ 1 that Theo-

rem 3.7 provides. Note that all the measures mα are countably additive, since Rα
m

are finite rank operators and L1(m) is order continuous. Take a function f ∈ L1(m)
and ε > 0. Then there is A ∈ Σ such that

‖f‖L1(m) − ε <
∥

∥

∥

∫

fhA dm
∥

∥

∥

X
= lim

α

∥

∥

∥

∫

fhA dmα

∥

∥

∥

X
≤ sup

A∈Σ

(

lim
α

∥

∥

∥

∫

fhA dmα

∥

∥

∥

X

)

.

Now, since ‖Rm
α ‖ ≤ 1, we obtain

sup
A∈Σ

∥

∥

∥

∫

fhA dm
∥

∥

∥

X
≥ sup

A∈Σ
‖Rm

α (fhA)‖X = sup
A∈Σ

∥

∥

∥

∫

fhA dmα

∥

∥

∥

X
= ‖f‖L1(mα)

for every α, which gives

‖f‖L1(m) − ε < sup
A∈Σ

(

lim
α

∥

∥

∥

∫

fhA dmα

∥

∥

∥

X

)

≤ lim
α

(

sup
A∈Σ

∥

∥

∥

∫

fhA dmα

∥

∥

∥

X

)

≤ lim
α

‖f‖L1(mα) ≤ ‖f‖L1(m).

This gives the proof. �

This clarifies the situation in a great class of Banach space valued vector mea-
sures. For example, if X is reflexive we obtain the result directly: each integration
map can be approximated by a net of finite rank operators – that in fact defines a
net of vector measures (mα)α –, and its norm can be computed as the limit of the
norms in the associated L1(mη)-spaces.

3.4. Approximation of the integration map by martingale type construc-

tions. In the previous section we have shown that weakly compact integration
operators in spaces with the approximation property allow approximations by fi-
nite rank Radon-Nikodým derivative operators. However, this result still excludes
the canonical example of integration map: the identity map in L1[0, 1]. The method
of approximation that can be used in this case is based on martingale type con-
structions. Consider a vector measure m : Σ → X and the space of integrable
functions L1(m). Let P := {Pη : η ∈ Λ} be the net of (classes of µ-a.e. equal) finite
measurable partitions of Ω endowed with the usual inclusion order. Consider the
net of vector measures

mη(A) :=
∑

B∈Pη

µ(A ∩B)

µ(B)
m(B) ∈ X,

where Pη ∈ P.
Consider the corresponding integration map Imη

: L1(mη) → X . It is easy to
see that this is given by the formula

Imη
(f) :=

∑

B∈Pη

∫

B
f dµ

µ(B)
m(B) ∈ X, f ∈ L1(mη).

A direct computation shows also that L1(m) ⋐ L1(mη), that is, Imη
is well-defined

for all functions in L1(m). The question then is: When can the integration map
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Im be approximated pointwise by the family {Imη
: η ∈ Λ}? In other words, is it

true that for every f ∈ L1(m),

lim
η

Imη
(f) = Im(f)?

We will show in what follows that in general the answer is negative, although it is
true for Lp[0, 1], p ≥ 1.

Example 3.9. Let us check again our canonical example: the identity map in L1[0, 1]
considered as an integration map for the vector measure m(A) := χA, A ∈ Σ.
Fix a function f ∈ L1(m). Consider the net P and fix ε > 0. Then there is a
simple function fε =

∑n
i=1 λiχBi

such that ‖f − fε‖L1(m) ≤ ε. It is assumed, by
putting λn = 0 if necessary, that Pη0 = {B1, . . . , Bn} is a partition. Note that
Imη

(fε) = Imη0
(fε) = fε for every η ≥ η0. Then

∥

∥Im(f) − Imη
(f)

∥

∥

L1[0,1]
≤

∥

∥Im(f) − Imη
(fε)

∥

∥

L1[0,1]
+
∥

∥Imη
(fε) − Imη

(f)
∥

∥

L1[0,1]

≤ ε +
∥

∥

∥
fε −

n
∑

i=1

∫

Bi
f dµ

µ(Bi)
χBi

∥

∥

∥

L1[0,1]

= ε +
∥

∥

∥

n
∑

i=1

(

λi −

∫

Bi
f dµ

µ(Bi)

)

χBi

∥

∥

∥

L1[0,1]

= ε +

∫ n
∑

i=1

∣

∣

∣
λi −

∫

Bi
f dµ

µ(Bi)

∣

∣

∣
χBi

dµ

= ε +

n
∑

i=1

∣

∣

∣
λiµ(Bi) −

∫

Bi

f dµ
∣

∣

∣

= ε +

n
∑

i=1

∣

∣

∣

∫

Bi

fε dµ−

∫

Bi

f dµ
∣

∣

∣

≤ ε +

n
∑

i=1

∫

Bi

∣

∣fε − f
∣

∣ dµ

= ε + ‖fε − f‖L1[0,1] ≤ 2ε.

Therefore, we have that limη Imη
= Im pointwise. Moreover, notice that for each

A ∈ Σ, if we replace f and fε by fhA and fεhA respectively in the computations
above, we can also prove that for each f ∈ L1(m),

lim
η

sup
A∈Σ

∥

∥

∥

∫

fhA dm−

∫

fhA dmη

∥

∥

∥
= 0.

Thus, by Theorem 3.4(i) we obtain limη ‖f‖L1(mη) = ‖f‖L1(m) for each f ∈ L1(m).

In general, the convergence of martingales is not assured in Banach function
spaces. It is well known that in the case of the spaces Lp[0, 1], 1 < p < ∞,
this is true, as a consequence of Doob’s martingale inequality; actually, this fact
can be extended to the case of Bochner spaces Lp(µ,X) over probability non-
atomic measures µ (the reader can find a proof in Theorem 1.5 and Remark 1.7 in
[15]). However, the arguments that support these results cannot be transferred to
the whole class of Banach function spaces. Consider an order continuous Banach
function space X(µ) over a probability non-atomic measure µ, and define the same
vector measure Σ ∋ A 7→ χA ∈ X(µ) that has been considered in the example above.
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Note that in this case L1(m) = X(µ) isometrically and Im = Id, the identity map
in X(µ). In [10], it is studied to what extent the convergence of martingales in
Banach function spaces resembles the case of Lp[0, 1], and several positive results
are shown for relevant spaces like L logL. However, a counterexample is also given
for the general fact. It must be noted that in this paper, the definition of Banach
function space includes the requirement of having the Fatou property, so the class of
Banach function spaces considered there is smaller than the one we are considering.

Under this requirement, Theorem 1 in [10] establishes that for an order contin-
uous (and Fatou) Banach function space X(µ), a uniformly integrable martingale
defined by a sequence of continuous conditional expectation operators En : X(µ) →
X(µ) when applied to a function f ∈ X(µ) is convergent to f in the norm of X(µ)
for each f , if and only if the sequence (‖En‖)n is uniformly bounded. However, it
is also proved that this requirement is not always satisfied. Thus, every sequence
of conditional expectation operators is bounded in Lp, but in a general function
space this is not true. Moreover, Theorem 2 in [10] shows that for rearrangement
invariant order continuous and Fatou Banach function spaces the convergence of
uniformly integrable martingales is guaranteed. Again, there are spaces L1(m) that
are not rearrangement invariant, so the result does not apply in our setting.

4. The Daugavet equation for integration maps

In this section we analyse the negative results regarding unconditional pointwise
approximation of integration maps. We will show that, even in the simplest exam-
ples, the integration map of a vector measure cannot be approximated pointwise as
an unconditional series of finite rank operators, or even of weakly compact opera-
tors. The main conclusion of this section is the following. There are vector measures
with associated integration maps of absolutely different nature representing the same
space: they may satisfy that ‖f‖L1(m) = limη ‖f‖L1(mη) for all f ∈ L1(m), but Im
cannot be represented as an unconditionally pointwise convergent series of weakly
compact operators. The Daugavet property is our main source of examples and
counterexamples, together with the following useful result that can be found in [4,
Th. 2.9].

Theorem A. Let G ∈ L(X,Y ). Suppose that the inequality

‖G + T ‖ ≥ C + ‖T ‖

with C > 0 holds for every operator T from a subspace M ⊆ L(X,Y ) of operators.

Let T̂ =
∑

n∈Γ Tn be a (maybe uncountable) pointwise unconditionally convergent

series of operators Tn ∈ M . Then ‖G− T̂‖ ≥ C.

Recall that if a Banach space X has the Daugavet property, then we have that
for every weakly compact operator, ‖Id+T ‖ = 1+‖T ‖, so the result above applies;
this result can be found in [9, Lemma 2.6] for this specific case.

Let (Ω,Σ) be a measurable space and µ a positive measure without atoms. The
main examples of Banach function spaces that have the Daugavet property are
L1(µ) and L∞(µ). Another example is C(K), if K is a compact Hausdorff topo-
logical space without isolated points. In this section we study when the integration
operator Im satisfies the Daugavet equation for a suitable L1(m)-valued vector
measure or in a more general sense, when ‖Im + In‖ = ‖Im‖ + ‖In‖ for m and n

being vector measures m,n : Σ → X such that L1(m) = L1(n).
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Let us start with the main negative example. Let m be a non-atomic vector
measure. It is well known that Im is compact if and only if m has finite variation
and admits a Radon-Nikodým derivative, and in this case L1(m) = L1(|m|) (see
[14, Ch. 3]). For instance, if µ is a Rybakov measure for such a vector measure
m satisfying L1(m) = L1(µ), then the integration map Iµ : L1(m) → R given by
f 7→

∫

f dµ produces the same space of integrable functions. If we fix a norm one
function g ∈ L1(µ), we can consider this integration map as having values in L1(µ)
by defining it as f 7→

∫

f dµ⊗ g.

However, the operator associated to the vector measure m0(A) := χA ∈ L1(µ),
that is the identity map Im0 = Id : L1(m) → L1(µ), gives the same space of
integrable functions L1(m0) = L1(m) = L1(µ). In this case, it is clear that the
integration map Im0 = Id cannot be approximated in the operator norm by a
sequence of compact operators.

Theorem A above, together with the Daugavet property of L1[0, 1], gives that the
integration map Im0 : L1[0, 1] → L1[0, 1] cannot be approximated by any pointwise
unconditional sum of weakly compact operators. However, if m1(A) := µ(A)⊗χ[0,1]

– which has an associated rank 1 integration map –, we have that L1(m0) =
L1(m1) = L1[0, 1] and for each function f ∈ L1[0, 1], ‖f‖L1(m0) = ‖f‖L1(m1). The
results provided in Section 3.4 show that, although we can approximate Im0 point-
wise by a net of finite rank operators, the corresponding series that approximates
a function cannot be unconditionally convergent in general.

Let us show another example in this direction.

Example 4.1. The previous example gives some ideas regarding spaces L1(m) of
L1(µ)-valued measures. Let (Ω,Σ, µ) be a non-atomic finite measure space. For a
continuous linear operator T : L1(µ) → L1(µ) consider the vector measure defined
as mT (A) := T (χA) for each measurable set A ∈ Σ.

Let T : L1(µ) → L1(µ) be an isomorphism and let R : L1(µ) → L1(µ) be a
Radon-Nikodým operator (for example, a weakly compact operator). Consider the
vector measures mT and mR◦T . Then the corresponding integration operators ImT

and ImR◦T
satisfy

‖ImT
+ ImR◦T

‖ = ‖ImT
‖ + ‖ImR◦T

‖

Therefore, for each ε > 0 there is a function f ∈ L1(mT ) such that

∥

∥

∥

∫

f dmT −

∫

f dmR◦T

∥

∥

∥
≥ ‖ImT

‖ + ‖ImR◦T
‖ − ε.

In other words, again by Theorem A we cannot approximate pointwise uncondition-
ally the integration map associated to T by means of integration maps associated
to vector measures constructed using operators like R ◦ T , where R is a Radon-
Nikodým operator.

As in the previous section, in what follows we will describe the Daugavet equation
among integration operators in terms of the Radon-Nikodým derivative operators
of their scalarizations. As usual, the restriction of an operator T : E → X to a
subset Y of E is denoted by T |Y .

Lemma 4.2. Let X0, X1 be Banach spaces and consider two vector measures m :
Σ → X0 and m1 : Σ → X1 that are equivalent to a scalar measure µ. Suppose
that Z = Z(µ) is a Banach function space such that Z(µ) ⊆ L1(m) ∩ L1(m1) and
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X0 + X1 ⊆ X with continuous inclusions. Then for every scalar λ,

‖Im|Z + λIm1 |Z‖L(Z(µ),X) = sup
x∗∈BX∗

∥

∥ϕm
x∗ + λϕm1

x∗

∥

∥

Z(µ)∗
.

Proof. Note that by the inclusion requirement Z(µ) ⊆ L1(m) ∩ L1(m1), for all
f ∈ Z(µ) we have that

∫

f dm and
∫

f dm1 make sense. The following direct
computation gives the result.

‖Im|Z + λIm1 |Z‖L(Z,X) = sup
f∈BZ

‖Im|Z(f) + λIm1 |Z(f)‖X

= sup
f∈BZ

∥

∥

∥

∫

f dm + λ

∫

f dm1

∥

∥

∥

X

= sup
f∈BZ

sup
{〈

∫

f dm, x∗
〉

+
〈

∫

λf dm1, x
∗
〉

: x∗ ∈ BX∗

}

= sup
f∈BZ ,x∗∈BX∗

{

∫

f d〈m,x∗〉 + λ

∫

f d〈m1, x
∗〉
}

.

Let ϕm
x∗ = d〈m,x∗〉

dµ
and ϕm1

x∗ = d〈m1,x
∗〉

dµ
be the Radon-Nikodým derivatives with

respect to the fixed measure µ; note that they belong to Z∗. Then

sup
f∈BZ ,x∗∈BX∗

{

∫

f d〈m,x∗〉 + λ

∫

f d〈m,x∗〉
}

= sup
f∈BZ ,x∗∈BX∗

{

∫

fϕm
x∗dµ +

∫

λfϕm1
x∗ dµ

}

= sup
f∈BZ ,x∗∈BX∗

{

∫

f(ϕm
x∗ + λϕm1

x∗ )dµ
}

= sup
x∗∈BX∗

‖ϕm
x∗ + λϕm1

x∗ ‖Z∗ . �

Let us show some direct applications. Let X(µ) be an order continuous Banach
function space over a finite measure space (Ω,Σ, µ). We will say that a vector
measure m : Σ → X represents X(µ) if L1(m) = X(µ) isometrically and in the
order. We consider first the case when a space X(µ) is represented by a vector
measure m having values in the same space X(µ). Thus, let us show a particular
case that will be relevant later on in the paper. Suppose that m and m1 are vector
measures having values in the order continuous Banach function space X(µ) such
that L1(m) = L1(m1) = X(µ) (isometrically), and in such a way that Im1 =
Id : X(µ) → X(µ), the identity map; this happens if m1 is the vector measure
Σ ∋ A 7→ m1(A) := χA ∈ X(µ), and in this case Id(f) =

∫

f dm1 = f . Then,

‖Id + Im‖ = sup
h∈B(X(µ))′

‖h + ϕm
h ‖,

and consequently:

Corollary 4.3. For each vector measure m : Σ → X(µ) representing X(µ), the
Daugavet equation ‖Id + Im‖ = 2 holds if and only if

sup
h∈B(X(µ))′

∥

∥

∥
h +

d〈m,h〉

dµ

∥

∥

∥
= 2

holds.
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Example 4.4. Consider again our canonical example. Take the L1[0, 1]-valued vec-
tor measures defined as m1(A) := χA and m(A) := µ(A) · χ[0,1] for each Lebesgue

measurable set A. Both of them give L1[0, 1] as space of integrable functions iso-
metrically; for them, we have that

sup
h∈BL∞[0,1]

∥

∥

∥
h +

d〈m,h〉

dµ

∥

∥

∥
= 2.

Taking into account that the Radon-Nikodým derivative of the measure A 7→
µ(A)

∫

χ[0,1]h dµ = 〈m,h〉(A) is

d〈m,h〉

dµ
= χ[0,1]

∫

[0,1]

h dµ,

we obtain that in this case, this is equivalent to

sup
h∈BL∞[0,1]

∥

∥

∥
h + χ[0,1]

∫

[0,1]

h dµ
∥

∥

∥
= 2;

in fact, the same result is true when we replace the function χ[0,1] by any other

norm one function of L1[0, 1], since all of them define rank 1 operators.

There are other cases of Banach lattices of integrable functions that also have
the Daugavet property and are not L1-spaces. Let us explain some examples. It is
well known that, if µ is a nonatomic probability measure and E is a Banach space,
the space L1(µ,E) of Bochner integrable functions has the Daugavet property (see
[9, p. 858, Example]). Thus, in the case that E is also a Banach lattice, it is known
that L1(µ,E) is a Banach lattice too that has the Daugavet property. Another
interesting example of a Banach space having the Daugavet property is the Bochner
space L∞(µ,E): it has the Daugavet property is E has it or µ is nonatomic (see [13,
Th. 5]) it is also a Banach lattice if E is so. However, since all the spaces L1(m) for
a vector measure m are order continuous Banach function spaces, the application
of the previously mentioned space as example of our class is restricted to finite
ℓ∞-sums of Banach function spaces having the Daugavet property (this case was
already considered in [17]). Anyway, c0-sums of Banach function spaces with the
Daugavet property have also this property, as can be deduced from Proposition 2.16
in [9]: take for example a disjoint countable measurable partition {Ai : i ∈ N} of
[0, 1]; the c0-sum of L1(µ|Ai

) has the Daugavet property. This space satisfies the
order continuity requirement, and so it can be represented as an L1(m) of a vector
measure m.

However, it must be said that the class of Banach function spaces having the
Daugavet property is rather small. The results in [1], [2] and [8] show this. Thus,
Theorem 3.6 in [2] states that for a rearrangement invariant Banach function space
X(µ) over a finite measure µ with the weak Fatou property, the Daugavet property
implies that X(µ) coincides either with L∞(µ) or with L1(µ) isometrically. Since all
the spaces L1(m) of a vector measure m are order continuous, our class is restricted
to the case of L1-spaces of finite measures. Moreover, if L1(m) is an Orlicz space
with the Luxemburg norm, for m being non-atomic, and has the Daugavet property,
then it must be isometric to L1 [2, Cor. 4.3].

Therefore we obtain the following result.
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Proposition 4.5. Let X(µ) be an order continuous Banach function space with
the Daugavet property (in particular, if X(µ) = L1(µ) for a non-atomic measure
µ). The following assertions hold.

(1) Let m be an X(µ)-valued countably additive vector measure representing
X(µ) such that Im is a Radon-Nikodým operator. Then

‖Id + Im‖ = sup
h∈B(X(µ))′

‖h + λϕm
h ‖(X(µ))′ = 2.

(2) There is a vector measure m representing X(µ) such that its integration map
Im is not a pointwise unconditional sum (maybe uncountable) of Radon-
Nikodým operators. In fact, the same result holds if X(µ) is isomorphic to
a space with the Daugavet property.

(3) Let M be the normed space of all linear combinations of finite rank Radon-
Nikodým derivative operators associated to vector measures representing
X(µ). Then the integration map associated to the vector measure Σ ∋ A 7→
χA ∈ X(µ) representing X(µ) – the identity map – cannot be approximated
as a (maybe uncountable) pointwise unconditionally convergent series of
operators in M.

Proof. The first statement is a direct consequence of the Daugavet property of
X(µ). The second one can be proved as a direct application of Theorem 2.9 in
[4], taking into account that again by the Daugavet property of X(µ), Radon-
Nikodým operators satisfy the Daugavet equation. The third statement is the
result of considering in particular those operators that are finite sums of finite rank
integration maps representing X(µ). �

Remark 4.6. A similar version of the result above can be obtained if we replace the
operator Id by any integration operator Im that is a Daugavet center, without the
assumption that X(µ) has the Daugavet property. The reader can find information
about this notion in [3] and [4]. In fact, using Remark 2.10 in [4], more can be
said. If a Banach function space X(µ) can be represented by an integration map –
maybe defined in a different Banach space F – that is a Daugavet center, then X(µ)
cannot have an unconditional basis (countable or uncountable) or be represented as
unconditional sum of reflexive spaces. The reason is that then Im cannot be written
as a pointwise unconditionally convergent series of weakly compact operators; in
particular, of course Im cannot be a weakly compact operator.

The structure of the spaces L1(m) with Im being a Daugavet center is, as a
consequence of the previous results and comments, close to being isomorphic to
spaces L1 of scalar measures. In fact, in [4] it is proved that every Daugavet center
fixes a copy of ℓ1, and so L1(m) cannot be a reflexive space.
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