Infectious Diseases

Lesson 7

GASTROINTESTINAL AND HEPATOBILIARY INFECTIONS

Part B – Intra-abdominal Infections

Bernardino Roca Villanueva

Servicio de Medicina Interna, Hospital General de Castellón Departamento de Medicina, Universidad Jaume I

broca@uji.es

Objectives and learning goal

Objectives

- To study all clinically relevant intraabdominal infections
- To understand the differences and similarities that exist among the diverse intra-abdominal infections

Learning goal

To develop enough clinical skills to properly manage a patient with an intra-abdominal infection

Contents

- Introduction
- Primary or spontaneous peritonitis
- Secondary peritonitis
- Secondary peritonitis associated with peritoneal dialysis
- Hepatic abscess
- Pancreatic abscess
- Cholecystitis and cholangitis
- Helicobacter pylori-associated peptic ulcer disease
- Key messages
- Further reading

Introduction

Relevance and main features

- Incidence of intra-abdominal infections is difficult to ascertain
- Provoke a significant number of hospital admissions
- Often at the interface of internal medicine and surgery
- In many cases, the internist, gastroenterologist, radiologist, and general surgeon need to coordinate themselves to assure the most favorable outcome

Primary or spontaneous peritonitis

Pathogenesis

- Occurs in patients with ascites due to severe cirrhosis, and less frequently in ascites due to heart failure, malignancy, or lymphedema
- Bacteria may enter the peritoneal space by:
 - Hematogenous spread
 - Lymphatic spread
 - Migration through the bowel wall
- Factors favoring infections in severe cirrhosis:
 - The reticuloendothelial system of the liver is often bypassed secondary to shunting, increasing the risk of prolonged bacteremia
 - Bowel motility is also slowed, resulting in bacterial overgrowth

Cirrhosis of the liver

Microbiology

- The most common pathogens are enteric bowel flora: E. coli and Klebsiella pneumoniae
- Also common Streptococcus pneumoniae and other streptococci and enterococci
- Rarely S. aureus, anaerobes and others

Clinical manifestations

- Initial symptoms and signs may be subtle
- Fever the most common manifestation, initially often low grade
- Abdominal pain diffuse and constant, differs from the usual sensation of tightness with tense ascites
- Development of hepatic encephalopathy
- Diarrhea usually precipitated by overgrowth of bowel flora
- Abdominal tenderness is diffuse and without guarding; in the late stages rebound tenderness may be elicited

Diagnosis

- Paracentesis, 4 samples of ascitic fluid for:
 - Culture, 10 mL inoculated into a blood flask
 - Cell counts and cytology analysis, tube containing anticoagulant
 - Total protein, albumin, LDH, glucose, and amylase levels
 - Gram stain
- Leukocyte count > 250 cells/mm³ with predominance of polymorphonuclears
- Urinalysis leukocyte esterase strips, a reading > 20 indicates acute inflammation and probable infection
- Gram stain is positive in 20-40 % of cases
- High total protein, LDH, and amylase, and low glucose, suggest secondary peritonitis, due to bowel perforation

Treatment and outcome

- Empiric cefotaxime or ceftriaxone, as an emergency
- If secondary peritonitis is suspected, anaerobic coverage with metronidazole should be added
- Mortality 60-70%
- Spontaneous peritonitis is a marker of terminal liver disease, and sufferers should strongly be considered for liver transplant
- Antibiotic prophylaxis, initiated after the first episode with trimethoprim-sulfamethoxazole, oral norfloxacin, or oral ciprofloxacin

Secondary peritonitis

Pathogenesis

- Spillage of bowel flora into the peritoneal cavity
- Causes include:
 - Perforation of a gastric ulcer
 - Appendicitis with rupture
 - Diverticulitis
 - Bowel neoplasm
 - Gangrenous bowel resulting from
 - Strangulation
 - Mesenteric artery insufficiency
 - Pancreatitis

Microbiology

- Stomach perforation → infection with mouth flora, including streptococci, Candida spp., lactobacilli, and anaerobes
- Bowel perforation → mixed enteric flora, including:
 - Anaerobes such as Bacteroides fragilis
 - Aerobic gram-negative bacteria such as *E. coli*, *Klebsiella* spp., *Proteus* spp., and *Enterobacter* spp.
 - Gram-positive bacteria such as S. viridans, enterococci, and C. perfringens

Peritoneal response to infection

- Rapid and exuberant
- Large quantities of proteinaceous exudate are released into the peritoneum → wall off infection → abscesses
- Massive influx of polymorphonuclears and macrophages
- Massive influx of **fluid** that can result in intravascular fluid losses of 300-500 mL hourly
- Lymphatics clear large numbers of bacteria quickly, but finally bacteria invade the bloodstream
- Host defense may be overwhelmed

 metabolic acidosis, tissue hypoxia, shock, multiorgan failure, and death

Clinical manifestations: symptoms

- Anterior peritoneum is richly enervated, and the first manifestation is pain, usually sharp, localized to the site of spillage, and aggravated by motion
- Loss of appetite, nausea, fever, chills, constipation, and abdominal distension
- Patients usually lie still in bed, breathing with shallow respirations
- Generalized abdominal pain, tachycardia, and hypotension develop in the later stages

Clinical manifestations: signs

- Bowel sounds are decreased or absent
- Abdomen is tender to palpation, with guarding and involuntary muscle spasm: board-like abdomen
- Rebound tenderness (slow compression of the abdomen followed by rapid release of pressure causes severe pain), indicates peritoneal irritation
- Tenderness on rectal examination
- Elderly patients often fail to present with the classic findings of peritonitis

Diagnosis I

- Leukocytosis, 17,000-25,000 per mm³, with left shift
- Supine and upright abdominal X-rays:
 - Free air under the diaphragm (bowel or gastric perforation)
 - Assess the bowel gas pattern
 - Search for areas of thickened edematous bowel wall
- Chest X-ray must always be performed to exclude lower lobe pneumonia, which can cause ileus and upper quadrant tenderness mimicking peritonitis

Free air under the diaphragm

Bowel obstruction, air-fluid levels

Diagnosis II

- CT scan of the abdomen and pelvis, after oral and intravenous contrast, test of choice for suspected intraabdominal infection:
 - Often obviates the need for exploratory laparotomy
 - Accurate diagnosis of appendicitis
 - Localization and needle aspiration of abscesses
 - Identification of areas of bowel obstruction
- Abdominal examination, vital signs, basic blood analyses, and image tests help in deciding whether an exploratory laparotomy is necessary

Acute appendicitis

Treatment

- Antibiotics emergently initiated in suspected secondary peritonitis: imipenem, piperacillin-tazobactam, etc.
- A general surgeon should be consulted emergently, exploratory laparotomy is often required for diagnosis, drainage, and bowel repair
- Intraoperative cultures may be helpful
- Peritoneal irrigation is performed intraoperatively, and drains are placed at sites where purulent collections are noted
- Multiple operations are often required for purulent peritonitis

Secondary peritonitis associated with peritoneal dialysis

Pathogenesis and clinical features

- Frequent complication of chronic ambulatory peritoneal dialysis and the most frequent reason for discontinuation of that therapy
- *S. aureus*, including MRSA, or **gram-negative** bacteria, fungi, mycobacteria, etc.
- Fever and diffuse abdominal pain
- Peritoneal dialysis fluid becomes cloudy

Diagnosis and treatment

- Peritoneal fluid leukocyte counts > 100/mm³, with a predominance of polymorphonuclears; predominance of lymphocytes in fungal or mycobacterial infection
- Peritoneal fluid gram stain and culture
- Blood cultures
- Antibiotic added to the dialysate, cefazolin, or vancomycin + tobramycin.
- If the patient fails to improve within 48 hours, removal of the dialysis catheter should be considered

Hepatic abscess

Pathogenesis: sources of infection

- Biliary tract infection
- Portal vein bacteremia due to intra-abdominal infections:
 - Appendicitis
 - Diverticulitis
 - Inflammatory bowel disease
- Extension from a contiguous infection
 - Perforation of the gallbladder or duodenal ulcer
 - Perinephric, pancreatic, or subphrenic abscess
- Penetrating wounds and postoperative complications
- Bacteremia from any source
- In one quarter of cases, a cause cannot be determined

Microbiology

- Reflects the primary site of infection
- Usually polymicrobial:
 - Anaerobes: Bacteroides spp., Fusobacterium spp., Peptostreptococcus spp., and Actinomyces spp.
 - Microaerophilic streptococci, S. milleri, etc.
 - Gram-negative rods: K. pneumoniae (particularly K1 serotype)
 - Candida spp., in patients with leukemia following chemotherapy-induced neutropenia
 - Amoebic liver abscess, rare, complicates 3-9 % cases of amoebic colitis

Clinical manifestations

- **Fever** with or without chills; a common infectious cause of fever of undetermined origin
- Abdominal pain, often in the right upper quadrant, dull and constant
- Weight loss
- Physical examination:
 - Tenderness over the liver
 - Jaundice is rare
 - Abscess in upper regions of liver, decreased lung breath sounds because of atelectasis or pleural effusion

Diagnosis

- Leukocytosis, over 20,000/mm³, with neutrophilia and increased immature forms
- ↑ serum alkaline phosphatase
- Blood cultures positive in up to half of patients
- Abdominal CT scan, the most sensitive test, shows a discrete area of low attenuation at the abscess site
- Ultrasound is somewhat less sensitive
- Found most commonly in the right lobe
- If a single large abscess is noted, amoeba serology should be ordered

Liver abscess

Liver abscess

Treatment and outcome

- Ultrasound and CT can both be used to guide needle aspiration for culture and drainage
- A finding of brownish fluid without a foul odor suggests amoebic abscess
- Antibiotic therapy identical to that for secondary peritonitis
- Open surgical drainage:
 - Persistent fever after 2 weeks of treatment
 - Biliary obstruction
 - Multiloculated abscesses, other than Echinococcus granulosus
 - Highly viscous abscesses
- Nearly 100% of patients are now cured

Pancreatic abscess

Characteristics

- Pancreatitis → release of pancreatic enzymes → tissue necrosis that becomes infected by:
 - Reflux of contaminated bile
 - Hematogenous spread
- Usually polymicrobial
- Ultrasound and CT scan for diagnosis, culture and drainage
- The same antibiotic used for secondary peritonitis
- Open drainage and debridement are usually required

Pancreatic abscess after acute necrotizing pancreatitis

Cholecystitis and cholangitis

Pathogenesis

- Gallstones → biliary obstruction → ↑ pressure and distension of the gallbladder → blood flow compromise and interfere with lymphatic drainage → tissue necrosis and inflammation → cholecystitis → cholangitis
- Infection is not the primary cause of acute cholecystitis and cholangitis, obstruction prevents flushing of bacteria from the gallbladder -> infection in more than half of all cases

Microbiology

- Organisms of the bowel flora, similar to those in secondary peritonitis
- The most frequently cultured:
 - E. coli
 - Klebsiella spp.
 - Enterococci
 - Anaerobes

Clinical manifestations

- Charcot triad (fever, right upper quadrant pain, and jaundice)
- Marked tenderness over the liver
- Hypotension suggests gram-negative etiology
- Elderly patients may not complain of pain
- Marked leukocytosis with left shift
- † alkaline phosphatase, gamma-glutamyl
 transpeptidase, bilirubin, aminotransferases
- Blood cultures frequently positive

Diagnosis and treatment

- Ultrasonography, preferred diagnostic study for:
 - Gallstones
 - Dilatation of the gallbladder
 - Dilatation of the biliary ducts
- CT scan and magnetic resonance imaging
- Endoscopic retrograde cholangiopancreatography (ERCP)
 - Diagnosis
 - Dilatation of sphincter of Oddi, removal of stones, placement of stents, etc.
 - Under antibiotic coverage

Treatment

- Imipenem, ampicillin + gentamicin, immediately
- Prompt surgical intervention for
 - Gangrenous gallbladder
 - Gallbladder perforation
- Acute cholecystitis: decompression of the gallbladder and stone removal with:
 - ERCP
 - Percutaneous drainage
 - Urgent if hypotension, mental confusion, etc.
- Outcome favorable in uncomplicated cases

Gangrenous cholecystitis: markedly distended gallbladder with presence of air fluid level

Helicobacter pyloriassociated peptic ulcer disease

Microbiology

- Helicobacter pylori
 - Small, curved
 - Microaerophilic gram-negative rod
 - Corkscrew-like motility
 - Closely related to Campylobacter spp.
- Survive and multiply within the gastric mucosa

Pathogenesis

- Adheres to gastric mucosa, with pedestals similar to those of enteropathogenic E. coli
- Have urease

 ammonium ions that buffer the gastric acid
- *H. pylori* $\rightarrow \uparrow$ inflammatory cells in the lamina propria of gastric wall \rightarrow cytokines $\rightarrow \downarrow$ somatostatin levels $\rightarrow \uparrow$ gastrin levels \rightarrow peptic ulcers
- H. pylori → chronic inflammation → aplastic changes in the gastric mucosa → gastric carcinomas

Clinical manifestations and diagnosis

- H. pylori peptic ulcer:
 - Burning pain several hours after meals, relieved by food
 - Belching, indigestion, and heartburn
- Testing for H. pylori, only in symptomatic patients:
 - Urease breath test, patient ingests ¹³C- or ¹⁴C-labeled urea, and their breath is analyzed for ¹³C or ¹⁴C
 - Stool antigen test
 - Measurement of IgG antibody levels by ELISA
 - Endoscopic biopsy:
 - Tested for urease (CLO test)
 - Cultured in selective media, antibiotic sensitivities in refractory cases
 - Silver, gram, or Giemsa stain, and immunofluorescence test

Treatment

- Lansoprazole or omeprazole + amoxicillin + clarithromycin
- Penicillin-allergic, metronidazole can be substituted for amoxicillin
- Sequential therapy: rabeprazole + amoxicillin → rabeprazole + clarithromycin + tinidazole
- Quadruple therapy, one "-prazol" + bismuth + two oral antibiotics (amoxicillin, clarithromycin, metronidazole, tetracycline, etc.)

Key messages

To remember...

Most intra-abdominal infections are produced by bacteria of the intestinal flora, have a similar pathogenesis and must be treated with antibiotics that cover the three main groups of bacteria: gram-positive cocci, gram-negative rods and anaerobes. Drainage is also frequently needed

Further reading

Used references

- Southwick F. Infectious disease. A clinical short course. 3rd Edition.
 New York: McGraw-Hill, 2014. Chapter 8.
- Sartelli M, Catena F, Ansaloni L et al. Complicated intra-abdominal infections worldwide: the definitive data of the CIAOW Study. World J Emerg Surg 2014; 9: 37. doi: 10.1186/1749-7922-9-37.
- Longo DL, Fauci AS, Kasper DL, Hauser SL, Jameson JL, Loscalzo J, editors. Harrison's principles of internal medicine. 18th ed. New York: McGraw-Hill, 2012. Chapter 127.

Preparing the exam

- Southwick F. Infectious disease. A clinical short course. 3rd Edition. New York: McGraw-Hill, 2014. Chapter 8.
- These slides