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Abstract

Dealing with asymmetry in the architecture opens a plethora of questions from the per-
spective of scheduling task-parallel applications, and there exist early attempts to address
this problem via ad-hoc strategies embedded into a runtime framework. In this paper we
take a different path, which consists in addressing the complexity of the problem at the
library level, via a few asymmetry-aware fundamental kernels, hiding the architecture
heterogeneity from the task scheduler. For the specific domain of dense linear algebra,
we show that this is not only possible but delivers much higher performance than a naive
approach based on an asymmetry-oblivious scheduler. Furthermore, this solution also
outperforms an ad-hoc asymmetry-aware scheduler furnished with sophisticated schedul-
ing techniques.

Keywords: Dense linear algebra, Task parallelism, Runtime task schedulers,
Asymmetric architectures

1. Introduction

The end of Dennard scaling has promoted heterogeneous systems into a mainstream
approach to leverage the steady growth of transistors on chip dictated by Moore’s
law [1, 2]. ARM R© big.LITTLETM processors are a particular class of heterogeneous
architectures that combine two types of multicore clusters, consisting of a few high per-
formance (big) cores and a collection of low power (LITTLE) cores. These asymmetric
multicore processors (AMPs) can in theory deliver much higher performance for the same
power budget. Furthermore, compared with multicore servers equipped with graphics
processing units (GPUs), NVIDIA’s Tegra chips and AMD’s APUs, ARM big.LITTLE
processors differ in that the cores in these systems-on-chip (SoC) share the same instruc-
tion set architecture and a strongly coupled memory subsystem.
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Task parallelism has been reported as an efficient means to tackle the considerable
number of cores in current processors. Several efforts, pioneered by Cilk [3], aim to ease
the development and improve the performance of task-parallel programs by embedding
task scheduling inside a runtime (framework). The benefits of this approach for com-
plex dense linear algebra (DLA) operations have been demonstrated, among others, by
OmpSs [4], StarPU [5], PLASMA/MAGMA [6, 7], Kaapi [8], and libflame [9]. In gen-
eral, the runtimes underlying these tools decompose DLA routines into a collection of
numerical kernels (or tasks), and then take into account the dependencies between the
tasks in order to correctly issue their execution to the system cores. The tasks are there-
fore the “indivisible” scheduling unit while the cores constitute the basic computational
resources.

In this paper we introduce an efficient approach to execute task parallel DLA routines
on AMPs via conventional asymmetry-oblivious schedulers. Our conceptual solution
aggregates the cores of the AMP into a number of symmetric virtual cores (VCs) which
become the only basic computational resources that are visible to the runtime scheduler.
In addition, an specialized implementation of each type of task, from an asymmetry-aware
DLA library, partitions each numerical kernel into a series of finer-grain computations,
which are efficiently executed by the asymmetric aggregation of cores of a single VC. Our
work thus makes the following specific contributions:

• We target in our experiments the Cholesky factorization [10], a complex operation
for the solution of symmetric positive definite linear systems that is representative
of many other DLA computations. Therefore, we are confident that our approach
and results carry beyond a significant fraction of LAPACK (Linear Algebra PACK-
age) [11].

• For this particular factorization, we describe how to leverage the asymmetry-
oblivious task-parallel runtime scheduler in OmpSs, in combination with a data-
parallel instance of the BLAS-3 (basic linear algebra subprograms) [12] in the BLIS
library specifically designed for ARM big.LITTLE AMPs [13, 14].

• We provide practical evidence that, compared with an ad-hoc asymmetry-conscious
scheduler recently developed for OmpSs [15], our solution yields higher performance
for the multi-threaded execution of the Cholesky factorization on an Exynos 5422
SoC comprising two quad-core clusters, with ARM Cortex-A15 and Cortex-7 tech-
nology.

• In conclusion, compared with previous work [13, 15], this paper demonstrates that,
for the particular domain of DLA, it is possible to hide the difficulties intrinsic to
dealing with an asymmetric architecture (e.g., workload balancing for performance,
energy-aware mapping of tasks to cores, and criticality-aware scheduling) inside an
asymmetry-aware implementation of the BLAS-3. As a consequence, our solution
can refactor any conventional (asymmetry-agnostic) scheduler to exploit the task
parallelism present in complex DLA operations.

The rest of the paper is structured as follows. Section 2 presents the target ARM
big.LITTLE AMP, together with the main execution paradigms it exposes. Section 3
reviews the state-of-the-art in runtime-based task scheduling and DLA libraries for (het-
erogeneous and) asymmetric architectures. Section 4 introduces the approach to reuse
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conventional runtime task schedulers on AMPs by relying on an asymmetric DLA li-
brary. Section 5 reports the performance results attained by the proposed approach; and
Section 6 closes the paper with the final remarks.

2. Software Execution Models for ARM big.LITTLE SoCs

The target architecture for our design and evaluation is an ODROID-XU3 board
comprising a Samsung Exynos 5422 SoC with an ARM Cortex-A15 quad-core processing
cluster (running at 1.3 GHz) and a Cortex-A7 quad-core processing cluster (also operating
at 1.3 GHz). Both clusters access a shared DDR3 RAM (2 Gbytes) via 128-bit coherent
bus interfaces. Each ARM core (either Cortex-A15 or Cortex-A7) has a 32+32-Kbyte L1
(instruction+data) cache. The four ARM Cortex-A15 cores share a 2-Mbyte L2 cache,
while the four ARM Cortex-A7 cores share a smaller 512-Kbyte L2 cache.

Modern big.LITTLE SoCs, such as the Exynos 5422, offer a number of software
execution models with support from the operating system (OS):

1. Cluster Switching Mode (CSM): The processor is logically divided into two clusters,
one containing the big cores and the other with the LITTLE cores, but only one
cluster is usable at any given time. The OS transparently activates/deactivates the
clusters depending on the workload in order to balance performance and energy
efficiency.

2. CPU migration (CPUM): The physical cores are grouped into pairs, each consisting
of a fast core and a slow core, building VCs to which the OS maps threads. At
any given moment, only one physical core is active per VC, depending on the
requirements of the workload. In big.LITTLE specifications where the number of
fast and slow cores do not match, the VC can be assembled from a different number
of cores of each type. The In-Kernel Switcher (IKS) is Linaro’s solution for this
model.

3. Global Task Scheduling (GTS). This is the most flexible model. All 8 cores are avail-
able for thread scheduling, and the OS maps the threads to any of them depending
on the specific nature of the workload and core availability. ARM’s implementation
of GTS is referred to as big.LITTLE MP.

Figure 1 offers an schematic view of these three execution models for modern big.LITTLE
architectures. GTS is the most flexible solution, allowing the OS scheduler to map threads
to any available core or group of cores. GTS exposes the complete pool of 8 (fast and
slow) cores in the Exynos 5422 SoC to the OS. This allows a straight-forward port of
existing threaded application, including runtime task schedulers, to exploit all the com-
putational resources in this AMP, provided the multi-threading technology underlying
the software is based on conventional tools such as, e.g., POSIX threads or OpenMP.
Attaining high performance in asymmetric architectures, even with a GTS configuration,
is not as trivial, and is one of the goals of this paper.

Alternatively, CPUM proposes a pseudo-symmetric view of the Exynos 5422, trans-
forming this 8-core asymmetric SoC into 4 symmetric multicore processors (SMPs), which
are logically exposed to the OS scheduler. (In fact, as this model only allows one active
core per VC, but the type of the specific core that is in operation can differ from one VC
to another, the CPUM is still asymmetric.)
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OS / Task scheduler (two asymmetric

clusters, only one active at a time)

(a) CSM

OS scheduler / Task scheduler (4 VCs,
one physical core per VC active at a time)

(b) CPUM

OS scheduler / Task scheduler (8 asymmetric cores,
any active at a time)

(c) GTS

Figure 1: Operation modes for modern big.LITTLE architectures.

In practice, runtime task schedulers can mimic or approximate any of these OS op-
eration modes. A straight-forward model is simply obtained by following the principles
governing GTS to map ready tasks to any available core. With this solution, load un-
balance can be tackled via ad-hoc (i.e., asymmetry-aware) scheduling policies embedded
into the runtime that map tasks to the most “appropriate” resource.

3. Parallel Execution of DLA Operations on Multi-threaded Architectures

In this section we briefly review several software efforts, in the form of task-parallel
runtimes and libraries, that were specifically designed for DLA, or have been successfully
applied in this domain, when the target is (an heterogeneous system or) an AMP.

3.1. Runtime task scheduling of complex DLA operations

3.1.1. Task scheduling for the Cholesky factorization

We start by describing how to extract task parallelism during the execution of a DLA
operation, using the Cholesky factorization as a workhorse example. This particular
operation, which is representative of several other factorizations for the solution of linear
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systems, decomposes an n × n symmetric positive definite matrix A into the product
A = UTU , where the n× n Cholesky factor U is upper triangular [10].

1 void cholesky (double *A[s][s], int b, int s)
2 {
3 for (int k = 0; k < s; k++) {
4
5 po_cholesky (A[k][k], b, b); // Cholesky factorization
6 // (diagonal block)
7 for (int j = k + 1; j < s; j++)
8 tr_solve (A[k][k], A[k][j], b, b); // Triangular solve
9

10 for (int i = k + 1; i < s; i++) {
11 for (int j = i + 1; j < s; j++)
12 ge_multiply (A[k][i], A[k][j],
13 A[i][j], b, b); // Matrix multiplication
14 sy_update (A[k][i], A[i][i], b, b); // Symmetric rank -b update
15 }
16
17 }
18 }

Listing 1: C implementation of the blocked Cholesky factorization.

Listing 1 displays a simplified C code for the factorization of an n×n matrix A, stored
as s×s (data) sub-matrices of dimension b×b each. This blocked routine decomposes
the operation into a collection of building kernels: po cholesky (Cholesky factoriza-
tion), tr solve (triangular solve), ge multiply (matrix multiplication), and sy update

(symmetric rank-b update). The order in which these kernels are invoked during the
execution of the routine, and the sub-matrices that each kernel read/writes, result in a
direct acyclic graph (DAG) that reflects the dependencies between tasks (i.e., instances
of the kernels) and, therefore, the task parallelism of the operation. For example, Fig-
ure 2 shows the DAG with the tasks (nodes) and data dependencies (arcs) intrinsic to
the execution of Listing 1, when applied to a matrix composed of 4×4 sub-matrices (i.e.,
s=4).

The DAG associated with an algorithm/routine is a graphical representation of the
task parallelism of the corresponding operation, and a runtime system can exploit this
information to determine the task schedules that satisfy the DAG dependencies. For
this purpose, in OmpSs the programmer employs OpenMP-like directives (pragmas) to
annotate routines appearing in the code as tasks, indicating the directionality of their
operands (input, output or input/output) by means of clauses. The OmpSs runtime then
decomposes the code (transformed by Mercurium source-to-source compiler) into a num-
ber of tasks at run time, dynamically identifying dependencies among these, and issuing
ready tasks (those with all dependencies satisfied) for their execution to the processor
cores of the system.

Listing 2 shows the annotations a programmer needs to add in order to exploit task
parallelism using OmpSs; see in particular the lines labelled with ‘#pragma omp”. The
clauses in, out and inout denote data directionality, and help the task scheduler to
keep track of data dependencies between tasks during the execution. We note that,
in this implementation, the four kernels simply boil down to calls to four fundamental
computational kernels for DLA from LAPACK (dpotrf) and the BLAS-3 (dtrsm, dgemm
and dsyrk).
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Figure 2: DAG with the tasks and data dependencies resulting from the application of the code in
Listing 1 to a 4 × 4 blocked matrix (s=4). The labels specify the type of kernel/task with the following
correspondence: “C” for the Cholesky factorization, “T” for the triangular solve, “G” for the matrix
multiplication, and “S” for the symmetric rank-b update. The subindices (starting at 0) specify the
sub-matrix that the corresponding task updates, and the color is used to distinguish between different
values of the iteration index k.

3.1.2. Task scheduling in heterogeneous and asymmetric architectures

For servers equipped with one or more graphics accelerators, (specialized versions
of) the schedulers underlying OmpSs, StarPU, MAGMA, Kaapi and libflame distin-
guish between the execution target being either a general-purpose core (CPU) or a GPU,
assigning tasks to each type of resource depending on their properties, and applying
techniques such as data caching or locality-aware task mapping; see, among many oth-
ers, [16, 17, 18, 19, 20].

The designers/developers of the OmpSs programming model and the Nanos++ run-
time task scheduler recently introduced a new version of their framework, hereafter re-
ferred to as Botlev-OmpSs, specifically tailored for AMPs [15]. This asymmetry-conscious
runtime embeds a scheduling policy CATS (Criticality-Aware Task Scheduler) that re-
lies on bottom-level longest-path priorities, keeps track of the criticality of the individual
tasks, and leverages this information, at execution time, to assign a ready task to either a
critical or a non-critical queue. In this solution, tasks enqueued in the critical queue can
only be executed by the fast cores. In addition, the enhanced scheduler integrates uni- or
bi-directional work stealing between fast and slow cores. According to the authors, this
sophisticated ad-hoc scheduling strategy for heterogeneous/asymmetric processors at-
tains remarkable performance improvements in a number of target applications; see [15]
for further details.

When applied to a task-parallel DLA routine, the asymmetry-aware scheduler in
Botlev-OmpSs maps each task to a single (big or LITTLE) core, and simply invokes a
sequential DLA library to conduct the actual work. On the other hand, we note that this
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1 #pragma omp task inout([b][b]A)
2 void po_cholesky (double *A, int b, int ld)
3 {
4 static int INFO = 0;
5 static const char UP = ’U’;
6 dpotrf (&UP , &b, A, &ld, &INFO); // LAPACK Cholesky factorization
7 }
8
9 #pragma omp task in([b][b]A) inout([b][b]B)

10 void tr_solve (double *A, double *B, int b, int ld)
11 {
12 static double DONE = 1.0;
13 static const char LE = ’L’, UP = ’U’, TR = ’T’, NU = ’N’;
14 dtrsm (&LE, &UP, &TR , &NU, &b, &b,
15 &DONE , A, &ld, B, &ld); // BLAS -3 triangular solve
16 }
17
18 #pragma omp task in([b][b]A, [b][b]B) inout ([b][b]C)
19 void ge_multiply (double *A, double *B, double *C, int b, int ld)
20 {
21 static double DONE = 1.0, DMONE = -1.0;
22 static const char TR = ’T’, NT = ’N’;
23 dgemm (&TR, &NT, &b, &b, &b,
24 &DMONE , A, &ld , B, &ld,
25 &DONE , C, &ld); // BLAS -3 matrix multiplication
26 }
27
28 #pragma omp task in([b][b]A) inout([b][b]C)
29 void sy_update (double *A, double *C, int b, int ld)
30 {
31 static double DONE = 1.0, DMONE = -1.0;
32 static const char UP = ’U’, TR = ’T’;
33 dsyrk (&UP, &TR, &b, &b,
34 &DMONE , A, &ld ,
35 &DONE , C, &ld); // BLAS -3 symmetric rank -b update
36 }

Listing 2: Labeled tasks involved in the blocked Cholesky factorization.

approach required an important redesign of the underlying scheduling policy (and thus,
a considerable programming effort for the runtime developer), in order to exploit the
heterogeneous architecture. In particular, detecting the criticality of a task at execution
time is a nontrivial question.

3.2. Data-parallel libraries of fundamental (BLAS-3) DLA kernels

3.2.1. Multi-threaded implementation of the BLAS-3

An alternative to the runtime-based (i.e., task-parallel) approach to execute DLA
operations on multi-threaded architectures consists in relying on a library of special-
ized kernels that statically partitions the work among the computational resources, or
leverages a simple schedule mechanism such as those available, e.g., in OpenMP. For
DLA operations with few and/or simple data dependencies, as is the case of the BLAS-3,
and/or when the number of cores in the target architecture is small, this option can avoid
the costly overhead of a sophisticated task scheduler, providing a more efficient solution.
Currently this is preferred option for all high performance implementations of the BLAS
for multicore processors, being adopted in both commercial and open source packages
such as, e.g., AMD ACML, IBM ESSL, Intel MKL, GotoBLAS [21], OpenBLAS [22] and
BLIS.
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BLIS in particular mimics GotoBLAS to orchestrate all BLAS-3 kernels (including
the matrix multiplication, gemm) as three nested loops around two packing routines,
which accommodate the data in the higher levels of the cache hierarchy, and a macro-
kernel in charge of performing the actual computations. Internally, BLIS implements the
macro-kernel as two additional loops around a micro-kernel that, in turn, boils down to
a loop around a symmetric rank-1 update. For the purpose of the following discussion,
we will only consider the three outermost loops in the BLIS implementation of gemm for
the multiplication C := C +A ·B, where A,B,C are respectively m×k, k×n and m×n
matrices, stored in arrays A, B and C; see Listing 3. In the code, mc, nc, kc are cache
configuration parameters that need to be adjusted for performance taking into account,
among others, the latency of the floating-point units, number of vector registers, and
size/associativity degree of the cache levels.

1 void gemm (double A[m][k], double B[k][n], double C[m][n],
2 int m, int n, int k, int mc , int nc, int kc)
3 {
4 double *Ac = malloc (mc * kc * sizeof (double)),
5 *Bc = malloc (kc * nc * sizeof (double));
6
7 for (int jc = 0; jc < n; jc+=nc) { // Loop 1
8 int jb = min(n-jc+1, nc);
9

10 for (int pc = 0; pc < k; jc+=kc) { // Loop 2
11 int pb = min(k-pc+1, kc);
12
13 pack_buffB (B[pc][jc], Bc , kb , nb); // Pack A->Ac
14
15 for (int ic = 0; ic < m; ic+=mc) { // Loop 3
16 int ib = min(m-ic+1, mc);
17
18 pack_buffA (A[ic][pc], Ac , mb , kb); // Pack A->Ac
19
20 gemm_kernel (Ac, Bc, C[ic][jc],
21 mb, nb , kb , mc, nc, kc); // Macro -kernel
22 }
23 }
24 }
25 }

Listing 3: High performance implementation of gemm in BLIS.

3.2.2. Data-parallel libraries for asymmetric architectures

The implementation of gemm in BLIS has been demonstrated to deliver high per-
formance on a wide range of multicore and many-core SMPs [23, 24]. These studies
offered a few relevant insights that guided the parallelization of gemm (and also other
Level-3 BLAS) on the ARM big.LITTLE architecture under the GTS software execution
model. Concretely, the architecture-aware multi-threaded parallelization of gemm in [13]
integrates the following three techniques:

• A dynamic 1-D partitioning of the iteration space to distribute the workload in
either Loop 1 or Loop 3 of BLIS gemm between the two clusters.

• A static 1-D partitioning of the iteration space that distributes the workload of one
of the loops internal to the macro-kernel between the cores of the same cluster.
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• A modification of the control tree that governs the multi-threaded parallelization
of BLIS gemm in order to accommodate different loop strides for each type of core
architecture.

The strategy is general and can be applied to a generic AMP, consisting of any
combination of fast/slow cores sharing the main memory, as well as to all other Level-3
BLAS operations.

To close this section, we emphasize that our work differs from [13, 15] in that we ad-
dress sophisticated DLA operations, with a rich hierarchy of task dependencies, by lever-
aging a conventional runtime scheduler in combination with a data-parallel asymmetry-
conscious implementation of the BLAS-3.

4. Retargeting Existing Task Schedulers to Asymmetric Architectures

In this section, we initially perform an evaluation of the task-parallel Cholesky routine
in Listings 1–2, executed on top of the conventional (i.e., default) scheduler in OmpSs
linked to a sequential instance of BLIS, on the target Exynos 5422 SoC. The outcome from
this study motivates the development effort and experiments presented in the remainder
of the paper.

4.1. Evaluation of conventional runtimes on AMPs

Figure 3 reports the performance, in terms of GFLOPS (billions of flops per second),
attained with the conventional OmpSs runtime, when the number of worker threads
varies from 1 to 8, and the mapping of worker threads to cores is delegated to the OS.
We evaluated a range of block sizes (b in Listing 1), but for simplicity we report only
the results obtained with the value b that optimized the GFLOPS rate for each problem
dimension. All the experiments hereafter employed ieee double precision. Furthermore,
we ensured that the cores operate at the highest possible frequency by setting the ap-
propriate cpufreq governor. The conventional runtime of OmpSs corresponds to release
15.06 of the Nanos++ runtime task scheduler. For this experiment, it is lined with the
“sequential” implementation of BLIS in release 0.1.5. (For the experiments with the
multi-threaded/asymmetric version of BLIS in the later sections, we will use specialized
versions of the codes in [13] for slow+fast VCs.)

The results in the Figure reveal the increase in performance as the number of worker
threads is raised from 1 to 4, which the OS maps to the (big) Cortex-A15 cores. However,
when the number of threads exceeds the amount of fast cores, the OS starts binding the
threads to the slower Cortex-A7 cores, and the improvement rate is drastically reduced,
in some cases even showing a performance drop. This is due to load imbalance, as tasks
of uniform granularity, possibly laying in the critical path, are assigned to slow cores.

Stimulated by this first experiment, we recognize that an obvious solution to this
problem consists in adapting the runtime task scheduler (more specifically, the scheduling
policy) to exploit the SoC asymmetry [15]. Nevertheless, we part ways with this solution,
exploring an architecture-aware alternative that leverages a(ny) conventional runtime
task scheduler combined with an underlying asymmetric library. We discuss this option
in more detail in the following section.
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Figure 3: Performance of the Cholesky factorization using the conventional OmpSs runtime and a
sequential implementation of BLIS on the Exynos 5422 SoC.

4.2. Combining conventional runtimes with asymmetric libraries

4.2.1. General view

Our proposal operates under the GTS model but is inspired in CPUM. Concretely,
our task scheduler regards the computational resources as four truly symmetric VCs, each
composed of a fast and a slow core. For this purpose, unlike CPUM, both physical cores
within each VC remain active and collaborate to execute a given task. Furthermore, our
approach exploits concurrency at two levels: task-level parallelism is extracted by the
runtime in order to schedule tasks to the four symmetric VCs; and each task/kernel is
internally divided to expose data-level parallelism, distributing its workload between the
two asymmetric physical cores within the VC in charge of its execution.

Our solution thus only requires a conventional (and thus asymmetry-agnostic) run-
time task scheduler, e.g. the conventional version of OmpSs, where instead of spawning
one worker thread per core in the system, we adhere to the CPUM model, creating only
one worker thread per VC. Internally, whenever a ready task is selected to be executed
by a worker thread, the corresponding routine from BLIS internally spawns two threads,
binds them to the appropriate pair of Cortex-A15+Cortex-A7 cores, and asymmetri-
cally divides the work between the fast and the slow physical cores in the VC. Following
this idea, the architecture exposed to the runtime is symmetric, and the kernels in the
BLIS library configure a “black box” that abstracts the architecture asymmetry from the
runtime scheduler.

In summary, in a conventional setup, the core is the basic computational resource for
the task scheduler, and the “sequential” tasks are the minimum work unit to be assigned
to these resources. Compared with this, in our approach the VC is the smallest (basic)
computational resource from the point of view of the scheduler; and tasks are further
divided into smaller units, and executed in parallel by the physical cores inside the VCs.
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4.2.2. Comparison with other approaches

Our approach features a number of advantages for the developer:

• The runtime is not aware of asymmetry, and thus a conventional task scheduler
will work transparently with no special modifications.

• Any existing scheduling policy (e.g. cache-aware mapping or work stealing) in an
asymmetry-agnostic runtime, or any enhancement technique, will directly impact
the performance attained on an AMP.

• Any improvement in the asymmetry-aware BLIS implementation will directly im-
pact the performance on an AMP. This applies to different ratios of big/LITTLE
cores within a VC, operating frequency, or even to the introduction further levels
of asymmetry (e.g. cores with a capacity between fast and slow).

Obviously, there is also a drawback in our proposal as a tuned asymmetry-aware DLA
library must exist in order to reuse conventional runtimes. In the scope of DLA, this
drawback is easily tackled with BLIS. We recognize that, in more general domains, an
ad-hoc implementation of the application’s fundamental kernels becomes mandatory in
order to fully exploit the underlying architecture.

4.2.3. Requisites on the BLAS-3

We finally note that certain requirements are imposed on a multi-threaded imple-
mentation of BLIS that operates under the CPUM mode. To illustrate this, consider the
gemm kernel and the high-level description of its implementation in Listing 3. For our
objective, we still have to distribute the iteration space between the Cortex-A15 and the
Cortex-A7 but, since there is only one resource of each type per VC, there is no need to
partition the loops internal to the macro-kernel. Furthermore, we note that the optimal
strides for Loop 1 are in practice quite large (nc is in the order of a few thousands for
ARM big.LITTLE cores), while the optimal values for Loop 3 are much more reduced
(mc is 32 for the Cortex-A7 and 156 for the Cortex-A15). Therefore, we target Loop 3 in
our data-parallel implementation of BLIS for VCs, which we can expect to easily yield a
proper workload balancing.

5. Experimental results

5.1. Performance evaluation for asymmetric BLIS

Let us start by reminding that, at execution time, OmpSs decomposes the routine for
the Cholesky factorization into a collection of tasks that operate on sub-matrices (blocks)
with a granularity dictated by the block size b; see Listing 1. These tasks typically
perform invocations to a fundamental kernel of the BLAS-3, in our case provided by
BLIS, or LAPACK; see Listing 2.

The first step in our evaluation aims to provide a realistic estimation of the potential
performance benefits of our approach (if any) on the target Exynos 5422 SoC. A critical
factor from this perspective is the range of block sizes, say bopt, that are optimal for
the conventional OmpSs runtime. In particular, the efficiency of our hybrid task/data-
parallel approach is strongly determined by the performance attained with the asymmet-
ric BLIS implementation when compared against that of its sequential counterpart, for
problem dimensions n that are in the order of bopt.
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Table 1: Optimal block sizes for the Cholesky factorization using the conventional OmpSs runtime and
a sequential implementation of BLIS on the Exynos 5422 SoC.

Problem dimension (n)

512 1,024 1,536 2,048 2,560 3,072 3,584 4,096 4,608 5,120 5,632 6,144 6,656 7,168 7,680

1 wt 192 384 320 448 448 448 384 320 320 448 448 448 448 384 448

2 wt 192 192 320 192 448 448 384 320 320 448 448 448 448 384 448

3 wt 128 192 320 192 384 448 320 320 320 448 448 448 448 384 448

4 wt 128 128 192 192 192 320 320 320 320 448 320 448 448 384 448

Table 1 reports the optimal block sizes bopt for the Cholesky factorization, with
problems of increasing matrix dimension, using the conventional OmpSs runtime linked
with the sequential BLIS, and 1 to 4 worker threads. Note that, except for smallest
problems, the observed optimal block sizes are between 192 and 448. These dimensions
offer a fair compromise, exposing enough task-level parallelism while delivering high
“sequential” performance for the execution of each individual task via the sequential
implementation of BLIS.

The key insight to take away from this experiments is that, in order to extract good
performance from a combination of the conventional OmpSs runtime task scheduler with
a multi-threaded asymmetric version of BLIS, the kernels in this instance of the asym-
metric library must outperform their sequential counterparts, for matrix dimensions in
the order of the block sizes in Table 1. Figure 4 shows the performance attained with the
three BLAS-3 tasks involved in the Cholesky factorization (gemm, syrk and trsm) for
our range of dimensions of interest. There, the multi-threaded asymmetry-aware kernels
run concurrently on one Cortex-A15 plus one Cortex-A7 core, while the sequential kernels
operate exclusively on a single Cortex-A15 core. In general, the three BLAS-3 routines
exhibit a similar trend: the kernels from the sequential BLIS outperform their asymmet-
ric counterparts for small problems (up to approximately m, n, k = 128); but, from that
dimension, the use of the slow core starts paying off. The interesting aspect here is that
the cross-over threshold between both performance curves is in the range, (usually at an
early point,) of bopt; see Table 1. This implies that the asymmetric BLIS can potentially
improve the performance of the overall computation. Moreover, the gap in performance
grows with the problem size, stabilizing at problem sizes around m, n, k ≈ 400. Given
that this value is in the range of the optimal block size for the task-parallel Cholesky
implementation, we can expect a performance increment in the order of 0.3–0.5 GFLOPS
per added slow core, mimicking the behavior of the underlying BLIS.

5.2. Integration of asymmetric BLIS in a conventional task scheduler

In order to analyze the actual benefits of our proposal, we next evaluate the conven-
tional OmpSs task scheduler linked with either the sequential implementation of BLIS or
its multi-threaded asymmetry-aware version. Hereafter, the BLIS kernels from first con-
figuration always run using one Cortex-A15 core while, in the second case, they exploit
one Cortex-A15 plus one Cortex-A7 core. Figure 5 reports the results for both setups,
using an increasing number of worker threads from 1 to 4. For simplicity, we only report
the results obtained with the optimal block size. In all cases, the solution based on the
multi-threaded asymmetric library outperforms the sequential implementation for rela-
tively large matrices (usually for dimensions n > 2,048) while, for smaller problems, the
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Figure 4: Performance of the BLAS-3 kernels in the sequential and the multi-threaded/asymmetric
implementations of BLIS, using respectively one Cortex-A15 core and one Cortex-A15 plus one Cortex-
A7 core of the Exynos 5422 SoC.

GFLOPS rates are similar. The reason for this behavior can be derived from the optimal
block sizes reported in Table 1 and the performance of BLIS reported in Figure 4: for
that range of problem dimensions, the optimal block size is significantly smaller, and
both BLIS implementations attain similar performance rates.

The quantitative difference in performance between both approaches is reported in
Tables 2 and 3. The first table illustrates the raw (i.e., absolute) gap, while the second one
shows the difference per Cortex-A7 core introduced in the experiment. Let us consider,
for example, the problem size n = 6,144. In that case, the performance roughly improves
by 0.975 GFLOPS when the 4 slow cores are added to help the base 4 Cortex-A15
cores. This translates into a performance raise of 0.243 GFLOPS per slow core, which is
slightly under the improvement that could be expected from results experiments in the
previous section. Note, however, that the performance per Cortex-A7 core is reduced
from 0.340 GFLOPS, when adding just one core, to 0.243 GFLOPS, when simultaneously
using all four slow cores.

5.3. Performance comparison versus asymmetry-aware task scheduler

Our last round of experiments aims to assess the performance advantages of different
task-parallel executions of the Cholesky factorization via OmpSs. Concretely, we consider
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Figure 5: Performance of the Cholesky factorization using the conventional OmpSs runtime linked with
either the sequential or the multi-threaded/asymmetric implementations of BLIS in the Exynos 5422
SoC.

(1) the conventional task scheduler linked with the sequential BLIS (“OmpSs - Seq.
BLIS”); (2) the conventional task scheduler linked with our multi-threaded asymmetric
BLIS that views the SoC as four symmetric virtual cores (“OmpSs - Asym. BLIS”); and
(3) the criticality-aware task scheduler in Botlev-OmpSs linked with the sequential BLIS
(“Botlev-OmpS - Seq. BLIS”). In the executions, we use all four Cortex-A15 cores and
evaluate the impact of adding an increasing number of Cortex-A7 cores, from 1 to 4, for
Botlev-OmpSs.

Figure 6 shows the performance attained by the aforementioned alternatives on the
Exynos 5422 SoC. The results can be divided into groups along three problem dimensions:

• For small matrices (n = 512, 1,024), the conventional runtime using exclusively the
four big cores (that is, linked with a sequential BLIS library for task execution)
attains the best results in terms of performance. This was expected and was already
observed in Figure 5; the main reason is the small optimal block size, enforced by
the reduced problem size, that is necessary in order to expose enough task-level
parallelism. This invalidates the use of our asymmetric BLIS implementation due to
the low performance for very small matrices; see Figure 4. We note that the ad-hoc
Botlev-OmpSs does not attain remarkable performances either for this dimension
range, regardless the amount of Cortex-A7 cores used.
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Table 2: Absolute performance improvement (in GFLOPS) for the Cholesky factorization using the
conventional OmpSs runtime linked with the multi-threaded/asymmetric BLIS with respect to the same
runtime linked with the sequential BLIS in the Exynos 5422 SoC.

Problem dimension (n)

512 1,024 2,048 2,560 3,072 4,096 4,608 5,120 5,632 6,144 6,656 7,680

1 wt -0.143 0.061 0.218 0.289 0.326 0.267 0.259 0.313 0.324 0.340 0.348 0.300

2 wt -0.116 -0.109 0.213 0.469 0.573 0.495 0.454 0.568 0.588 0.617 0.660 0.582

3 wt -0.308 -0.233 -0.020 0.432 0.720 0.614 0.603 0.800 0.820 0.866 0.825 0.780

4 wt -0.421 -0.440 -0.274 0.204 0.227 0.614 0.506 0.769 0.666 0.975 0.829 0.902

Table 3: Performance improvement per slow core (in GFLOPS) for the Cholesky factorization using the
conventional OmpSs runtime linked with the multi-threaded/asymmetric BLIS with respect to the same
runtime linked with the sequential BLIS in the Exynos 5422 SoC.

Problem dimension (n)

512 1,024 2,048 2,560 3,072 4,096 4,608 5,120 5,632 6,144 6,656 7,680

1 wt -0.143 0.061 0.218 0.289 0.326 0.267 0.259 0.313 0.324 0.340 0.348 0.300

2 wt -0.058 -0.054 0.106 0.234 0.286 0.247 0.227 0.284 0.294 0.308 0.330 0.291

3 wt -0.102 -0.077 -0.006 0.144 0.240 0.204 0.201 0.266 0.273 0.288 0.275 0.261

4 wt -0.105 -0.110 -0.068 0.051 0.056 0.153 0.126 0.192 0.166 0.243 0.207 0.225

• For medium-sized matrices (n = 2,048, 4,096), the gap in performance between
the different approaches is reduced. The variant that relies on the asymmetric
BLIS implementation commences to outperform the alternative implementations
for n=4,096 by a short margin. For this problem range, Botlev-OmpSs is competi-
tive, and also outperforms the conventional setup.

• For large matrices (n = 6,144, 7,680) this trend is consolidated, and both asymmetry-
aware approaches deliver remarkable performance gains with respect to the conven-
tional setup. Comparing both asymmetry-aware solutions, our mechanism attains
better performance rate, even when considering the usage of all available cores for
the Botlev-OmpSs runtime version.

To summarize, our proposal to exploit asymmetry improves portability and pro-
grammability by avoiding a revamp of the runtime task scheduler for AMPs. In addition,
our approach renders performance gains which are, for all problems cases, comparable
with those of ad-hoc asymmetry-conscious schedulers; for medium to large matrices,
it clearly outperforms the efficiency attained with a conventional asymmetry-oblivious
scheduler.

5.4. Extended performance analysis

We next provide further details on the performance behavior of each one of the
aforementioned runtime configurations. The execution traces in this section have all
been extracted with the Extrae instrumentation tool and analyzed with the visualization
package Paraver [25]. The results correspond to the Cholesky factorization of a single
problem with matrix dimension n = 6,144 and block size b = 448.

15



512 1024 2048 4096 6144 7680
0

2

4

6

8

10

Problem dimension (n)

G
F

L
O

P
S

Cholesky factorization. All configurations

OmpSs - Asym. BLIS

OmpSs - Seq. BLIS

Botlev-OmpSs - 4+1

Botlev-OmpSs - 4+2

Botlev-OmpSs - 4+3

Botlev-OmpSs - 4+4

Figure 6: Performance (in GFLOPS) for the Cholesky factorization using the conventional OmpSs
runtime linked with either the sequential BLIS or the multi-threaded/asymmetric BLIS, and the ad-hoc
asymmetry-aware version of the OmpSs runtime (Botlev-OmpSs) linked with the sequential BLIS in the
Exynos 5422 SoC. The labels of the form “4+x” refer to an execution with 4 Cortex-A15 cores and x
Cortex-A7 cores.

5.4.1. General task execution overview.

Figure 7 reports complete execution traces for each runtime configuration. At a
glance, a number of coarse remarks can be extracted from the trace:

• From the perspective of total execution time (i.e., time-to-solution), the conven-
tional OmpSs runtime combined with the asymmetric BLIS implementation attains
the best results, followed by the Botlev-OmpSs runtime configuration. It is worth
pointing out that an asymmetry-oblivious runtime which spawns 8 worker threads,
with no further considerations, yields the worst performance by far. In this case,
the load imbalance and long idle periods, especially as the amount of concurrency
decreases in the final part of the trace, entail a huge performance penalty.

• The flag marks indicating task initialization/completion reveal that the asymmetric
BLIS implementation (which employs the combined resources from a VC) requires
less time per task than the two alternatives based on a sequential BLIS. An effect to
note specifically in the Botlev-OmpSs configuration is the difference in performance
between tasks of the same type, when executed by a big core (worker threads 5
to 8) or a LITTLE one (worker threads 1 to 4).

• The Botlev-OmpSs task scheduler embeds a (complex) scheduling strategy that in-
cludes priorities, advancing the execution of tasks in the critical path and, whenever
possible, assigning them to fast cores (see, for example, the tasks for the factoriza-
tion of diagonal blocks, colored in yellow). This yields an execution timeline that
is more compact during the first stages of the parallel execution, at the cost of
longer idle times when the degree of concurrency decreases (last iterations of the
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(a) OmpSs - Sequential BLIS (8 worker threads)

(b) OmpSs - Sequential BLIS (4 worker threads)

(c) OmpSs - Asymmetric BLIS (4 worker threads)

(d) Botlev-OmpSs - Sequential BLIS (8 worker threads, 4+4)

Figure 7: Execution traces of the three runtime configurations for the Cholesky factorization (n = 6,144,
b = 448). The timeline in each row collects the tasks executed by a single worker thread. Tasks are
colored following the convention in Figure 2; phases colored in white between tasks represent idle times.
The green flags mark task initialization/completion.

factorization). Although possible, a priority-aware technique has not been applied
in our experiments with the conventional OmpSs setups and remains part of future
work.

We next provide a quantitative analysis on the task duration and a more detailed
study of the scheduling strategy integrated in each configuration.

5.4.2. Task duration.

Table 4 reports the average execution time per type of task for each worker thread.
These results show that the execution time per individual type of task is considerably
shorter for our multithreaded/asymmetric BLIS implementation than for the alternatives
based on a sequential version of BLIS. The only exception is the factorization of the
diagonal block (dpotrf) as this is an LAPACK-level routine, and therefore it is not
available in BLIS. Inspecting the task execution time of the Botlev-OmpSs configuration,
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Table 4: Average time (in ms) per task and worker thread in the Cholesky factorization (n = 6,144,
b = 448), for the three runtime configurations.

OmpSs - Seq. BLIS OmpSs - Asym. BLIS Botlev-OmpSs - Seq. BLIS

(4 worker threads) (4 worker threads) (8 worker threads, 4+4)

dgemm dtrsm dsyrk dpotrf dgemm dtrsm dsyrk dpotrf dgemm dtrsm dsyrk dpotrf

wt 0 89.62 48.12 47.14 101.77 79.82 42.77 44.42 105.77 406.25 216.70 – –

wt 1 88.96 48.10 47.14 – 78.65 42.97 44.56 76.35 408.90 207.41 212.55 –

wt 2 89.02 48.36 47.18 87.22 79.14 43.14 44.60 85.98 415.31 230.07 212.56 –

wt 3 90.11 48.51 47.42 – 79.28 43.10 44.59 67.73 410.84 216.95 216.82 137.65

wt 4 – – – – – – – – 90.97 48.97 48.36 –

wt 5 – – – – – – – – 90.61 48.86 48.16 90.78

wt 6 – – – – – – – – 91.28 49.43 47.97 89.58

wt 7 – – – – – – – – 91.60 49.49 48.62 95.43

Avg. 89.43 48.27 47.22 94.49 79.22 42.99 44.54 83.96 250.72 133.49 119.29 103.36

we observe a remarkable difference depending on the type of core tasks are mapped to.
For example, the average execution times for dgemm range from more than 400 ms on a
LITTLE core, to roughly 90 ms on a big core. This behavior is reproduced for all types
of tasks.

5.4.3. Task scheduling policies and idle times.

Figure 8 illustrates the task execution order determined by the Nanos++ task sched-
uler. Here tasks are depicted using a color gradient, attending to the order in which they
are encountered in the sequential code, from the earliest to the latest.

At runtime, the task scheduler in Botlev-OmpSs issues tasks to execution out-of-order
depending on their criticality. The main idea behind this scheduling policy is to track
the criticality of each task and, when possible, advance the execution of critical tasks
assigning them to the fast Cortex-A15 cores. Conformally with this strategy, an out-of-
order execution reveals itself more frequently in the timelines for the big cores than in
those for the LITTLE cores. With the conventional runtime, the out-of-order execution
is only dictated by the order in which data dependencies for tasks are satisfied.

From the execution traces, we can observe that the Botlev-OmpSs alternative suffers
a remarkable performance penalty due to the existence of idle periods in the final part of
the factorization, when the concurrency in the factorization is greatly diminished. This
problem is not present in the conventional scheduling policies. In the first stages of the
factorization, however, the use of a priority-aware policy for the Botlev-OmpSs scheduler
effectively reduces idle times. Table 5 reports the percentage of time each worker thread
is in running or idle state. In general, the relative amount of time spent in idle state is
much higher for Botlev-OmpSs than for the conventional implementations (17% vs. 5%,
respectively). Note also the remarkable difference in the percentage of idle time between
the big and LITTLE cores (20% and 13%, respectively), which drives to the conclusion
that the fast cores stall waiting for completion of tasks executed on the LITTLE cores.
This fact can be confirmed in the final stages of the Botlev-OmpSs trace.

The previous observations pave the road to a combination of scheduling policy and
execution model for AMPs, in which asymmetry is exploited through ad-hoc scheduling
policies during the first stages of the factorization –when the potential parallelism is
massive–, and this is later replaced with the use of asymmetric-aware kernels and coarse-
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(a) OmpSs - Sequential BLIS (8 worker threads)

(b) OmpSs - Sequential BLIS (4 worker threads)

(c) OmpSs - Asymmetric BLIS (4 worker threads)

(d) Botlev-OmpSs - Sequential BLIS (8 worker threads, 4+4)

Figure 8: Task execution order of the three studied runtime configurations for the Cholesky factorization
(n = 6,144, b = 448). In the trace, tasks are ordered according to their appearance in the sequential
code, and depicted using a color gradient, with light green indicating early tasks, and dark blue for the
late tasks.

grain VCs in the final stages of the execution, when the concurrency is scarce. Both
approaches are not mutually exclusive, but complementary depending on the level of
task concurrency available at a given execution stage.

6. Conclusions

In this paper, we have addressed the problem of refactoring existing runtime task
schedulers to exploit task-level parallelism in novel AMPs, focusing on ARM big.LITTLE
systems-on-chip. We have demonstrated that, for the specific domain of DLA, an ap-
proach that delegates the burden of dealing with asymmetry to the library (in our case,
using an asymmetry-aware BLIS implementation), does not require any revamp of ex-
isting task schedulers, and can deliver high performance. This proposal paves the road
towards reusing conventional runtime schedulers for SMPs (and all the associated im-
provement techniques developed through the past few years), as the runtime only has a
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Table 5: Percentage of time per worker thread in idle or running state for different runtime configurations
for the Cholesky factorization (n = 6,144, b = 448). Note that wt 0 is the master thread, and thus is
never idle; for it, the rest of the time till 100% percentage is devoted to synchronization, scheduling
and thread creation. For the rest of threads, this amount of time is devoted to runtime overhead.

OmpSs - Seq. BLIS OmpSs - Asym. BLIS Botlev-OmpSs - Seq. BLIS

(4 worker threads) (4 worker threads) (8 worker threads, 4+4)

idle running idle running idle running

wt 0 – 98.41 – 97.85 – 86.53

wt 1 5.59 94.22 5.51 94.29 13.63 86.28

wt 2 3.14 96.67 5.27 94.53 13.94 85.98

wt 3 5.77 94.07 5.17 94.62 13.43 86.47

wt 4 – – – – 19.26 80.51

wt 5 – – – – 21.12 78.69

wt 6 – – – – 20.84 78.97

wt 7 – – – – 20.09 79.70

Avg. 4.84 95.89 5.32 94.90 17.47 82.89

symmetric view of the hardware. Our experiments reveal that this solution is competi-
tive and even improves the results obtained with an asymmetry-aware scheduler for DLA
operations.
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