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Synthesis, molecular structures and EPR spectra of the 

paramagnetic cuboidal clusters with Mo3S4Ga core† 

Pavel A. Petrov,*ab Dmitry Yu. Naumov,a Taisiya S. Sukhikh,ab Sergey N. Konchenko,ab Carlos J. 
Gómez-García,c and Rosa Llusar*d 

Electron precise [Mo3(µµµµ3-S)(µµµµ-S)3(diphos)3Br3]Br (diphos = dppe, 

dmpe) incomplete cuboidal clusters with six cluster skeletal 

electrons (CSE) were converted into paramagnetic cuboidal 

[Mo3(GaBr)(µµµµ3-S)4(diphos)3Br3] clusters by treatment with 

elemental Ga. The new heterobimetallic complexes with nine CSE 

possess a doublet ground state with the unpaired electron density 

delocalized over the three molybdenum atoms. 

The cubane-type M4S4 unit is known for many metals including 

molybdenum and gallium.1 Heterobimetallic Mo3M'S4 cores 

are also known for both transition and post-transition metals 

and they are synthesized by incorporating the M' metal into a 

preformed Mo3(μ3-S)(μ-S)3 fragment, represented in Scheme 

1. The most common sources of this Mo3S4 fragment are the 

[Mo3S4(H2O)9]4+ aqua ion, the Mo3S4(η5-Cp#)3]+ (Cp# = C5H5, 

C5H4Me, or C5Me5) cations and the [Mo3S4(diphosphane)3X3]+ 

(X = halogen) complexes.2 However, up to date post-transition 

groups 13–15 metals have only been incorporated into the 

[Mo3S4(H2O)9]4+ ion to afford single cubanes as well as corner-

shared double cubane structures (see Scheme 1, metal–metal 

bonds are omitted for clarity).3 Interconversion between single 

and double cubane structures is initiated by a redox change. In 

the case of gallium, only single cubane structures have been 

characterized to date. The [Mo3GaS4(H2O)12]5+ and 

[Mo3GaS4(H2O)12]6+ complexes have been prepared by reacting 

the [Mo3S4(H2O)9]4+ aqua ion with gallium metal in 0.5 and 2 M 

HCl(aq), respectively.4a Reaction of the Mo3S4
4+ aqua ion with 

Ga3+in the presence of NaBH4 as reducing agent exclusively 

affords the [Mo3GaS4(H2O)12]5+ cluster cation.4b 

Our groups have extensively investigated the chemistry of 

diphosphane-substituted Mo3S4 complexes and we have 

isolated a series of heterobimetallic single cubane Mo3M'S4 

derivatives for M' = Fe5, Co6, Ni7 and Cu8. In an attempt to 

extend this chemistry to post-transition metals, we reacted the 

cationic [Mo3S4(dppe)3Br3]+ cluster (dppe = 1,2-

bis(diphenylphosphinoethane) with an excess of gallium metal 

resulting in the one-electron reduction of the cluster core, to 

afford unusual paramagnetic [Mo3S4(dppe)3Br3] complex.9 In a 

similar way, its tungsten congener [W3S4(dppe)3Br3] has also 

been isolated.10 These [M3S4(dppe)3Br3] paramagnetic clusters 

with seven cluster skeletal electrons (CSE) constitute rare 

examples of Mo3Q4 complexes, which are, in general, electron 

precise with 6 CSE for the formation of three metal–metal 

bonds. It is noteworthy that the reaction of the analogous 

[Mo3Se4(dppe)3Br3]+ cluster selenide with gallium results in a 

core transformation to afford a bicapped Mo3Se5 cluster 

complex.11 These results evidence the unique reactivity of 

gallium and prompted us to further study its incorporation into 

the Mo3S4 core in order to obtain diphosphane Mo3GaS4 

derivatives. 
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Scheme 1 

As highlighted in the introduction, metallic gallium can serve as 

one-electron reductant transforming the 6 CSE electron 

precise Mo3S4 diphosphane cluster cation to its neutral 7 CSE 

congener. When the reaction between 

[Mo3S4(diphosphane)3Br3]Br and gallium is carried out under 

rigorous air-free conditions for two weeks reaction time, as 

represented in Scheme 2, cubane type clusters 

[Mo3GaS4(dppe)3Br4] (1) and [Mo3GaS4(dmpe)3Br4] (2) are 

formed, and can be isolated in moderate yields (see Scheme 

2). It is reasonable to assume that the reduced 

Mo3S4(diphosphane)3Br3 species with 7 CSE are formed first 

along with low valent gallium halides, resulting from the 

oxidation of gallium metal. Then, formal addition of a GaIBr 

vertex to the trimetallic 7 CSE cluster produces 1 and 2, both 

containing 9 CSE. The two other Mo3Ga clusters reported to 

date [Mo3GaS4(H2O)12]5+ and [Mo3GaS4(H2O)12]6+ contain 8 and 

7 CSE, respectively. Incidentally, reaction of 

[Mo3S4(dppe)3Cl3]Cl or [W3S4(dppe)3Br3]Br with an excess of 

gallium metal always stops at the reduction stage and without 

evidence for Mo3GaS4 or W3GaS4 species. Moreover, we were 

unable to isolate the reduced 7 CSE Mo3S4(dmpe)3Br3 

derivative with a less bulkier and more basic diphosphane than 

dppe, and reaction of [Mo3S4(dmpe)3Br3]Br with gallium 

always yielded invariably to 2 as the only isolable product. 
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Scheme 2  

 

Table 1 Selected average bond distances (Å) for cluster complexes with a Mo3GaS4 core.a  

Distance 1 2 [Mo3GaS4(H2O)12]5+ [Mo3GaS4(H2O)12]
6+ 

Mo–Mo 2.795[18] 2.7784(6) 2.713[3] 2.679[6] 

Mo–Ga 3.33[4] 3.2704(8) 3.52[2] 3.60[2] 

Mo–(µ3-S)
 b
 2.354[2] 2.3624(13) 2.32[2] 2.332[3] 

Mo–(µ3-S)
 c
 

2.399[5]
 d
 

2.391[14]
 e
 

2.4296(11)
 d
 

2.3904(11)
 e
 

2.303[5] 2.335[4] 

Ga–S 2.34[2] 2.3099(12) 2.534[7] 2.50[1] 

Ga–Br 2.3488(10) 2.3632(14) – – 

Reference this work this work 4a 4a 
a Standard deviations are given in parentheses; standard deviations for averaged values are given in square brackets. b 

µ3-S capping Mo3 face. c 
µ3-S 

capping Mo2Ga face. d Distance trans to the Mo–P bond. e Distance trans to the Mo–Br bond. 

 

 

The crystal structures of 1∙4.5THF and 2∙THF were determined 

by single crystal X-ray diffraction, and both complexes share 

identical structural features.‡ An ORTEP drawing of the 

molecular structure of 2 is represented in Figure 1. Both 

structures consist of discrete molecules of 1 and 2 with a 

central Mo3Ga core. Compound 2 crystallizes in trigonal R3c 
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space group with the S4, Br4 and Ga1 atoms lying on a C3 axis 

with a unique Mo–Mo bond distance of 2.7784(6) Å and a S4–

Ga1–Br4 angle of 180°. The Mo3 triangle in 1 shows small 

deviations from a three-fold symmetry (ESI, Fig. S1). The Mo–

Mo bond lengths in 1 fall within the range 2.7756(7)–

2.8132(7) Å and the Br atom coordinated to Ga is deviated 

from the central S4–Ga1 axis (∠S4–Ga1–Br4 equals 

175.52(5)°). Table 1 lists the most relevant bond distances of 

compounds 1 and 2 together with those reported for the 

closely related Mo3GaS4 aqua clusters. 

 
Fig. 1 ORTEP drawing of 2 with 50 % thermal ellipsoids and atom-numbering scheme. 

Hydrogen atoms are omitted for clarity. 

The average Mo–Mo bond distance in 1 of 2.795[18] Å is 

slightly shorter, by 0.03 Å, than that observed for its parent 

cluster [Mo3S4(dppe)3Br3] with 7 CSE (2.82[3] Å).9 The 

shortening of the Mo–Mo or W–W bond is typical when a 

post-transition element is added to the M3S4 unit to form a 

heterocubane M3M'S4 core. The opposite tendency is found 

for the Mo–Mo bond distances in [Mo3GaS4(H2O)12]5+ 

(2.735[8] Å) and [Mo3S4(H2O)9]4+ (2.713[3] Å). There is an 

increase in the Mo–Mo bond lengths on going from 

[Mo3GaS4(H2O)12]6+ with 7 CSE to [Mo3GaS4(H2O)12]5+ with 8 

CSE and to 1 and 2 with 9 CSE. This increase in Mo–Mo bond 

lengths in accompanied by a significant decrease of ca. 0.2–0.3 

Å in the Mo–Ga bond distances. The coordination environment 

of molybdenum in 1 and 2 is similar to that of their trimetallic 

[Mo3S4(diphosphane)3X3] precursors. The gallium atom in 1 

and 2 has tetrahedral coordination in contrast with the 

octahedral environment found for the Mo3GaS4 aqua clusters. 

Compounds 1 and 2 with an odd number of electrons are 

expected to be paramagnetic. At 300 K the product of the 

molar magnetic susceptibility times the temperature, χmT, for 

1 (see Figure S2) and 2 equals ca. 0.34 emu K mol–1 in both 

compounds (near the expected value of 0.375 for one 

unpaired electron) and remains almost constant when the 

temperature is decreased, as expected for a paramagnetic 

system. The isothermal magnetization at 2 K (Figure S3) shows 

a saturation values close to 1 µB, confirming the presence of 

single unpaired electron in both compounds. The Q-band solid 

state EPR spectra of solid samples of 1 and 2 are very similar 

(Figures 2 and S4, respectively) with only one signal whose 

intensity increases upon decreasing the temperature. The 

signal presents axial anisotropy in both compounds although in 

compound 2 it shows a rhombic anisotropy at very low 

temperatures. This fact may be due to the larger distortions in 

the Mo coordination environment in 2. Thus, 2 has a more 

rhombic coordination environment with three different Mo–S 

bond distances (2.3624(13), 2.3904(11) and 2.4296(11) Å, 

Table 1) whereas in 1 we observe a more axial distortion since 

two of these distances are almost identical (ca. 2.354, 2.391 

and 2.399 Å). Both compounds show no hyperfine splitting at 

low temperature indicating that the unpaired electron is 

delocalized over the three metal centres. In contrast, the 

unpaired electron density in the trinuclear cluster 

[Mo3S4(dppe)3Br3] is localized on one metal centre.9  

The electronic structures calculated for [Mo3GaS4(H2O)12]5+/6+ 

using the spin polarized discrete variational DV-Xα method 

shows that the orbitals in the HOMO-LUMO region consist 

mainly of Mo 4d atomic orbitals. These results are in 

agreement with the absence of hyperfine splitting at low 

temperatures in the registered EPR spectra.4 

 
Fig. 2 Q-band solid state EPR spectrum of 1 at different temperatures. 

In conclusion, interaction of the trimetallic Mo3S4 clusters with 

gallium causes transformation of the cluster core to afford the 

first examples of a Mo3Ga(μ3-S)4 cluster core coordinated by 

diphosphane ligands. The cubane-like core formation likely 

goes through the step of one electron reduction of the Mo3S4 

unit. The two isolated heterobimetallic cluster complexes 

possess an odd number of electrons resulting in a S = 1/2 

ground state. The latter was evidenced by means of magnetic 

susceptibility measurements and confirmed by EPR 

spectroscopy. 
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The paramagnetic cuboidal clusters [Mo3(GaBr)(µ3-S)4(diphos)3Br3] (diphos = dppe, dmpe) were 

synthesized by reduction of triangular clusters [Mo3S4(diphos)3Br3]Br with elemental Ga. 
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