Tema 3: Isomería en compuestos de coordinación

- 1.- ¿Cómo podrían distinguirse los siguientes pares de isómeros?:
 - a) $[CoBr(NH_3)_5]SO_4$ y $[Co(SO_4)(NH_3)_5]Br$
 - b) cis- y trans- [CoCl₂(en)₂]Cl
 - c) cis- y trans- (NH₄)[Co(NO₂)₄(NH₃)₂]
- 2.- ¿De qué forma la determinación de experimental del número de isómeros de [CoCl₂(NH₃)₄]⁺ permitiría determinar si la geometría es octaédrica o prismática trigonal?
- 3.- ¿Qué tipo de distorsión octaédrica cabe esperar en el isómero $[Co(en)_3]^{3+}$? ¿Y en trans- $[CoCl_2(NH_3)_4]^+$?
- 4.- Dibuja todos los isómeros posibles de [PtCl₄(NH₃)₂], suponiendo a) geometría prismática trigonal, y b) geometría plana hexagonal.
- 5.- Dibuja todos los isómeros geométricos y ópticos de los complejos: a) [CoCl₂(en)₂], b) [Co(NH₃)(en)₂], y c) [CoCl₂(NH₃)₂(en)]⁺.
- 6.- Aplica la notación quiral correspondiente a todos los isómeros del compuesto [PtCl₂(NO₂)(NH₃)₂].
- 7.- Dibuja todos los isómeros posibles, para cada uno de los sigueintes compeustos: a) [CoCl(H₂O)(en)₂]²⁺, b) [CoBrCl(H₂O)(NH₃)₃]⁺, y c) [Pt(NH₃)(NH₂OH)(NO₂)(py)]⁺.