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Abstract 

 

We report herein the synthesis and biological activities (cytotoxicity, leishmanicidal and trypanocidal) 

of six quinoline-chalcone and five quinoline-chromone hybrids. The synthesized compounds were 

evaluated against amastigotes forms of  L. (V)  panamensis which is the most prevalent Leishmania 

species in Colombia and Trypanosoma cruzi which is the major pathogenic species to humans. 

Cytotoxicity was evaluated against human U-937 macrophages. Compounds 8-12, 20, 23 and 24 

showed activity against L. (V) panamensis while compounds 9, 10, 12, 20 and 23 had activity against T. 

cruzi with EC50 values lower than 18 mg/Ml. 20 was the most active compound for both L. (V) 

panamensis and T. cruzi with EC50 of 6.11 ± 0.26 µg/mL (16.91 µM) and 4.09 ± 0.24 (11.32µM), 

respectively. All hybrids compounds showed better activity than the anti-leishmanial drug meglumine 

antimoniate. Compounds 20 and 23 showed higher actives than benznidazole, the current anti-

trypanosomal drug. Although these compounds showed  toxicity for  mammalian  U-937 cells, still  

have  potential  to  be  considered  as  candidates  to  antileishmanial or trypanocydal  drug 

development. 

 

 

 

Keywords: leishmaniasis; Chagas disease; antiprotozoal activity; cytotoxicity; quinoline; chalcone; 
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Introduction 

 

Neglected tropical diseases (NTD) are a cause of mortality in various developing countries of tropical 

and  subtropical  regions. These diseases are significant health problems in endemic countries, affecting 

more than one billion people worldwide (WHO, 2013). This situation is aggravated by increasing 

treatment failures with available drugs (Bhutta et al., 2014). NTD include, among others, Chagas’ 

disease (American trypanosomiasis) and leishmaniasis. These are parasitic diseases caused by the 

parasitic protozoan Trypanosoma cruzi (T. cruzi) and Leishmania species. These diseases affect more 

than 10 million people worldwide (Alvar et al., 2012; Nouvellet et al., 2015) L. (V) panamensis is one 

of the most prevalent Leishmania species involved in human cases of cutaneous leishmaniasis in 

Colombia (Alvar et al., 2012). Current chemotherapies are based on old drugs, pentavalent antimonials 

(meglumine antimoniate and sodium stibogluconate) to treat cutaneous leishmaniasis and nitroaromatic 

compounds (benznidazole and nifurtimox) for treatment of Chagas disease. Unfortunatelly, all of these 

drugs are not very effective in the chronic phase and have toxicity, side effects and parasite resistance 

(Den Boer et al., 2011; Keenan et al., 2015; Chatelain et al., 2011).     

 

    A quinolinic core is a structural feature of several bioactive compounds. Thus, this core is an 

interesting constituent for new drugs design. Anti-mycobacterial, anti-microbial, anti-convulsant, anti-

inflamatory, anti-tumoral, cardiovascular but also leishmanicidal and trypanocidal, are some biological 

activities exhibited by compounds having this heteroaromatic ring (Suresh et al., 2009; Nakayama et 

al., 2005; Tempone et al., 2005; Dietze et al., 2001; Mohammed et al., 2003; Vieira et al., 2008; 

Cardona et al., 2013; Palit et al., 2009; Franck et al., 2004; Coa et al., 2015). The antileishmanial 

activity of several chalcones has been reported (Kayser et al., 2001; Liu et al., 2003; Boeck et al., 

2006). The most promising of this class of compounds is licochalcone A, an oxygenated chalcone 
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isolated from the roots of the Chinese plant Glycyrrhiza spp, which inhibits the fumarate reductase, a 

selective target present in the mitochondria of the parasite (Chen et al., 2001). Similarly, chromones 

are important classes of compounds having versatile biological activities (Horton et al., 2003; 

Hadjeri et al., 2003; Ellis et al., 1972; Houghton et al., 2000; Mallick et al., 2011; Baloch et al., 

2012). Both moieties are well known for their antiprotozoal activity. Some synthetic chromones were 

effective against L. (L) donovani (Mallick et al., 2011) and L. (L) major (Baloch et al., 2012) in in 

vivo studies.  

 

    In the search for new therapeutic alternatives to treat cutaneous leishmaniasis and Chagas disease, in 

this work we designed and synthesized a series of quinoline-chalcone and quinoline-chromone hybrids 

and evaluated in vitro their cytotoxicity, leishmanicidal and trypanocidal activities. 

 

Material and Methods 

Chemistry 

General remarks 

Microwave reactions were carried out in a CEM Discover microwave reactor in sealed vessels 

(monowave, maximum power 300 W, temperature control by IR sensor, fixed temperature). 1H and 13C 

NMR spectra were recorded on a Varian instrument operating at 500 and 125 MHz, respectively. The 

signals of the deuterated solvent (CDCl3) were used as reference (the singlet at δ = 7.27 ppm for 1H 

NMR and the triplet centred at δ = 77.00 ppm for 13C NMR). Carbon atom types (C, CH, CH2, CH3) 

were determined by using the DEPT or APT pulse sequence. High resolution mass spectra were 

recorded using electrospray ionization mass spectrometry (ESI-MS). A QTOF Premier instrument with 

an orthogonal Z-spray-electrospray interface (Waters, Manchester, UK) was used operating in the  
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W-mode. The drying and cone gas was nitrogen set to flow rates of 300 and 30 L/h, respectively. 

Methanol sample solutions (ca. 1 × 10−5 M) were directly introduced into the ESI spectrometer at a 

flow rate of 10 µL/min. A capillary voltage of 3.5 kV was used in the positive scan mode, and the cone 

voltage set to Uc = 10 V. For accurate mass measurements, a 2 mg/L standard solution of leucine 

enkephalin was introduced via the lock spray needle at a cone voltage set to 85 V and a flow rate of  

30 μL/min. IR spectra were recorded on a Spectrum RX I FT-IR system (Perkin-Elmer, Waltham, MA, 

USA) in KBr disks. Silica gel 60 (0.063–0.200 mesh, Merck, Whitehouse Station, NJ, USA) was used 

for column chromatography, and precoated silica gel plates (Merck 60 F254 0.2 mm) were used for 

thin layer chromatography (TLC).  

 

General procedure for the synthesis of bromoalkyl derivatives  

    Quinoline or chromone  (1 mmol),  potassium  hydroxide  (1.5 mmol, 84.2 mg)  and  acetonitrile  (10 

mL),  were  placed  in  a  25  mL  flat-bottomed  flask  equipped  with  a  magnetic  stirring  bar.  The 

mixture was stirred and heated to reflux for a period of 5 min, under microwave irradiation. Then, 1,ω-

dibromoalkane (1.1 mmol) was added to the reaction mixture which was refluxed for 30 minutes (70 

W). The crude  reaction  mixture  was  concentrated  on  a  rotatory  evaporator and  the  residue  was  

purified  by column  chromatography  over  silica  gel  eluting  with  hexane  and  a  mixture  of  

hexane-ethyl acetate  (9:1 ratio) to obtain bromoalkyl derivatives in yields ranging between 42–80%. 

Monitoring of the reaction progress and product purification was carried out by TLC.   
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8-(3-bromopropoxy)quinoline (2): Yield 75% (0.75 mmol, 200 mg); brown oil. IR (cm−1): νmax  1570 

(C=CAr), 1500 (C=N), 1263 (C-O-C), 794 (C-HAr).  
1H-NMR (CDCl3): δ 2.20-2.30 (2H, m), 4.03 (2H, 

t, J = 5.3 Hz), 4.47 (2H, t, J = 5.6 Hz), 7.21 (1H, d, J = 6.2 Hz), 7.44-7.56 (3H, m), 8.20 (1H, dd, J = 

8.3, 1.5 Hz), 8.94 (1H, dd, J = 4.2, 1.5 Hz). 13C-NMR (CDCl3): δ 30.0 (CH2), 31.9 (CH2), 69.6 (CH2), 

111.6 (C), 120.6 (C), 121.7 (C), 126.8 (C), 129.6 (C), 136.2 (C), 140.7 (C), 149.4 (C), 154.8 (C). 

8-(4-bromobutoxy)quinoline (3): Yield 64% (0.64 mmol, 179 mg); dark yellow solid, M.p. 46-48°C. IR 

(cm−1): νmax  1593 (C=CAr), 1529 (C=N), 1240 (C-O-C), 835 (C-HAr). 
1H-NMR (CDCl3): δ 2.17-2.27 

(4H, m), 3.57 (2H, t, J = 5.8 Hz), 4.29 (2H, t, J = 5.5 Hz), 7.09 (1H, d, J = 7.5 Hz), 7.39-7.53 (3H, m), 

8.17 (1H, dd, J = 8.3, 1.1 Hz), 9.01 (1H, dd, J = 4.2, 1.3 Hz). 13C-NMR (CDCl3): δ 27.7 (CH2), 29.5 

(CH2), 33.7 (CH2), 67.8 (CH2), 108.8 (C), 119.7 (C), 121.7 (C), 126.8 (C), 129.6 (C), 136.3 (C), 139.9 

(C), 149.2 (C), 154.5 (C). 

8-((5-bromopentyl)oxy) quinoline (4): Yield 51% (0.51 mmol, 150 mg); brown solid, M.p. 58-62°C. IR 

(cm−1): νmax  1595 (C=CAr), 1529 (C=N), 1288 (C-O-C), 829 (C-HAr). 
1H-NMR (CDCl3): δ 1.69-1.82 

(2H, m), 1.97-2.07 (2H, m), 2.07-2.19 (2H, m), 3.50 (2H, t, J = 6.8 Hz), 4.29 (2H, t, J = 6.8 Hz), 7.10 

(1H, d, J = 7.5 Hz), 7.40-7.53 (3H, m), 8.17 (1H, dd, J = 8.2, 1.0 Hz), 8.99 (1H, dd, J = 4.2, 1.0 Hz). 

13C-NMR (CDCl3): δ 24.9 (CH2), 28.2 (CH2), 32.6 (CH2), 33.6 (CH2), 68.6 (CH2), 108.7 (C), 119.6 

(C), 121.6 (C), 126.7 (C), 129.6 (C), 136.0 (C), 140.3 (C), 149.4 (C), 154.7 (C). 

8-((8-bromooctyl)oxy) quinoline (5): Yield 80% (0.80 mmol, 269 mg); light brown oil. IR (cm−1): νmax  

1593 (C=CAr), 1529 (C=N), 1286 (C-O-C), 831 (C-HAr). 
1H-NMR (CDCl3): δ 1.33-1.50 (6H, m), 1.51-

1.64 (2H, m), 1.81-1.94 (2H, m), 1.99-2.11 (2H, m), 3.42 (2H, t, J = 6.9 Hz), 4.25 (2H, t, J = 6.9 Hz), 

7.08 (1H, d, J = 7.6 Hz), 7.36-7.52 (3H, m), 8.15 (1H, dd, J = 8.3, 1.5 Hz), 8.99 (1H, dd, J = 4.2, 1.6 

Hz). 13C-NMR (CDCl3): δ 26.0 (CH2), 28.1 (CH2), 28.7 (CH2), 29.0 (CH2), 29.3 (CH2), 32.8 (CH2), 

34.1 (CH2), 68.9 (CH2), 108.8 (C), 119.4 (C), 121.6 (C), 126.8 (C), 129.5 (C), 136.1 (C), 140.2 (C), 

149.2 (C), 154.8 (C). 
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8-((9-bromononyl)oxy)quinoline (6): Yield 75% (0.75 mmol, 263 mg); light brown oil. IR (cm−1): νmax  

1595 (C=CAr), 1531 (C=N), 1286 (C-O-C), 833 (C-HAr). 
1H-NMR (CDCl3): δ 1.31-1.52 (6H, m), 1.52-

1.66 (2H, m), 1.82-1.95 (2H, m), 2.00-2.13 (2H, m), 3.44 (2H, t, J = 6.9 Hz), 4.26 (2H, t, J = 6.9 Hz), 

7.10 (1H, d, J = 7.6 Hz), 7.38-7.53 (3H, m), 8.18 (1H, dd, J = 8.3, 1.3 Hz), 9.02 (1H, dd, J = 4.2, 1.3 

Hz). 13C-NMR (CDCl3): δ 26.1 (CH2), 28.2 (CH2), 28.7 (CH2), 29.0 (CH2), 29.4 (CH2) (x2), 32.8 

(CH2), 34.1 (CH2), 69.0 (CH2), 108.6 (C), 119.3 (C), 121.6 (C), 126.8 (C), 129.5 (C), 136.2 (C), 140.0 

(C), 149.2 (C), 154.8 (C). 

8-((12-bromododecyl)oxy)quinoline (7): Yield 67% (0.67 mmol, 263 mg); brown solid, M.p. 44-46°C. 

IR (cm−1): νmax  1597 (C=CAr), 1529 (C=N), 1259 (C-O-C), 829 (C-HAr). 
1H-NMR (CDCl3): δ 1.23-

1.38 (6H, m), 1.37-1.49 (2H, m), 1.49-1.62 (2H, m), 1.79-1.93 (2H, m), 1.98-2.12 (2H, m), 3.42 (2H, t, 

J = 6.9 Hz), 4.25 (2H, t, J = 7.0 Hz), 7.07 (1H, d, J = 7.5 Hz), 7.35-7.51 (3H, m), 8.13 (1H, dd, J = 8.3, 

1.2 Hz), 8.98 (1H, dd, J = 4.2, 1.2 Hz). 13C-NMR (CDCl3): δ 26.1 (CH2), 28.2 (CH2), 28.8 (CH2), 29.0 

(CH2), 29.6 (CH2) (x3), 29.5 (CH2), 29.4 (CH2) (x2), 32.9 (CH2), 34.1 (CH2), 69.0 (CH2), 108.6 (C), 

119.3 (C), 121.5 (C), 126.8 (C), 129.5 (C), 136.0 (C), 140.3 (C), 149.2 (C), 154.9 (C). 

7-[(9-bromononyl)oxy]-4H-chromen-4-one (18): Yield 49% (0.49 mmol, 180 mg); light yellow solid, 

M.p. 60-62°C. IR (cm−1): νmax  1649  (C=O), 1602 (C=C), 1444 (C=CAr), 1234 (C-O-C), 813 (C-HAr).  

1H-NMR (CDCl3): δ 1.28-1.42 (10H, m), 1.42-1.55 (2H, m), 1.78-1.93 (2H, m), 3.43 (2H, t, J = 6.8 

Hz), 4.05 (2H, t, J = 6.5 Hz), 6.29 (1H, d, J = 6.0 Hz), 6.83 (1H, d, J = 2.3 Hz), 6.97 (1H, dd, J = 9.0, 

2.3 Hz), 7.80 (1H, d, J = 6.1 Hz), 8.11 (1H, d, J = 9.0 Hz). 13C-NMR (CDCl3): δ 25.9 (CH2), 28.1 

(CH2), 28.7 (CH2), 28.9 (CH2), 29.2 (CH2), 29.3 (CH2), 32.8 (CH2), 34.1 (CH2), 68.7 (CH2), 100.8 (C), 

112.9 (C), 114.9 (C), 118.6 (C), 127.1 (C), 154.9 (C), 158.3 (C), 163.7 (C), 177.1 (C=O).  
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7-[(12-bromododecyl)oxy]-4H-chromen-4-one (19): Yield 42% (0.42 mmol, 172 mg); light yellow 

solid, M.p. 58-60°C. IR (cm−1): νmax  1651  (C=O), 1605 (C=C), 1450 (C=CAr), 1238 (C-O-C), 812 (C-

HAr).  
1H-NMR (CDCl3): δ 1.22-1.39 (12H, m), 1.40-1.52 (4H, m), 1.79-1.90 (4H, m), 3.41 (2H, t, J = 

6.8 Hz), 4.05 (2H, t, J = 6.5 Hz), 6.30 (1H, d, J = 6.0 Hz), 6.83 (1H, d, J = 2.2 Hz), 6.97 (1H, dd, J = 

8.9, 2.2 Hz), 7.77 (1H, d, J = 6.0 Hz), 8.11 (1H, d, J = 8.9 Hz). 13C-NMR (CDCl3): δ 25.9 (CH2), 28.1 

(CH2), 28.7 (CH2), 28.9 (CH2), 29.3 (CH2), 29.4 (CH2), 29.5 (CH2), 29.5 (CH2) (x2), 32.8 (CH2), 33.9 

(CH2), 68.7 (CH2), 100.9 (C), 112.9 (C), 114.8 (C), 118.6 (C), 127.1 (C), 154.8 (C), 158.3 (C), 163.7 

(C), 177.1 (C=O).  

General procedure for the synthesis of quinoline-chalcone and quinoline-chromone hybrids  

    Chalcone or 8-hydroxyquinoline (0.75 mmol), potassium hydroxide (1 mmol) and acetonitrile (10 

mL), were placed in a 50 mL flat-bottomed flask equipped with a magnetic stirring bar. The mixture 

was stirred and heated to reflux for a period of 5 minutes, under microwave irradiation. Then, 

bromoalkylquinoline or bromoalkylchromenone (0.5 mmol) was added to the reaction mixture which 

was then refluxed for 30 minutes (70 W). The crude reaction mixture was concentrated on a rotatory 

evaporator and the residue was purified by column chromatography over silica gel eluting with hexane-

ethyl acetate to obtain quinoline-chalcone or quinoline-chromone hybrids in yields ranging 44-65% and 

34-70%, respectively. Monitoring of the reaction progress and product purification was carried out by 

TLC. 

(E)-3-(3,4-dimethoxyphenyl)-1-(4-(3-(quinolin-8-yloxy)propoxy)phenyl)prop-2-en-1-one (8): Yield 

65% (0.33 mmol, 155 mg); yellow solid, M.p. 62-64°C; IR (cm−1): νmax  1655 (C=O), 1599 (C=C), 

1510, (C=N) 1262 (C-O-C), 803 (C-HAr). 
1H-NMR (CDCl3): δ 2.51-2.59 (2H, m), 3.94 (3H, s), 3.96 

(3H, s), 4.37 (2H, t, J = 6.1 Hz), 4.48 (2H, t, J = 6.2 Hz), 6.90 (1H, d, J = 8.3 Hz), 7.01 (2H, d, J = 8.8 

Hz), 7.13 (1H, dd, J = 7.6, 1.0 Hz), 7.16 (1H, d, J = 2.0 Hz), 7.23 (1H, dd, J = 8.3, 2.0), 7.37-7.49 (4H, 

m), 7.75 (1H, d, J = 15.6 Hz), 8.01 (2H, d, J = 8.8 Hz), 8.14 (1H, dd, J = 8.3, 1.7 Hz), 8.96 (1H, dd, J = 
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4.4, 1.7 Hz). 13C-NMR (CDCl3): δ 29.1 (CH2), 56.0 (CH3) (x2), 65.0 (CH2), 65.4 (CH2), 109.0 (C), 

110.2 (C), 111.2 (C), 114.3 (C) (x2), 119.8 (C), 119.9 (C), 121.6 (C), 122.9 (C), 126.6 (C), 128.1 (C), 

129.5 (C), 130.7 (C) (x2), 131.3 (C), 135.9 (C), 140.4 (C), 144.0 (C), 149.2 (C), 149.3 (C), 151.3 (C), 

154.6 (C), 162.6 (C), 188.6 (C=O). ESI-MS: m/z 470.1967 [M + H]+, Calcd for C29H27NO5 : 470.1959  

(E)-3-(3,4-dimethoxyphenyl)-1-(4-(4-(quinolin-8-yloxy)butoxy)phenyl)prop-2-en-1-one (9): Yield 44% 

(0.22 mmol, 106.4 mg); yellow solid, M.p. 130-134°C; IR (cm−1): νmax  1659 (C=O), 1599 (C=C), 1512 

(C=N), 1262 (C-O-C), 814 (C-HAr). 
1H-NMR (CDCl3): δ 2.08-2.17 (2H, m), 2.20-2.29 (2H, m), 3.94 

(3H, s), 3.97 (3H, s), 4.21 (2H, t, J = 6.3 Hz), 4.36 (2H, t, J = 6.4 Hz), 6.91 (1H, d, J = 8.3 Hz), 6.99 

(2H, d, J = 8.8 Hz), 7.09 (1H, d, J = 7.6 Hz), 7.17 (1H, d, J = 1.8 Hz), 7.24 (1H, dd, J = 8.3, 1.7), 7.37-

7.50 (4H, m), 7.76 (1H, d, J = 15.6 Hz), 8.01 (2H, d, J = 8.9 Hz), 8.13 (1H, dd, J = 8.3, 1.9 Hz), 8.95 

(1H, dd, J = 4.2, 1.9 Hz). 13C-NMR (CDCl3): δ 25.7 (CH2), 26.1 (CH2), 56.0 (CH3) (x2), 67.9 (CH2), 

68.5 (CH2), 108.8 (C), 110.2 (C), 111.2 (C), 114.3 (C) (x2), 119.6 (C), 120.0 (C), 121.6 (C), 122.9 (C), 

126.6 (C), 128.1 (C), 129.5 (C), 130.7 (C) (x2), 131.2 (C), 135.9 (C), 140.5 (C), 144.0 (C), 149.2 (C), 

149.3 (C), 151.3 (C), 154.7 (C), 162.8 (C), 188.7 (C=O). ESI-MS: m/z 484.2124 [M + H]+, Calcd for 

C30H29NO5 : 484.2119  

(E)-3-(3,4-dimethoxyphenyl)-1-(4-((5-(quinolin-8-yloxy)pentyl)oxy)phenyl)prop-2-en-1-one (10): Yield 

56% (0.28 mmol, 139.3 mg); yellow solid, M.p. 220-224°C; IR (cm−1): νmax  1641 (C=O), 1593 (C=C), 

1513 (C=N), 1221 (C-O-C), 812 (C-HAr). 
1H-NMR (CDCl3): δ 1.73-1.88 (2H, m), 1.92-2.05 (2H, m), 

2.11-2.24 (2H, m), 3.94 (3H, s), 4.01 (3H, s), 4.13 (2H, t, J = 6.4 Hz), 4.32 (2H, t, J = 6.8 Hz), 6.94 

(1H, d, J = 8.5 Hz), 7.01 (2H, d, J = 8.7 Hz), 7.11 (1H, d, J = 7.5 Hz), 7.21 (1H, d, J = 1.5 Hz), 7.27 

(1H, dd, J = 8.5, 1.5), 7.37-7.53 (4H, m), 7.80 (1H, d, J = 15.5 Hz), 8.06 (2H, d, J = 8.7 Hz), 8.17 (1H, 

dd, J = 8.2, 1.1 Hz), 8.89 (1H, dd, J = 4.0, 1.1 Hz). 13C-NMR (CDCl3): δ 22.8 (CH2), 28.8 (CH2), 29.0 

(CH2), 56.0 (CH3) (x2), 68.0 (CH2), 68.7 (CH2), 108.7 (C), 110.1 (C), 111.2 (C), 114.3 (C) (x2), 119.6 

(C), 119.9 (C), 121.6 (C), 123.0 (C), 126.7 (C), 128.1 (C), 129.6 (C), 130.8 (C) (x2), 131.1 (C), 136.0 
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(C), 140.4 (C), 144.1 (C), 149.2 (C), 149.4 (C), 151.3 (C), 154.8 (C), 162.9 (C), 188.9 (C=O). ESI-MS: 

m/z 498.2280 [M + H]+, Calcd for C31H31NO5 : 498.2287  

(E)-3-(3,4-dimethoxyphenyl)-1-(4-((8-(quinolin-8-yloxy)octyl)oxy)phenyl)prop-2-en-1-one (11): Yield 

58% (0.29 mmol, 156.5 mg); yellow solid, M.p. 104-108°C; IR (cm−1): νmax  1657 (C=O), 1599 (C=C), 

1513 (C=N), 1258 (C-O-C), 816 (C-HAr). 
1H-NMR (CDCl3): δ 1.40-1.48 (2H, m), 1.48-1.54 (2H, m), 

1.54-1.62 (2H, m), 1.79-1.86 (2H, m), 2.01-2.09 (2H, m), 3.94 (3H, s), 3.96 (3H, s), 4.04 (2H, t, J = 6.5 

Hz), 4.26 (2H, t, J = 7.0 Hz), 6.90 (1H, d, J = 8.4 Hz), 6.97 (2H, d, J = 8.8 Hz), 7.07 (1H, d, J = 7.6 

Hz), 7.17 (1H, d, J = 1.9 Hz), 7.24 (1H, dd, J = 8.4, 2.0), 7.36-7.48 (4H, m), 7.76 (1H, d, J = 15.6 Hz), 

8.03 (2H, d, J = 8.9 Hz), 8.12 (1H, dd, J = 8.3, 1.7 Hz), 8.96 (1H, dd, J = 4.1, 2.0 Hz). 13C-NMR 

(CDCl3): δ 25.9 (CH2), 26.0 (CH2), 29.0 (CH2), 29.1 (CH2), 29.2 (CH2), 29.3 (CH2), 56.0 (CH3) (x2), 

68.2 (CH2), 69.0 (CH2), 108.6 (C), 110.2 (C), 111.2 (C), 114.3 (C) (x2), 119.4 (C), 119.9 (C), 121.5 

(C), 122.9 (C), 126.6 (C), 128.1 (C), 129.5 (C), 130.7 (C) (x2), 131.1 (C), 135.8 (C), 140.5 (C), 144.0 

(C), 149.2 (C), 149.3 (C), 151.3 (C), 154.7 (C), 162.9 (C), 188.7 (C=O). ESI-MS: m/z 540.2750 [M + 

H]+, Calcd for C34H37NO5 : 540.2742. 

(E)-3-(3,4-dimethoxyphenyl)-1-(4-((9-(quinolin-8-yloxy)nonyl)oxy)phenyl)prop-2-en-1-one (12): Yield 

49% (0.23 mmol, 127.4 mg); yellow solid, M.p. 84-88°C; IR (cm−1): νmax 1728 (C=O), 1655 (C=C), 

1601 (C=N), 1262 (C-O-C), 797 (C-HAr). 
1H-NMR (CDCl3): δ 1.35-1.51 (8H, m), 1.52-1.65 (2H, m), 

1.76-1.90 (2H, m), 2.01-2.13 (2H, m), 3.95 (3H, s), 3.98 (3H, s), 4.05 (2H, t, J = 6.5 Hz), 4.26 (2H, t, J 

= 7.1 Hz), 6.91 (1H, d, J = 8.3 Hz), 6.99 (2H, d, J = 8.8 Hz), 7.08 (1H, d, J = 7.5 Hz), 7.19 (1H, d, J = 

1.5 Hz), 7.26 (1H, dd, J = 8.3, 1.6), 7.36-7.51 (4H, m), 7.79 (1H, d, J = 15.5 Hz), 8.06 (2H, d, J = 8.8 

Hz), 8.14 (1H, dd, J = 8.3, 1.4 Hz), 8.97 (1H, dd, J = 4.2, 1.5 Hz). 13C-NMR (CDCl3): δ 26.0 (CH2), 

26.1 (CH2), 29.0 (CH2), 29.1 (CH2), 29.3 (CH2), 29.4 (CH2), 29.5 (CH2), 56.0 (CH3) (x2), 68.3 (CH2), 

69.0 (CH2), 108.6 (C), 110.1 (C), 111.1 (C), 114.3 (C) (x2), 119.4 (C), 119.9 (C), 121.6 (C), 123.0 (C), 

126.7 (C), 128.1 (C), 129.5 (C), 130.8 (C) (x2), 131.6 (C), 135.9 (C), 140.4 (C), 144.0 (C), 149.2 (C), 
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149.3 (C), 151.2 (C), 154.9 (C), 163.0 (C), 188.8 (C=O). ESI-MS: m/z 554.2987 [M + H]+, Calcd for 

C35H39NO5 : 554.2991. 

(E)-3-(3,4-dimethoxyphenyl)-1-(4-((12-(quinolin-8-yloxy)dodecyl)oxy)phenyl)prop-2-en-1-one (13): 

Yield 51% (0.26 mmol, 155 mg); yellow solid, M.p. 98-102°C; IR (cm−1): νmax  1656 (C=O), 1599 

(C=C), 1503 (C=N), 1258 (C-O-C), 801 (C-HAr). 
1H-NMR (CDCl3): δ 1.27-1.49 (14H, m), 1.50-1.64 

(2H, m), 1.75-1.93 (2H, m), 2.01-2.15 (2H, m), 3.98 (3H, s), 4.01 (3H, s), 4.08 (2H, t, J = 6.7 Hz), 4.28 

(2H, t, J = 7.1 Hz), 6.94 (1H, d, J = 8.4 Hz), 7.02 (2H, d, J = 8.8 Hz), 7.10 (1H, d, J = 7.5 Hz), 7.21 

(1H, d, J = 1.5 Hz), 7.28 (1H, dd, J = 8.3, 1.7), 7.38-7.53 (4H, m), 7.80 (1H, d, J = 15.7 Hz), 8.07 (2H, 

d, J = 8.8 Hz), 8.16 (1H, dd, J = 8.3, 1.6 Hz), 8.99 (1H, dd, J = 4.2, 1.6 Hz). 13C-NMR (CDCl3): δ 26.0 

(CH2), 26.1 (CH2), 29.0 (CH2), 29.1 (CH2), 29.4 (CH2), 29.5 (CH2), 29.6 (CH2) (x4), 56.0 (CH3) (x2), 

68.3 (CH2), 69.0 (CH2), 108.6 (C), 110.1 (C), 111.1 (C), 114.3 (C) (x2), 119.4 (C), 119.9 (C), 121.6 

(C), 123.0 (C), 126.7 (C), 128.1 (C), 129.5 (C), 130.8 (C) (x2), 131.1 (C), 135.9 (C), 140.5 (C), 144.1 

(C), 149.2 (C), 149.3 (C), 151.2 (C), 154.9 (C), 163.0 (C), 188.8 (C=O). ESI-MS: m/z 596.3410 [M + 

H]+, Calcd for C38H45NO5 : 596.3404. 

7-[4-(quinolin-8-yloxy)butoxy]-4H-chromen-4-one (20): Yield 34% (0.17 mmol, 61.4 mg); yellow 

solid, M.p. 160-164°C; IR (cm−1): νmax  1641 (C=O), 1593 (C=C), 1565 (C=N), 1437 (C=CAr), 1267 (C-

O-C), 820 (C-HAr). 
1H-NMR (CDCl3): δ 2.10-2.19 (2H, m), 2.20-2.29 (2H, m), 4.23 (2H, t, J = 6.2 Hz), 

4.36 (2H, t, J = 6.2 Hz), 6.27 (1H, d, J = 6.0 Hz), 6.85 (1H, d, J = 2.3 Hz), 6.94 (1H, dd, J = 9.0, 2.3 

Hz), 7.08 (1H, d, J = 7.6 Hz), 7.36-7.48 (3H, m), 7.76 (1H, d, J = 6.0 Hz), 8.07 (1H, d, J = 9.0 Hz), 

8.12 (1H, dd, J = 8.3, 1.5 Hz), 8.94 (1H, dd, J = 4.1, 1.5 Hz). 13C-NMR (CDCl3): δ 25.6 (CH2), 26.2 

(CH2), 68.4 (CH2), 68.5 (CH2), 100.1 (C), 108.7 (C), 112.9 (C), 114.8 (C), 118.6 (C), 119.7 (C), 121.5 

(C1), 126.6 (C), 127.1 (C), 129.5 (C), 135.8 (C), 140.4 (C), 149.3 (C), 154.6 (C), 154.7 (C), 158.2 (C), 

163.5 (C), 176.9 (C=O). ESI-MS: m/z 362.1392 [M + H]+, Calcd for C22H19NO4: 362.1390  
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7-{[5-(quinolin-8-yloxy)pentyl]oxy}-4H-chromen-4-one (21):Yield 61% (0.31 mmol, 116.4 mg); 

yellow solid, M.p. 134-138°C; IR (cm−1): νmax 1651 (C=O), 1597 (C=C), 1564 (C=N), 1443 (C=CAr), 

1263 (C-O-C), 824 (C-HAr). 
1H-NMR (CDCl3): δ 1.73-1.81 (2H, m), 1.92-2.01 (2H, m), 2.08-2.17 (2H, 

m), 4.02 (2H, t, J = 6.4 Hz), 4.29 (2H, t, J = 6.7 Hz), 6.26 (1H, d, J = 6.1 Hz), 6.81 (1H, d, J = 2.4 Hz), 

6.94 (1H, dd, J = 8.8, 2.4 Hz), 7.07 (1H, d, J = 7.8 Hz), 7.36-7.47 (3H, m), 7.76 (1H, d, J = 6.1 Hz), 

8.09 (1H, d, J = 8.8 Hz), 8.12 (1H, dd, J = 8.3, 1.6 Hz), 8.94 (1H, dd, J = 4.2, 1.6 Hz). 13C-NMR 

(CDCl3): δ 22.8 (CH2), 28.7 (CH2), 28.8 (CH2), 68.4 (CH2), 68.7 (CH2), 100.9 (C), 108.7 (C), 112.9 

(C), 114.8 (C), 118.6 (C), 119.6 (C), 121.5 (C), 126.6 (C), 127.1 (C), 129.5 (C), 135.8 (C), 140.5 (C), 

149.3 (C), 154.7 (C), 154.8 (C), 158.2 (C), 163.6 (C), 177.0 (C=O). ESI-MS: m/z 376.1549 [M + H]+, 

Calcd for C23H21NO4: 376.1542. 

7-{[8-(quinolin-8-yloxy)octyl]oxy}-4H-chromen-4-one (22): Yield 70% (0.35 mmol, 146.1 mg); yellow 

solid, M.p. 110-114°C; IR (cm−1): νmax  1655 (C=O), 1593 (C=C), 1593 (C=N), 1443 (C=CAr), 1263 (C-

O-C), 818 (C-HAr). 
1H-NMR (CDCl3): δ 1.42-1.54 (2H, m), 1.55-1.67 (2H, m), 1.80-1.93 (2H, m), 

2.02-2.19 (2H, m), 4.07 (2H, t, J = 6.6 Hz), 4.28 (2H, t, J = 7.0 Hz), 6.31 (1H, d, J = 6.1 Hz), 6.85 (1H, 

d, J = 2.3 Hz), 7.01 (1H, dd, J = 8.9, 2.3 Hz), 7.10 (1H, d, J = 7.5 Hz), 7.38-7.53 (3H, m), 7.80 (1H, d, 

J = 6.0 Hz), 8.13 (1H, d, J = 8.7 Hz), 8.16 (1H, dd, J = 8.0, 1.4 Hz), 8.99 (1H, dd, J = 4.2, 1.4 Hz). 13C-

NMR (CDCl3): δ 25.9 (CH2), 26.0 (CH2), 28.9 (CH2), 29.0 (CH2), 29.2 (CH2), 29.3 (CH2), 68.7 (CH2), 

68.9 (CH2), 100.8 (C), 108.6 (C), 112.9 (C), 114.9 (C), 118.6 (C), 119.4 (C), 121.6 (C), 126.7 (C), 

127.2 (C), 129.5 (C), 136.0 (C), 140.4 (C), 149.3 (C), 154.7 (C), 154.9 (C), 158.3 (C), 163.7 (C), 177.1 

(C=O). ESI-MS: m/z 418.2127 [M + H]+, Calcd for C26H27NO4: 418.2123. 

7-{[9-(quinolin-8-yloxy)nonyl]oxy}-4H-chromen-4-one (23): Yield 36% (0.18 mmol, 77.7 mg); yellow 

solid, M.p. 93-95°C; IR (cm−1): νmax  1659 (C=O), 1626 (C=C), 1594 (C=N), 1381 (C=CAr),  1265 (C-

O-C), 818 (C-HAr). 
1H-NMR (CDCl3): δ 1.31-1.45 (6H, m), 1.45-1.51 (2H, m), 1.51-1.60 (2H, m), 

1.78-1.86 (2H, m), 2.01-2.08 (2H, m), 4.03 (2H, t, J = 6.5 Hz), 4.25 (2H, t, J = 6.9 Hz), 6.27 (1H, d, J = 
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6.0 Hz), 6.82 (1H, d, J = 2.3 Hz), 6.96 (1H, dd, J = 8.9, 2.3 Hz), 7.07 (1H, d, J = 7.8 Hz), 7.36-7.48 

(3H, m), 7.76 (1H, d, J = 6.0 Hz), 8.11 (1H, dd, J = 8.1, 1.0 Hz), 8.13 (1H, d, J = 8.5 Hz), 8.96 (1H, dd, 

J = 4.2, 1.4 Hz). 13C-NMR (CDCl3): δ 25.9 (CH2), 26.0 (CH2), 28.9 (CH2), 29.0 (CH2), 29.2 (CH2), 

29.3 (CH2), 29.4 (CH2), 68.7 (CH2), 69.0 (CH2), 100.8 (C), 108.6 (C), 112.9 (C), 114.8 (C), 118.6 (C), 

119.3 (C), 121.5 (C), 126.6 (C), 127.1 (C), 129.5 (C), 135.9 (C), 140.4 (C), 149.2 (C), 154.7 (C), 154.9 

(C), 158.2 (C), 163.7 (C), 177.0 (C=O). ESI-MS: m/z 432.2175 [M + H]+, Calcd for C27H29NO4 : 

432.2173. 

7-{[12-(quinolin-8-yloxy)dodecyl]oxy}-4H-chromen-4-one (24):Yield 61% (0.31 mmol, 146.8 mg); 

yellow solid, M.p. 98-100°C; IR (cm−1): νmax  1651 (C=O), 1622 (C=C), 1596 (C=N), 1441 (C=CAr), 

1263 (C-O-C), 817 (C-HAr). 
1H-NMR (CDCl3): δ 1.24-1.43 (12H, m), 1.44-1.50 (2H, m), 1.51-1.60 

(2H, m), 1.78-1.87 (2H, m), 1.99-2.08 (2H, m), 4.04 (2H, t, J = 6.6 Hz), 4.24 (2H, t, J = 7.1 Hz), 6.27 

(1H, d, J = 6.1 Hz), 6.82 (1H, d, J = 2.1 Hz), 6.96 (1H, dd, J = 8.8, 2.0 Hz), 7.06 (1H, d, J = 7.7 Hz), 

7.34-7.48 (3H, m), 7.76 (1H, d, J = 6.1 Hz), 8.10 (1H, dd, J = 8.1, 1.2 Hz), 8.12 (1H, d, J = 8.2 Hz), 

8.95 (1H, dd, J = 4.2, 1.2 Hz). 13C-NMR (CDCl3): δ 25.9 (CH2), 26.0 (CH2), 28.9 (CH2), 29.0 (CH2), 

29.3 (CH2), 29.41 (CH2), 29.47 (CH2), 29.48 (CH2), 29.49 (CH2), 29.5 (CH2), 68.7 (CH2), 69.0 (CH2), 

100.9 (C), 108.6 (C), 112.9 (C), 114.8 (C), 118.6 (C), 119.3 (C), 121.5 (C), 126.6 (C), 127.1 (C), 129.5 

(C), 135.8 (C), 140.5 (C), 149.2 (C), 154.7 (C), 154.9 (C), 158.3 (C), 163.7 (C), 177.0 (C=O). ESI-MS: 

m/z 474.2644 [M + H]+, Calcd for C30H35NO4: 474.2642. 

 

Biological activity assays 

The compounds were subjected to evaluation of in vitro cytotoxicity on U937 human cells and 

leishmanicidal and trypanocidal activities on intracellular amastigotes of L.  (V) panamensis and T. 

cruzi.  
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In vitro Cytotoxicity  

    The cytotoxic activity of the compounds was assessed based on the viability of the human 

promonocytic cell line U-937 (ATCC CRL-1593.2TM) evaluated by the MTT (3-(4,5-dimethylthiazol-

2-yl)-2,5-diphenyltetrazolium bromide) assay following the methodology described previously (Taylor 

et al., 2011). Briefly, cells  grown in tissue flasks were harvested and washed with phosphate buffered 

saline (PBS) by centrifuging. Cells were counted and adjusted at 1 ×106 cells/mL of RPMI-1640 

supplemented with complete 10% Fetal Bovine Serum (FBS) and 1% antibiotics (100 U/mL penicillin 

and 0.1 mg/mL streptomycin). One hundred µL were dispensed into each well of a 96-well cell-culture 

plate and then 100 mL of RPMI-1640 and the corresponding concentrations of the compounds were 

added, starting at 200 µg/mL in duplicate. Plates were incubated at 37 °C, 5% CO2 during 72 h in the 

presence of extracts. The effect of compounds was determined by measuring the activity of the 

mitochondrial dehydrogenase by adding 10 µL/well of MTT solution (0.5 mg/mL) and incubation at 37 

°C for 3h. The reaction was stopped by adding 100 µL/well of 50% isopropanol solution with 10% 

sodium dodecyl sulfate and 30 min incubation. Cell viability was determined based on the quantity of 

formazan produced according to the intensity of color (absorbance) registered as optical densities (O.D) 

obtained at 570 nm in a spectrophotometer (Varioskan™ Flash Multimode Reader - Thermo Scientific, 

USA). Cells cultured in absence of compounds were used as control of viability (negative control), 

while meglumine antimoniate (Sbv) and amphotericin B (AmB) were used as control for cytotoxicity 

(non-cytotoxic and cytotoxic drugs, respectively). Assays were conducted in two independent runs with 

three replicates per each concentration tested. 

 

In vitro leishmanicidal activity 

    The activity of compounds was evaluated on intracellular amastigotes of L. (V) panamensis 

transfected with the green fluorescent protein gene (MHOM/CO/87/UA140pIR-GFP) (Pulido et al., 
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2012). The effect of each extract was determined according to the inhibition of the infection evidenced 

by both decrease of the infected cells and decrease of intracellular parasite load. Briefly, U-937 human 

cells at a concentration of 3 × 105 cells/mL in RPMI 1640 and 0.1 μg/mL of phorbol-12-myristate-13-

acetate (PMA) were dispensed into each well of a 24-well cell culture plate and then infected with 5 

days-old promastigotes in a 15:1 parasites per cell ratio. Plates were incubated at 34 °C, 5% CO2 during 

3h and cells were washed two times with PBS to eliminate not internalized parasites. One mL of fresh 

RPMI 1640 supplemented with 10% FBS and 1% antibiotics was added into each well, cells were 

incubated again to guarantee multiplication of intracellular parasites. After 24 h of infection, culture 

medium was replaced by fresh culture medium containing each compound at 20 μg/mL or lower (based 

on the cytotoxicity showed previously by each compound) and plates were incubated at 37 °C, 5% 

CO2. After 72 h, inhibition of the infection was determined. For this, cells were removed from the 

bottom plate with a trypsin/EDTA (250 mg) solution; recovered cells were centrifuged at 1100 rpm 

during 10 min at 4 °C, the supernatant was discarded and cells were washed with 1 mL of cold PBS 

and centrifuged at 1100 rpm during 10 min at 4 °C. The supernatant was discarded and cells were 

suspended in 500 μL of PBS and analyzed by flow cytometry (FC 500MPL, Cytomics, Brea, CA, US. 

All determinations for each extract and standard drugs were carried out in triplicate, in two independent 

experiments (Buckner et al., 1996; Pulido et al., 2012). Activity of tested extracts was carried out in 

parallel with infection progress in culture medium alone and in culture medium with AmB and Sbv as 

antileishmanial drugs (positive controls). Compounds that showed percentages of inhibition higher than 

50% to 20 or fewer μg/mL were then evaluated at four additional concentrations to determine the  

effective concentration 50 (EC50). Here, infected cells were exposed against each concentration of 

compounds during 72 h; then, cells were removed and tested by flow cytometry as described before.  

 

 

 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



17 

 

In vitro Trypanocidal Activity  

    Compounds were tested on intracellular amastigotes of T. cruzi, Tulahuen strain transfected with β-

galactosidase gene (donated by Dr. F. S. Buckner, University of Washington) (Buckner et al., 1996). 

The activity was determined according to the ability of the extract to reduce the infection of U-937 

cells by T. cruzi as described elsewhere (Insuasty et al., 2015). Following the procedure described 

above, anti-T. cruzi  activity was initially screened at a single concentration of 20 mg/mL. In this case, 

100 μL of U-937 human cells at a concentration of 2.5 × 105 cells/mL in RPMI-1640, 10% SFB and 0.1 

μg/mL of PMA were placed in each well of  96-well plates and then infected with phase growth 

epimastigotes in 5:1 (parasites per cell) ratio and incubated at 34 °C, 5% CO2. After 24 hours of 

incubation, 20 μg/mL of each extract were added to infected cells. After 72 h of incubation, the effect 

of all extracts on viability of intracellular amastigotes was determined by measuring the β-galactosidase 

activity by spectrophotometry adding 100 μM CPRG and 0.1% nonidet P-40 to each well. After 3 h of 

incubation, plates were read at 570 nm in a spectrophotometer (Varioskan™ Flash Multimode Reader - 

Thermo Scientific, USA) and intensity of color (absorbance) was registered as O.D. Extracts that 

showed inhibition percentages higher than 50% were evaluated again at four concentrations selected 

according to the LC50 previously obtained for each compound. Infected cells exposed to benznidazol 

(BNZ) were used as control for antitrypanosomal activity (positive control) while infected cells 

incubated in culture medium alone were used as control for infection (negative control). Non-specific 

absorbance was corrected by subtracting the O.D of the blank. Determinations were done by triplicate 

in at least two independent experiments (Insuasty et al., 2015). 
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Statistical Analysis  

Cytotoxicity was determined according to the percentages of viability and mortality registered to 

each compound an concentration, including amphotericin B, meglumine antimoniate and culture 

medium alone. Percentage of viability was calculated by Equation 1, where the O.D of control, 

corresponds to 100% of viability.  

% Viability = (O.D Exposed cells) / (O.D Control cells) × 100 (1) 

In turn, mortality percentage corresponds to 100%–% viability. 

 

Results were expressed as 50 lethal concentrations (LC50) that corresponds to the concentration 

necessary to eliminate 50% of cells and calculated by Probit analysis (Finney, 1978). The degree of 

toxicity was graded according to the LC50 value using the following scale: high cytotoxicity: LC50 < 

100 μg/mL; moderate cytotoxicity: LC50 > 100 to < 200 μg/mL and potentially non-cytotoxicity: LC50 > 

200 μg/mL. 

On the other hand, anti-leishmanial activity was determined according to the percentage of infected 

cells and parasite load, obtained for each experimental condition by flow cytometry. The percentage of 

infected cells was determined as the number of positive events evidenced by green fluorescence  

(parasites) and Forward Scatter (FSC) using dotplot analysis, while, the parasitic load was determined 

by analysis of mean fluorescence intensity (MFI) of fluorescent parasites (Pulido et al., 2012). The 

parasite inhibition was calculated by equation 2, where the MFI of control, corresponds to 100% of 

parasites.  

% Parasite = (MFI Exposed parasites) / (MFI Control parasites) × 100 (2) 

In turn, inhibition percentage corresponds to 100% – % Parasites. Results of leishmanicidal activity 

were expressed as EC50 determined by the Probit analysis (Finney, 1978).  
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Similarly, trypanocidal activity was determined according to the percentage of infected cells and 

parasite load obtained for each experimental condition by colorimetry. Parasite inhibition was 

calculated by equation 3, where the O.D of control corresponds to 100% of infection.  

% Infection = (O.D Exposed parasites) / (O.D Control parasites) × 100 (3) 

     In turn, percentage of inhibition of infection corresponds to 100% – % of Infection.  

Results of anti-leishmanial and anti-trypanocidal activities were expressed as EC50 determined by the 

Probit analysis (Finney, 1978). The leishmanicidal or trypanocidal activities were graded according to 

the EC50 value using the following scale: High activity: EC50 < 25 μg/mL, moderate activity: EC50 > 25 

to < 50 μg/mL; potentially non activity: EC50 > 50 μg/mL. 

The selectivity index (SI), was calculated by dividing the cytotoxic activity and the leishmanicidal 

or trypanocidal activity using the following formula: SI = CL50/CE50. Cytotoxic compound: LC50<100 

µg/mL.  

 

Results and discussion 

Chemistry 

Quinoline-chalcone  hybrids  8-13  were  obtained  via  microwave  assisted  Williamson etherification  

(Peng et al., 2002; Otero et al., 2014) between  bromoalkylquinoline  2-7  and  3,4-dimethoxy-4'-

hydroxychalcone. Reaction yields ranged between 44% and 65%. Chalcone was prepared using a 

previously described method (Peyman et al., 2004) (Scheme 1). Compounds 2-7 were obtained using 

the same method from 8-hydroxyquinoline and dibromoalkanes with different numbers of carbon 

atoms with yields between 51% and 80%. 
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    Quinoline-chromone  hybrids  were  obtained  following  the  same  synthetic strategy  (Scheme  1).  

Initially,  7-hydroxychromone was treated with potassium hydroxide and 1,ω-dibromoalkanes (ω = 3, 

4, 5, 7, 9 and 12) to obtain the respective bromoalkyl derivatives 15-19 in yields similar to previous 

reports (Otero et al., 2014; Li et al., 2013) but in significantly shorter times. These compounds were 

coupled with quinoline to produce compounds 20-24 in 34-70%  yields.  Remarkably,  low  yields  

were  obtained  when  bromoalkylquinoline analogues were used as tactical variants. 

 

 

Scheme 1 Synthetic pathway to quinoline-chalcone and quinoline-chromone hybrids. 
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Leishmanicidal, trypanocidal and cytotoxic activities 

The effect of quinoline-chalcone and quinolone-chromone hybrids on cell growth and viability was 

assessed in human macrophages (U-937 cells) (Pulido et al., 2012) which are the host cells for L. (V) 

panamensis and T. cruzi parasites. On the other hand, the antiparasite activity of these compounds was 

tested on intracellular amastigotes of L. (V.) panamensis (Taylor et al., 2011) and T. cruzi (Buckner et 

al., 1996; Insuasty et al., 2015) according to the ability of these compounds to reduce the amount of 

parasite inside infected macrophages. Results are summarized in the  Table 1. 
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Table 1 In vitro cytotoxicity and antiprotozoal activity of quinoline-chalcone and quinoline-chromone 

hybrids 

 

Compound 

Cytotoxicity 

(U-937 cells) 

Leishmanicidal activity  

 

 Trypanocidal activity  

 

LC50 a EC50 b SIc  EC50 SI 

8  39.6 + 1.5, 84.34 11.79 + 0.34, 25.11 3.36  35.08 + 4.17, 74.71 1.13 

9 16.1 + 0.9, 33.29 6.24 + 0.14, 12.90 2.58  17.62 + 1.56, 36.44 0.91 

10 23.5 + 2.4, 47.23 12.37+ 0.93, 24.86 1.90  15.79 + 1.47, 31.73 1.49 

11 16.7 + 1.4, 30.94 8.53 + 0.69, 15.81 1.96  37.61 + 4.07, 69.69 0.44 

12 >40, 72.24 16.41 + 2.47, 29.64 >2.43  15.12 + 1.75, 27.30 >2.64 

13 69.2 + 9.3, 116.15 22.0 + 4.47, 36.93 3.15  54.95 + 5.47, 92.23 1.26 

20 5.4 + 0.9, 14.94 6.11 + 0.26, 16.91 0.89  4.09 + 0.24, 11.32 1.33 

21 113.5 + 16.3, 302.33 48.29 + 8.18, 128.63 2.35  40.70 + 7.40, 108.41 2.79 

22 121.4 + 9.3, 290.77 21.54 + 6.47, 51.59 5.64  28.43 + 2.77, 68.09 4.27 

23  4.1 + 0.2, 9.50 7.35 + 1.15, 17.03 0.56  >2, >4.63 2 

24 71.9 + 8.9, 151.81 16.18 + 1.45, 34.16 4.89  >20, >42.23 3.95 

3,4-dimethoxy-4'-

hydroxychalcone 

4.1 + 0.3, 14.42 2.36 + 0.37, 8.30 1.75  >2, >7.03 2 

8-hydroxyquinoline (1)  0.2 + 0.01, 1.38 0.36+ 0.02, 2.48 0.62  0.34+ 0.07, 2.34 0.66 

7-hydroxychromone (14) 132.5 + 25.7, 814.11 116.49 + 13.27, 718.45 1.14  18.23 + 2.62, 112.43 7.27 

Meglumine antimoniate 416.4 + 66.6 9.4 + 2.1  44.3  NAd NAd 

Amphotericin B  42.1 + 2.0, 45.6 0.05 + 0.01, 0.054 842  NAd NAd 

Benznidazole 179.0 ± 4.2, 687.8 NAd NAd  10.5 ± 1.8, 40.3 17.0 

Data represent mean value +/- standard deviation; a LC50: Lethal Concentration 50 in μg/mL, μM;  b EC50: Effective 

Concentration 50 in μg/mL, μM; c SI: Selectivity Index = LC50 / EC50; dNA: Not applicable. Active compounds: EC50 

< 25 μg/mL 
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    All compounds, amphotericin B and benznidazole with exception of 21, 22 and chromone, were 

highly cytotoxic to U-937 cells showing LC50 < 100.0 μg/mL (Table 1). Compounds 21, 22 and 

chromone, showed moderate cytotoxicity evidenced by  LC50 values higher than 100.0 μg/mL. In turn, 

meglumine antimoniate showed no cytotoxicity (LC50 > 200.0 μg/mL). 

    The anti-leishmanial and anti-trypanocidal activities were measured by determining the effective 

concentration 50 (EC50) that corresponds to the concentration of drug that gives the half-maximal 

reduction of the amount of intracellular parasites (Table 1). Dose-response relationship showed that 

compounds 8-12, 20, 23, 24, chalcone and quinoline were highly active against intracellular 

amastigotes of L. (V) panamensis with EC50 < 20 μg/mL. The most actives hybrids compounds were 

20, 9,  23 and 11 with an EC50 of 6.11 ± 0.26 μg/mL (16.91 µM), 6.24 ± 0.14 μg/mL (12.90 µM),  7.35 

± 1.15 μg/mL (17.03 µM) and 8.53 ± 0.69 μg/mL (15.81 µM) respectively, followed by 8, 10, 12 and 

24 with an EC50 of 11.79 + 0.34  μg/mL (25.11 µM), 12.37+ 0.93 μg/mL (24.86 µM), 16.41 + 2.47 

μg/mL, 29.64 µM 16.18 + 1.45 μg/mL (34.16 µM). As expected, the leishmanicidal drugs amphotericin 

B and meglumine antimoniate showed activity with low EC50 values.  

 

    In turn, compounds 20, 23, chalcone and quinoline were highly active against intracellular 

amastigotes of T. cruzi with EC50 of 4.09 + 0.24 μg/mL (11.32 µM), >2 μg/mL (>4.63 µM), >2 μg/mL 

( >7.03 µM) 0.34+ 0.07 μg/mL (2.34 µM) respectively, followed by compounds 9, 10, 12 and 

chromone with an EC50 of 17.62 + 1.56 μg/mL (36.44 µM), 15.79 + 1.47 μg/mL (31.73 µM), 15.12 + 

1.75 μg/mL (27.30 µM) and 18.23 + 2.62 μg/mL (112.43 µM) respectively. In this case, benznidazole 

showed activity with an EC50 of 10.5 ± 1.8 μg/mL (40.3 µM). 
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    The anti-leishmanial activity of compounds 8-13, 21, 22, 24, chalcone  and chromone and anti-

trypanocidal activity of compounds 8, 10, 12, 13, 20-24 and chromone were higher than their 

cytotoxicity. Thus, the SI (Selectivity Index) values calculated for these compounds were 1 (Table 1).   

 

    As demonstrated elsewhere, amphotericin B and meglumine antimoniate have very high SI values. 

Although all hybrid compounds showed better activity than meglumine antimoniate and the anti-

trypanocidal activity of compounds 20 and 23 were higher than benznidazole, the SI of these 

compounds is affected by their high cytotoxicity. These results suggest that biological activity of the 

quinoline derivatives reported here, with exception of 20 and 23, is selective, being more active against 

L. (V) panamensis than U-937 cells. On the other hand, compounds 8, 10, 12, 13, 20-24 were more 

actives against T. cruzi parasites than U-937 cells.  

 

    There is not a clear relationship between the antiprotozoal activity and the length of the alkyl linker, 

because as the chain length increase (increased lipophilicity), the activity does not show a definite 

tendency. All quinoline-chalcone hybrids were less cytotoxic and less active than the parent subunits. 

However, a synergistic effect of the parent subunits was observed in the quinoline-chromone hybrids in 

comparison with the unlinked cases, due to decreased cytotoxicity based on quinoline and increased 

activity based chromone. One possible mechanism of action for these compounds may be formulated in 

terms of conjugated addition  of  nucleophilic  amino  acid  residues present  in  target  enzymes  of   

Leishmania e.g. such cysteine  proteases (Mottram et al., 2004) in a Michael addition (Cardona et al., 

2014).  
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Conclusion 

The synthesis, anti-leishmanial and anti-trypanocidal screening of eleven quinoline derivatives are 

reported. Several of the synthetic compounds have potential as templates for drugs development. Eight 

of them were active against L. (V) panamensis (8-12, 20, 23 and 24) and five of them against T. cruzi 

(9, 10, 12, 20 and 23) with EC50 values lower than 18 μg/mL, 20 being the most active compound for 

both L. (V) panamensis and T. cruzi. All hybrid compounds showed better activity than meglumine 

antimoniate and compounds 20 and 23 showed higher actives than benznidazole. Studies on an animal 

model of leishmaniasis are needed to confirm the results observed in vitro. These compounds were 

toxic for  mammalian  U-937 cells, however  they may still have  potential  to  be  considered  as  

candidates  to  antileishmanial  drug development.  More  studies  on  toxicity  using  other  cell  lines  

are  needed  to  discriminate whether  the  toxicity  shown  by  these  compounds  is  specific against  

tumor  or  non-tumor  cells. Moreover, Michael acceptor  moieties  may  modify  the  parasitic  activity  

and  cytotoxicity.  The mechanism of action of these promising compounds also needs to be addressed.  

 

Acknowledgments 

The authors thank Universidad de Antioquia (grant CODI IN656CE and CIDEPRO) for financial 

support. 

 

Conflict of interest 

The authors declare that they have no conflict of interest.  

 

 

 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



26 

 

References  

Alvar J, Vélez ID, Bern C, Herrero M, Desjeux P, Cano J, Jannin J, den Boer M (2012) Leishmaniasis  

    Worldwide and Global Estimates of Its Incidence.  PLOS One  7: e35671 

Baloch N, Alkahraman Y, Zaidi M, Madkour H (2012) Evaluation of 6, 8-Dichloro-2-Methyl-4H- 

    Chromen-4-One Derivatives as Antileishmanial Agents. Global J Sci Front Res Chem 12:1-7 

Bhutta ZA, Sommerfeld J, Lassi ZS, Salam RA, Das JK (2014) Tackling the existing burden of  

     infection diseases in the developing world: existing gaps and the way forward. Infect Dis Poverty 3: 

     1-6 

Boeck P, Bandeira Falcão CA, Leal PC, Yones RA, Filho VC, Torres-Santos EC,    

      Rossi-Bergmann B (2006) Synthesis of chalcone analogues with increased antileishmanial activity. 

      Bioorg Med Chem 14:1538-1545 

Buckner FS, Verlinde CL, La Flamme AC, Van Voorhis WC (1996) Efficient technique for screening 

    drugs for activity against Trypanosoma cruzi using parasites expressing beta-galactosidase. 

    Antimicrob Agents Chemother  40: 2592-2597 

Cardona W, Arango V, Domínguez J, Robledo S, Muñoz D, Figadère B, Velez ID, Sáez, J (2013) 

    Synthesis and leishmanicidal activity of new bis-alkylquinolines. J Chil Chem Soc 58:1709-1712 

Cardona W, Guerra D, Restrepo A (2014) Reactivity of δ-substituted α,β-unsaturated cyclic lactones  

   with antileishmanial activity. Mol Simul 40:477-484 

Chatelain E, Ioset JR  (2011) Drug discovery and development for neglected diseases: the DNDi  

    model. Drug Des Devel Ther 16:175-181  

Chen M, Zhai L, Christensen SB, Theander TG, Kharazmi A (2001) Inhibition of fumarate reductase in  

      Leishmania major and L. donovani by chalcones.  Antimicrobiol. Agents  Chemother. 45:2023- 

      2029 

Coa JC, Castrillón W, Cardona W, Carda M, Ospina V,  Muñoz JA, Vélez ID, Robledo SM  (2015) 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

http://www.sciencedirect.com/science/article/pii/S0968089605009624


27 

 

    Synthesis, leishmanicidal, trypanocidal and cytotoxic activity of quinoline-hydrazone hybrids. Eur J 

    Med Chem 101:746-753 

Den Boer M, Argaw D, Jannin J, Alvar J  (2011) Leishmaniasis impact and treatment access. Clin  

     Microbiol Infect 17:1471-1477 

Dietze R, Carvalho SF, Valli LC, Berman J, Brewer T, Milhous W, Sanchez J, Schuster B, Grogl M  

    (2001)  Phase 2 trial of WR6026, an orally administered 8-aminoquinoline, in the treatment of  

    visceral leishmaniasis caused by Leishmania chagasi. Am J Trop Med Hyg 65:685-689  

 

Ellis GP, Barker G (1972) Chromone-2- and -3-carboxylic acids and their derivatives. Progr Med 

    Chem 9:65-116  

Finney  JD (1978)  Probit  Analysis:  Statistical  Treatment  of  the  Sigmoid  Response  Curve,  3rd 

     ed.; Cambridge University Press: Cambridge, UK, p. 550. 

Franck X, Fournet A, Prina E, Mahieux R, Hocquemiller R, Figadère B (2004) Biological evaluation of  

    substituted quinolones. Bioorg Med Chem Lett 14:3635-3638 

Hadjeri M, Barbier M, Ronot X, Mariotte AM, Boumendjel A, Boutonnat J (2003) Modulation of P- 

    glycoprotein-mediated multidrug resistance by flavonoid derivatives and analogues. J Med Chem 

    46:2125-2131  

Horton DA, Boume GT, Smythe ML (2003). The combinatorial synthesis of bicyclic privileged  

     structures or privileged substructures. Chem Rev 103:893-930  

Houghton PJ (2000) Chemistry and biological activity of natura land semi-synthetic 450 chromone 

    alkaloids. Stud Nat Prod Chem 21:123-155 

Insuasty B, Ramirez J, Becerra D, Echeverry C, Quiroga J, Abonia R, Robledo SM, Velez ID, Upegui 

    Y, Muñoz JA, Ospina V, Nogueras M, Cobo J (2015). An efficient synthesis of a new caffeine-based 

    chalcones, pyrazolines and pyrazolo[3-4-b][1-4]diazepines as potential antimalarial, 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



28 

 

    antitrypanosomal and antileishmanial agents. Eur J Chem Med 93:401-413 

Kayser O, Kiderlen AF (2001)  In vitro leishmanicidal activity of naturally occurring chalcones.  

      Phytother Res 15:148-152  

Keenan M, Chaplin JH (2015)  A new era for chagas disease drug discovery?, Prog Med Chem 54: 

     185-230 

Li  SY,  Wang  XB,  Xie  SS,  Jian  N,  Wang  KD,  Yao  HQ,  Sun  HB,  Kong  LY (2013)  

    Multifunctional tacrine-flavonoid hybrids with cholinergic, β-amyloid-reducing, and metal chelating  

     properties for the treatment of Alzheimer's disease. Eur J Med Chem 69:632-646 

Liu M, Wilairat P, Croft SL, Tand AL, Go ML (2003) Structure-activity relationships of 

     antileishmanial and antimalarial chalcones. Bioorg Med Chem 11: 2729-2738  

Mallick S, Dutta A, Ghosh J, Maiti S, Mandal AK, Banerjee R, Bandyopadhyay C, Pal C (2011)  

    Protective therapy with novel chromone derivative against Leishmania donovani infection induces 

    Th1 response in vivo. Chemotherapy 57:388-393 

Mohammed AF, Fournet A, Prina E, Mouscadet JF, Franck X, Hocquemiller R, Figadère B, Fakhfakh 

      MA (2003) Synthesis and biological evaluation of substituted quinolines: potential treatment of 

      protozoal and retroviral co-infections. Bioorg  Med  Chem  11:5013-5023  

Mottram JC, Coombs GH, Alexander J (2004) Cysteine peptidases as virulence factors of Leishmania.  

      Curr Opin Microbiol 7:375-381 

Nakayama H, Loiseau PM, Bories C, De Ortiz ST, Schinini A, Serna E, Rojas de Arias A, Fakhfakh 

     MA,  Franck X, Figadère B, Hocquemiller R, Fournet A (2005) Efficacy of orally administered 2- 

     substituted quinolines in experimental murine cutaneous and visceral leishmaniases. Antimicrob. 

    Agents Chemother 49 :4950-4956 

Nouvellet P, Cucunubá ZM, Gourbière S (2015) Ecology, evolution and control of Chagas disease: a 

    century of neglected modelling and promising future. Adv Parasitol 87:135-191 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Fakhfakh%20MA%5BAuthor%5D&cauthor=true&cauthor_uid=16304157
http://www.ncbi.nlm.nih.gov/pubmed/?term=Franck%20X%5BAuthor%5D&cauthor=true&cauthor_uid=16304157
http://www.ncbi.nlm.nih.gov/pubmed/?term=Figad%C3%A8re%20B%5BAuthor%5D&cauthor=true&cauthor_uid=16304157
http://www.ncbi.nlm.nih.gov/pubmed/?term=Hocquemiller%20R%5BAuthor%5D&cauthor=true&cauthor_uid=16304157
http://www.ncbi.nlm.nih.gov/pubmed/?term=Fournet%20A%5BAuthor%5D&cauthor=true&cauthor_uid=16304157


29 

 

 Otero E, Vergara S, Robledo SM, Cardona W, Carda M, Vélez ID, Rojas C, Otálvaro F (2014) 

     Synthesis, Leishmanicidal and Cytotoxic Activity of  Triclosan-Chalcone, Triclosan-Chromone and 

     Triclosan-Coumarin Hybrids. Molecules  19:13251-13266 

Palit P, Paira P, Hazra A, Banerjee S, Das Gupta A, Dastidar S, Mondal N (2009) Phase transfer 

     catalyzed synthesis of bis-quinolines: antileishmanial activity in experimental visceral leishmaniasis 

     and in vitro antibacterial evaluation. Eur J Med Chem 44:845-853 

Peng Y, Song G (2002) Combined microwave and ultrasound assisted Williamson ether synthesis in 

     the absence of phase-transfer catalysts. Green Chem 4:349-351. 

Peyman S, Minoo D, Mohammad AZ, Mohammad AB (2004) Silica Sulfuric Acid as an Efficient and  

    Reusable Reagent for Crossed-Aldol Condensation of Ketones with Aromatic Aldehydes under 

    Solvent-Free Conditions. J Braz Chem Soc 15:773-776 

Pulido SA, Muñoz DL, Restrepo AM, Mesa CV, Alzate JF, Vélez ID, Robledo SM (2012) 

    Improvement of the green fluorescent protein reporter system in Leishmania spp. for the in vitro and  

    in vivo screening of antileishmanial drugs. Acta Trop 122:36-45  

Suresh K, Sandhya B, Himanshu G  (2009) Biological activities of quinoline derivatives. Mini-Rev  

    Med Chem 9: 1648-1654 

Taylor VM, Cedeño DL, Muñoz DL, Jones MA, Lash TD, Young AM, Constantino MH, Esposito N, 

     Vélez ID, Robledo SM (2011) In vitro and in vivo studies of the utility of dimethyl and diethyl 

     carbaporphyrin ketals in treatment of cutaneous leishmaniasis. Antimicrob Agents Chemother 

     55:4755-4764 

Tempone A, Melo A, Da Silva P, Brandt C, Martinez F, Borborema A (2005) Synthesis and 

    antileishmanial activities of novel 3-substituted quinolones. Agents chemother 49:1076-1080   

 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

http://www.ingentaconnect.com/content/ben/mrmc;jsessionid=822tjje1ochq0.victoria
http://www.ingentaconnect.com/content/ben/mrmc;jsessionid=822tjje1ochq0.victoria


30 

 

Vieira NC, Herrenknecht C,  Vacus J, Fournet A,  Bories C,  Figadère B, Espindola LS, Loiseau PM 

     (2008) Selection of the most promising 2-substituted quinoline as antileishmanial candidate for 

     clinical trials. Biomed Pharmacother 62:684-689 

World Health Organization. Why are some tropical diseases called ‘neglected’? 

http://www.who.int/features/qa/58/en/, 2013 [accessed 04.12.13]. 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Espindola%20LS%5BAuthor%5D&cauthor=true&cauthor_uid=18849137
http://www.ncbi.nlm.nih.gov/pubmed/?term=Loiseau%20PM%5BAuthor%5D&cauthor=true&cauthor_uid=18849137

