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Abstract	14	

A	 sensitive	 method	 for	 the	 simultaneous	 quantification	 of	 dechloranes,	 polybrominated	 diphenyl	15	

ethers	 (PBDEs),	 and	 novel	 brominated	 flame	 retardants	 (NBFRs)	 has	 been	 developed	 for	 gas	16	

chromatography	(GC)	coupled	to	tandem	mass	spectrometry	operating	in	electron	capture	negative	17	

ionization	(ECNI)	mode.	The	major	advance	has	been	achieved	by	combining	selected	ion	monitoring	18	

(SIM)	and	multiple	 reaction	monitoring	 (MRM)	modes	 in	well-defined	 time	windows,	 to	determine	19	

dechloranes,	 PBDEs	 and	 NBFRs	 at	 pg	 g-1	 level	 in	 one	 single	 analysis	 in	 complex	 matrix	 biological	20	

samples.	 From	 the	 chromatographic	point	of	 view,	efforts	were	devoted	 to	 study	 several	 injection	21	

modes	using	multimode	inlet	(MMI)	in	order	to	obtain	low	instrumental	detection	limits,	necessary	for	22	

trace	 compounds	 such	as	Dechlorane	Plus	 (DP)	 isomers.	Method	performance	was	also	evaluated:	23	

calibration	curves	were	linear	from	20	fg	µL-1	to	100	pg	µL-1	for	the	studied	compounds,	with	method	24	

detection	limits	at	levels	of	50	fg	g-1	for	DPs.	Repeatability	and	reproducibility,	expressed	as	relative	25	

standard	deviation,	were	better	than	5%	even	in	solvent	vent	mode	for	the	injection	of	standards.	The	26	

application	to	a	wide	range	of	complex	samples	(including	food,	human,	and	animal	serum	samples)	27	

indicated	a	sensitive	and	reliable	way	to	quantify	at	the	pg	g-1	level	four	HNs,	Dechlorane	Plus	(anti-DP	28	

and	syn-DP)	and	two	of	their	homologues	(Dechlorane-602	and	Dechlorane-603),	11	PBDE	congeners	29	

(no.	28,	47,	49,	66,	85,	99,	100,	153,	154,	183,	and	209),	and	five	novel	BFRs,	i.e.,	decabromodiphenyl	30	

ethane	(DBDPE),	1,2-bis(2,4,6-tribromo-phenoxy)ethane	(BTBPE),	hexabromobenzene	(HBB),	2,3,4,5-31	

tetrabromo-ethylhexyl-benzoate	(TBB)	and	tetrabromophthalate	(TBPH).		32	
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1.	Introduction		38	

Halogenated	flame	retardants	(HFRs),	including	chlorinated	and	brominated	compounds,	are	used	to	39	

prevent	ignition	and	combustion	of	flammable	materials,	widely	employed	in	furniture,	plastics,	foams,	40	

and	textile	upholstery,	among	other	products	[1].	HFRs	have	been	detected	in	various	environmental	41	

and	food	samples	as	they	are	released	into	air,	soil	and	water	due	to	manufacture,	improper	handling,	42	

and	disposal	of	HFR-containing	products	and	materials	 [2].	Among	 them,	polybrominated	diphenyl	43	

ethers	(PBDEs)	have	been	extensively	investigated,	as	a	consequence	of	their	past	usage,	toxicity	and	44	

persistence	in	the	food	chain	[3,	4].	As	a	result	of	bans	applied	to	commercial	PBDE	mixtures,	there	is	45	

an	increasing	production	and	use	of	alternative	HFRs	[5,	6].	Nevertheless,	apart	from	monitoring	these	46	

HFRs,	 the	 determination	 of	 PBDEs	 is	 still	 necessary	 for	 monitoring	 purposes	 and	 to	 assess	 their	47	

replacement	efficiency	[7,	8].	A	scheme	displaying	the	different	structures	of	the	investigated	HFRs	is	48	

shown	in	Figure	1.	49	

There	 is	 a	 large	 amount	of	 literature	 regarding	 the	 analysis	 of	 PBDEs	 and	novel	 brominated	 flame	50	

retardants	(NBFRs)	by	gas	chromatography–mass	spectrometry	(GC-MS)	and	GC-MS/MS	using	electron	51	

capture	 negative	 ionization	 (ECNI)	 and	 electron	 ionization	 (EI)	 [9].	 More	 recently,	 atmospheric	52	

pressure	chemical	ionization	(APCI)	[10,	11]	has	also	been	reported	for	the	analysis	of	brominated	FRs.	53	

Both	ECNI	and	APCI	offer	good	sensitivity	when	compared	to	EI,	while	the	specificity	when	using	APCI	54	

and	EI	in	MS/MS	experiments	is	higher	than	the	obtained	by	monitoring	bromide	ions	in	ECNI	[10].	For	55	

the	determination	of	Dechloranes,	 the	majority	of	 studies	performed	so	 far	used	EI-MS(/MS),	with	56	

insufficient	detection	 limits	 in	some	cases	[12,	13]	or	ECNI-MS(/MS)	with	the	need	of	an	additional	57	

injection,	separated	from	PBDEs	[14–16].	GC-EI-MS/MS	methods	monitor	transitions	derived	from	the	58	

molecular	ion	to	m/z	237	and	m/z	228	[16].	Similar	to	PBDEs,	the	analysis	of	DPs	can	benefit	of	selecting	59	

more	specific	transitions	coming	from	the	molecular	ion	by	using	softer	ionization	sources.	DP	isomers	60	

constitute	 a	 special	 case	 study,	 as	 they	 have	 quite	 a	 particular	 fragmentation	 behaviour.	 Several	61	

studies	have	investigated	the	different	fragmentation	of	anti-	and	syn-	DP	isomers	under	variable	ECNI	62	
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source	 temperatures,	 either	 in	 full-scan	 [17]	 or	 in	 SIM	 experiments	 [15],	 but	 not	 yet	 in	 MRM	63	

experiments.	  64	

Human	 biomonitoring	 data	 on	 dechloranes	 is	 not	 extensive,	 but	 there	 are	 few	 articles	 on	 studies	65	

investigating	their	presence	and	levels	in	serum,	e.g.	from	China,	where	the	highest	levels	have	been	66	

reported	near	e-waste	recycling	plants	[18–20],	and	from	Canada	[21],	Norway	[22,	23]	or	Germany	67	

[24].	In	all	these	studies,	the	limits	of	detection	for	DPs	were	in	the	pg	g-1	level.	 	68	

Against	this	background,	the	availability	of	a	method	with	the	benefits	of	sensitivity	and	specificity	for	69	

Dechloranes	and	sensitivity	for	PBDEs	and	other	flame	retardants	in	a	single	analysis	using	a	chemical	70	

ionization	(CI)	source	in	negative	mode	could	be	beneficial	for	monitoring	laboratories.	The	aim	of	this	71	

work	was	the	development	of	a	methodology	for	the	simultaneous	analysis	of	HFRs	of	high	concern	at	72	

low	pg	g-1	levels	in	a	wide	range	of	complex	samples,	such	as	food,	human	and	animal	serum	samples.	73	

Such	 improvement	of	 the	analytical	methods	will	 be	useful	 in	 the	 currently	 running	biomonitoring	74	

schemes,	such	as	the	Flemish	Environment	and	Health	study.	75	

	76	

2.	Materials	and	methods		77	

2.1.	Chemicals	and	reagents		78	

Standards	 of	 BDE-28,	 -49,	 -47,	 -99,	 -100,	 -153,	 -154,	 -138,	 -183,	 and	 -209,	 1,2-Bis(2,4,6-79	

tribromophenoxy)ethane	 (BTBPE),	 syn-DP	 and	 anti-DP	 isomers,	 2-ethylhexyl-2,3,4,5	 tetrabromo-80	

benzoate	 (TBB),	 2,3,4,5-tetrabromophthalate	 (TBPH),	 hexabromobenzene	 (HBB),	 dechlorane-602	81	

(Dec-602),	 dechlorane-603	 (Dec-603),	 isotopically	 labelled	 internal	 standards	 (IS)	 13C-BDE-209,	 13C-82	

TBPH,	13C-TBB,	13C-syn-DP,	and	13C-anti-DP	were	purchased	from	Wellington	Laboratories	(Guelph,	ON,	83	

Canada).	Recovery	standard	(RS)	CB-207	was	purchased	from	Dr.	Ehrenstorfer	Laboratories	(Augsburg,	84	

Germany).	Polypropylene	(PP)	tubes	(15	mL)	were	obtained	from	Greiner	Bio-one	(Belgium).	Empty	PP	85	

cartridges	(25	mL)	were	purchased	from	Grace	(Lokeren,	Belgium),	while	Florisil®	cartridges	(500	mg,	86	

3	mL)	and	empty	PP	cartridges	(6	mL)	were	purchased	from	Supelco	(Bellefonte,	PA,	USA).	Silica	gel,	87	

anhydrous	sodium	sulphate	(Na2SO4)	and	concentrated	sulfuric	acid	(H2SO4,	98%)	were	purchased	from	88	
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Merck	(Darmstadt,	Germany).	All	solvents	were	of	chromatography	grade:	n-hexane	was	purchased	89	

from	Acros	Organics	 (Belgium);	dichloromethane	 (DCM),	 iso-octane,	 toluene	and	acetonitrile	 (ACN)	90	

were	purchased	from	Merck.	91	

	92	

2.2	Sample	Treatment		93	

Food	samples	 (including	biscuits,	 smoked	salmon,	and	chicken	eggs)	were	treated	as	 indicated	 in	a	94	

previous	 work	 [25].	 Briefly,	 samples	 were	 homogenized,	 freeze-dried,	 and	 stored	 at	 -20	 °C	 until	95	

analysis.	The	samples	were	weighted	in	pre-washed	15	mL	polypropylene	(PP)	tubes,	and	spiked	with	96	

the	IS	mixture.	After	spiking,	samples	were	extracted	by	solid-liquid	extraction	(SLE)	with	ACN:toluene	97	

(9:1,	v/v)	.	After	a	two-step	clean-up	(performed	on	Florisil®	and	acidified	silica	5%),	the	samples	were	98	

evaporated	 to	 dryness	 and	 reconstituted	 in	 100	 µL	 of	 the	 recovery	 standard	 (RS)	 (CB-207	 in	 iso-99	

octane:toluene;	9:1,	v/v)	and	transferred	to	amber	injection	vials	for	GC-ECNI-MS(/MS)	analysis.		100	

Serum	 samples	 including	 hyena,	 cheetah	 and	 lion	 (Zoo	 Antwerp,	 Belgium),	 sea	 eagle	 plasma	101	

(Trondheim,	 Norway)	 and	 human	 cord	 blood	 (Flemish	 Environment	 and	 Health	 study	 II	 –	 Flemish	102	

newborns)	 were	 extracted	 according	 to	 the	 method	 described	 elsewhere	 [26],	 with	 slight	103	

modifications.	Solid-phase	extraction	(SPE)	on	OASIS	HLB	cartridges	was	used	followed	by	clean-up	on	104	

1	g	of	acidified	silica	44%	and	eluted	with	10	mL	n-hexane:dichloromethane	(1:1,	v/v).	The	cleaned	105	

extract	was	evaporated	to	incipient	dryness	and	re-dissolved	in	100	μL	iso-octane.	106	

	107	

2.3	GC-(ECNI)-MS(/MS)		108	

The	chromatographic	analysis	was	performed	using	an	Agilent	7890B	gas	chromatograph,	equipped	109	

with	an	Agilent	7693A	autosampler	with	Multimode	Inlet	(MMI),	coupled	to	a	triple	quadrupole	mass	110	

spectrometer,	 7000C	 (Agilent	 Technologies	 Inc.,	 Palo	 Alto,	 CA,	 USA),	 with	 a	 CI	 source	 working	 in	111	

electron	capture	negative	ionization	mode.	Methane	was	used	as	reagent	gas	at	a	flow	of	2	mL	min-1.	112	

The	GC	separation	was	performed	using	a	fused	silica	a	ZB-semivolatiles	capillary	column	(5%	phenyl-113	
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arylene-95%	dimethyl-polysiloxane)	with	a	length	of	20	m	x	0.18	mm	ID	and	a	film	thickness	of	0.18	114	

µm	(Phenomenex,	Torrance,	CA,	USA)	working	at	a	ramped	flow	from	1	mL	min-1	(14	min)	with	10	mL	115	

min-1	to	2	mL	min-1	(10.9	min)	of	helium	(99.999	%;	Air	Liquide,	Liège,	Belgium).	The	oven	program	was	116	

set	as	follows:	90	°C	(1.25	min);	30	°C	min-1	to	240	°C;	then	10	°C	min-1	to	325	°C,	stay	10.4	min	with	a	117	

total	run	time	of	25	min.	The	injection	of	2	µL	of	sample	extracts	was	performed	in	cold	pulsed	splitless	118	

mode	with	at	a	temperature	of	80	°C	and	a	pulse	time	of	1.25	min.	The	pulse	pressure	was	set	to	50.0	119	

psi,	with	a	split	purge	flow	of	50	mL	min-1	and	purge	time	of	1.25	min.		120	

	121	

3.	Results	and	discussion	122	

3.1.	MS	optimization	123	

Optimal	m/z	values	for	SIM	of	each	compound	were	selected	according	to	[27],	while	the	optimal	MRM	124	

transitions	 for	 DPs	 were	 taken	 from	 reference	 [28],	 also	 considering	 the	 common	 fragmentation	125	

pattern	 for	 every	 compound,	 usually	 leading	 to	 bromide	 ions.	 To	 achieve	 maximum	 sensitivity,	126	

different	collision	energies	were	tested	to	study	the	fragmentation	of	syn-	and	anti-DPs	in	the	collision	127	

cell.	Two	ions	from	the	isotopic	pattern	corresponding	to	M-•	(M+4	and	M+6)	were	selected	in	the	first	128	

quadrupole	and	fragmentation	was	performed	using	a	range	of	collision	energies	between	5	eV	and	129	

35	eV.	A	collision	energy	of	5	eV	was	optimal	for	the	13C-labelled	DPs,	while	10	eV	was	selected	for	the	130	

native	syn-	and	anti-	DPs.	Accordingly,	the	selected	transitions	were	654à35;	654à37	and	652à35	131	

corresponding	to	the	fragmentation	of	the	precursor	m/z	ions	[M+6]-·	and	[M+4]-·	for	the	native	DPs	132	

and	664à35	and	664à37	taking	[M+6]-·	m/z	ion	as	precursor	for	the	13C-	DPs.		133	

The	 source	 temperature	 was	 also	 optimized	 pursuing	 the	 maximum	 response	 for	 every	 analyte.	134	

Previous	studies,	[17]	and	[15],	demonstrated	that	low	source	temperatures	favour	the	detection	of	135	

the	molecular	ion	cluster,	while	higher	temperatures	(250	°C)	had	different	effects	on	both	isomers.	136	

According	to	De	la	Torre	et	al	[17],	a	temperature	of	150	°C	provided	similar	spectra	for	both	isomers,	137	

with	the	most	abundant	cluster	being	the	one	corresponding	to	the	molecular	ion	[M]-.	However,	at	138	

250	°C,	the	two	isomers	showed	a	different	pattern.	In	the	case	of	syn-DP,	the	cluster	corresponding	139	
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to	 the	 ion	 [M-6Cl]-	became	 the	most	abundant.	 Summarizing,	higher	 temperature	 source	provided	140	

more	energy,	hence	favouring	the	dissociative	electron	capture	process	and	increasing	the	abundance	141	

of	fragment	ions,	whereas	lower	temperatures	enhanced	molecular	ion	abundance.		142	

Accordingly,	after	obtaining	 low	collision	energies	as	 the	optimal	 for	 the	determination	of	DPs,	we		143	

theorized	that	low	source	temperatures	might	enhance	the	formation	in	the	ion	source	of	the	parent	144	

ions	for	the	DPs	transitions.	Hence,	source	temperatures	of	250	°C,	225	°C,	and	200	°C	were	tested.	An	145	

increase	 in	 the	 response	 of	 DPs	was	 seen	 at	 lower	 source	 temperatures	 (Figure	 2),	while	 too	 low	146	

temperatures	could	affect	the	sensitivity	for	PBDEs,	for	which	detection	relies	in	the	fragmentation	to	147	

the	bromide	 ion	m/z	79.	The	 temperature	of	200	 °C	was	hence	chosen	as	a	compromise	 for	 these	148	

experiments.	 Selected	 quantification	 and	 qualification	 transitions	 and	 ions	 for	 each	 analyte	 are	149	

summarized	in	Table	1.	These	findings	add	to	the	previous	studies	on	the	behaviour	of	DPs	at	different	150	

source	temperatures,	as	in	MRM	experiments,	the	formation	of	an	abundant	molecular	pattern	to	be	151	

selected	as	a	parent	ion,	has	been	proved	more	sensitive	than	a	high	in-source	fragmentation,	which	152	

leads	to	larger	losses	of	chlorine	atoms	before	entering	in	the	first	quadrupole.	153	

	154	

3.2.	Analytical	parameters	155	

To	maximize	 the	 signal	 obtained	 for	 each	 analyte,	 the	use	of	 the	multimode	 inlet	 in	 large	 volume	156	

injection	mode	was	 considered.	 The	 possibility	 of	 starting	 at	 a	 low	 inlet	 temperature	 allowed	 the	157	

injection	of	a	higher	volume	of	extract.	Therefore,	several	injection	configurations	were	tested:	cold	158	

pulsed	splitless	(2	µL),	and	solvent	vent	(5	µL,	2	x	5	µL	and	3	x	5	µL).	Figure	3	highlights	the	response	159	

enhancement	for	the	DP	congeners	when	working	at	the	three	selected	working	conditions.	Although	160	

solvent	 vent	 injections	 enhance	 the	 sensitivity	 for	 DPs	 as	 well	 as	 for	 the	 rest	 of	 the	 selected	161	

compounds,	 reproducibility	and	overloading	 issues	were	noticed	when	 injecting	extracts	 from	fatty	162	

matrices,	so	the	injection	of	2	µL	in	cold	pulsed	splitless	mode	was	selected	as	optimal.	To	test	the	163	

reliability	of	the	method,	the	repeatability	of	absolute	area	was	studied	in	five	repeated	injections	of	164	

standards	at	five	different	levels	(20	fg	µL-1,	100	fg	µL-1,	1	pg	µL-1,	20	pg	µL-1	and	100	pg	µL-1).	The	relative	165	



8	
	

standard	deviation	was	below	5%.	Linearity	of	the	relative	response	of	the	different	compounds	(to	166	

their	13C	isotopically	labelled	or	BDE	internal	standards)	was	studied	by	analyzing	standard	solutions,	167	

in	triplicate	(five	levels),	in	the	range	of	20	fg	µL-1	to	100	pg	µL-1.	The	correlation	coefficients	(r2)	were	168	

higher	than	0.99	for	every	compound,	with	residuals	lower	than	2%.	Special	attention	has	to	be	paid	169	

to	the	method	sensitivity	for	DPs,	which	can	be	derived	from	Figure	2	(injection	of	a	16	fg	µL-1standard	170	

solution	 in	 isooctane).	 Instrumental	 limits	 of	 detection	 (iLODs)	 were	 calculated	 as	 the	 lowest	171	

concentration	level	giving	a	signal-to-noise	ratio	(S/N)	of	3.	These	iLODs	were	determined	to	be	around	172	

1	fg	µL-1		for	syn-DP	and	0.5	fg	µL-1		for	anti-DP,	when	injecting	2	µL	in	cold	pulsed	splitless	mode.	The	173	

iLODs	were	even	lower	when	using	solvent	vent	mode,	as	can	be	seen	in	Figure	3.	Obtained	iLODs	are	174	

summarized	 in	Table	1.	 LODs	and	LOQs	 in	real	samples	were	estimated	using	the	same	criteria,	by	175	

extrapolation	from	the	lowest	responses	(detectable	and	quantifiable)	of	every	compound	within	the	176	

analysed	samples.	These	results	are	relevant	especially	for	DP	isomers,	as	their	LODs	and	LOQs	have	177	

been	lowered	sensibly	in	comparison	to	previous	studies.	Table	2	lists	the	majority	of	previous	studies	178	

performed	 to	 detect	 and	 quantify	 DP	 isomers,	 indicating	 the	 systems	 used	 and	 the	 achieved	179	

performance	in	each	case	in	terms	of	LOD	and	LOQ.		180	

	181	

3.3.	Analysis	of	real	samples	182	

The	enhanced	capabilities	of	the	presented	method	were	finally	tested	using	extracts	of	samples		of	183	

food	and	human	and	animal	serum	previously	analysed	by	GC-ECNI-MS,	according	to	the	method	used	184	

for	 routine	 analysis	 and	 described	 elsewhere	 [25].	 The	 developed	 methodology	 allowed	 the	185	

determination	of	 trace	quantities	 (below	pg	g-1	range)	of	 the	 selected	PBDEs	 in	 several	 samples.	 In	186	

these	samples,	NBFRs	could	also	be	evidenced.	A	good	agreement	was	 found	when	comparing	the	187	

quantification	results	of	the	new	methodology	with	those	given	by	the	validated	reference	method	188	

[25]	(at	the	levels	achievable	by	the	reference	method).	189	

Special	emphasis	was	made	on	the	capability	of	the	methodology	to	detect	DPs	in	most	of	analysed	190	

samples.	Due	to	the	presence	of	these	compounds	in	the	procedural	blanks,	only	the	samples	with	DPs	191	
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relative	area	higher	than	10	times	their	corresponding	relative	area	in	the	blank	were	quantified.	The	192	

most	remarkable	results	to	highlight	are:	a	pool	of	four	cord	blood	human	serum	samples	with	0.13	193	

and	0.19	pg	g-1		of	syn-DP	and	anti-DP,	respectively;	a	sea	eagle	plasma	sample	with	1.95	pg	g-1		of	syn-194	

DP	and	26	pg	g-1		of	anti-DP,	a	chicken	egg	with	9	ng	g-1		of	syn-DP	and	29	ng	g-1		of	anti-DP		and	a	hyena	195	

serum	sample	with	0.33		pg	g-1	of	syn-DP.	Dec-603	and	Dec-602	were	also	quantified	in	human/animal	196	

serum	ranging	from	5	to	66	pg	g-1.	Chromatograms	with	the	quantification	transition	of	DP	isomers	in	197	

the	mentioned	samples	can	be	seen	in	Figure	4	(4A	for	a	procedure	blank, biscuits,	smoked	salmon,	198	

chicken	egg	and	hyena	extracts,	and	4B	showing	a	cheetah	serum,	human	cord	blood	(pool),	sea	eagle	199	

serum,	and	two	chicken	egg	extracts).	Table	3	summarizes	the	concentration	found	for	each	analyte	200	

in	the	samples.		201	

The	most	contaminated	samples	corresponded,	as	expected,	to	captive	animals	from	the	Antwerp	Zoo	202	

and	the	eggs	of	wild	birds.	It	 is	also	important	to	consider	the	differences	found	in	the	f-anti	value.	203	

Anti-DP	has	been	found	to	degrade	faster	than	syn-DP	at	high	temperatures	and	at	e-waste	sites	[18],	204	

so	the	differences	measured	with	this	methodology,	for	example	in	the	hyena	sample,	could	help	to	205	

assess	 for	 the	 degradation	 of	 these	 compounds	 in	 areas	 close	 to	 recycling	 facilities	 and	 monitor	206	

theirpresence	of	them	in	animals	and	humans.		207	

	208	

4.	Conclusions	209	

The	use	of	a	method	combining	SIM	and	MRM	acquisition	modes	in	an	ECNI	source	has	demonstrated	210	

high	sensitivity	for	a	wide	range	of	HFRs,	specifically	for	DP	isomers,	which	have	been	detected	in	most	211	

of	analyzed	samples,	including	procedural	blanks.	This	combination	of	acquisition	modes	together	with	212	

large	 volume	 injections	 allowed	 decreasing	 the	 LODs	 for	 DPs	 to	 fg	 g-1	 levels,	 which	 constitutes	 a	213	

significant	advancement	compared	to	previous	methodologies	monitoring	the	molecular	 ion	 in	SIM	214	

mode	or	less	sensitive	transitions	in	EI-MS/MS.	Nevertheless,	the	use	of	large	volume	injections	can	215	

be	an	issue	for	some	fatty	matrices	and	has	to	be	carefully	applied	to	selected	samples.	The	method	216	

was	applied	to	a	wide	range	of	complex	matrices	and	was	able	to	quantify	DP	isomers	at	low	pg	g-1	217	
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levels	in	serum	samples.	This	methodology	is	an	important	tool	for	the	determination	of	HFRs	at	ultra-218	

trace	levels	in	food	and	biological	samples,	helping	to	monitor	the	release	and	occurrence	of	PBDEs,	219	

HNs	and	NBFRs	in	the	environment.	220	

	221	
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Figure	Captions	234	

Fig.	1	Scheme	of	the	structures	of	the	main	compounds	selected	for	the	study.	235	

Fig.	2	Variation	in	the	peak	area	for	the	most	sensitive	MRM	transition	for	DPs,	for	the	injection	of	a	236	

standard	mixture	at	16	fg	µL-1	in	isooctane	at	different	source	temperatures	(200	°C,	225	°C	and	250	237	

°C).	238	

Fig.	3	Graphical	comparison	of	the	methodology	performance	for	the	injection	of	a	DP	mixture	(16	fg	239	

µL-1).	S/N	=	signal	to	noise	ratio.	240	

Fig.	4	Chromatograms	corresponding	 to	 the	quantification	 transition	of	DPs	 for	 the	 injection	of	 (A)	241	

procedural	blank,	biscuits,	smoked	salmon,	chicken	egg	and	hyena	serum	extracts,	and	(B)	cheetah	242	

serum,		human	cord	blood	serum,	chicken	egg	and	sea	eagle	serum	extracts.	243	

	 	244	
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Table	1.	Analytical	performance	of	the	method	including	MS	quantitation	parameters.	333	

Compounds	 RT	 Q	 q	
iLOD	(fg	µL-1)	

2	µL	 5	µL	SV	 10	µL	SV	
BDE	28	 8.05	 79	 81	 20	 10	 5	
BDE	49	 9.06	 79	 81	 20	 10	 5	
BDE	47	 9.26	 79	 81	 10	 5	 2.5	
BDE	66	 9.51	 79	 81	 20	 10	 5	
BDE	100	 10.36	 79	 81	 20	 10	 5	
BDE	99	 10.72	 79	 81	 20	 10	 5	
BDEs	85	 11.40	 79	 81	 20	 10	 5	
BDE	154	 11.69	 79	 81	 20	 10	 5	
BDE	153	 12.24	 79	 81	 20	 10	 5	
BDE	138	 12.95	 79	 81	 20	 10	 5	
BDE	183	 13.74	 79	 81	 20	 10	 5	
BDE	209	 21.04	 487	 489	 200	 100	 50	
HBB	 8.80	 79	 81	 20	 10	 5	
TBB	 10.65	 357	 359	 200	 100	 50	

DEC602	 10.70	 612	 35	 250	 120	 60	
DEC603	 13.30	 638	 35	 100	 50	 25	
BTBPE	 14.18	 79	 81	 20	 10	 5	
TBPH	 14.60	 384	 515	 100	 50	 25	
s-DP	 14.90	 654>35	 654>37	 1	 0.5	 0.25	
a-DP	 15.22	 654>35	 654>37	 0.5	 0.25	 0.125	
DBDPE	 23.95	 79	 81	 1000	 500	 250	

334	
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Table	2.	Techniques	and	conditions	previously	used	for	the	determination	of	DP	isomers	and	their	performance	in	terms	of	LOD	and	LOQ		335	
	336	
Nº	 Technique	 Column	 Separation	 m/z	 LOD	 LOQ	 Ref	

1	 GC-ECNI-MS	 DB-5	(15	m	×	0.25	mm	×	0.10	µm)	

90	°C	(1,5	min);	10	°C/min	to	300	

°C	(3	min);	40	°C/min	to	310	°C	

(5	min)	

[M-H]
-
;650,	652	 n.a.	 2	ng	g

-1	
(DUST)	 [6]	

2		 GC-APCI-HRqTOFMS	 DB-5	HT	(15	m	×	0.25	mm	×	0.10	µm)	

110	°C;	40	°C/min	to	200	°C;	10	

°C/min	to	280	°C;	30	°C/min	to	

330	°C	(5	min)	

[M]
-
;	653.711	 0.16	pg	µL

-1
	 n.a.	 [11]	

3	 GC-EI-HRMS	 DB-5	(15	m	×	0.25	mm	×	0.10	µm)	

120	°C	(1	min);	30	°C/min	to	240	

°C;	5	°C/min	to	275	°C;	40	°C/min	

to	320	°C	(3	min)	

[M-C13H12Cl6]
+·
;	

271.8102;	273.8072	

0.5		pg	g
-1	

(sediment),	15	pg	

g
-1	
(fish)	

n.a.	 [13]	

4	 GC-ECNI-MS	

DB-5	(30	m	×	0.25	mm	×	0.25	µm)																																								

DB-35	(30	m	×	0.25	mm	×	0.25	µm)	

(confirmation)	

80	°C	(2	min);	10	°C/min	to	285	

°C	(5	min)	
[M-H]

-
;	650.652	

30	pg	g
-1	

(sediment)	
n.a.	 [14]	

5	
CZC-GC/ECNI-

TOFMS	

Rtx-	PCB	(15	m	×	0.25	mm	×	0.25	μm)																																			

plus	Rxi-17	(1	m	×	0.18	mm	×	0.18	μm)	

140	°C	(2	min);	30	°C/min	to	280	

°C;	5	°C/min	to	300	°C	(10	min)	
[M-H]

-
;	650,	652	 3	pg	(iLOD)	 n.a.	 [16]	

6	 GC-ECNI-MS	 DB-XLB		(30	m×0.25	mm×0.25	μm)	

110	°C	(1	min);	8	°C/min	to	180	

°C	(1		min);	2	°C/min	to	240	°C	(5	

min);	2	°C/min	to	280	°C	(15	

min;	10	°C/min	to	310	°C	(5	min)	

[M]
-
;	653.8	and	651.8	 n.a.	

3.08	pg	g
-1	
fat	

(serum)	(s-DP),										

1.29	pg	g
-1	
fat	

(serum)	(a-DP)	

[19]	

7	 GC-ECNI-MS	 DB-1MS	(30	m	×	0.25	mm	×	0.25	μm)						

120	°C	(1	min),	10	°C/min	to	300	

°C	(8		min);	10	°C/min	to	310	°C	

(12	min)	

[M]
-
;	651.7	and	653.7	

40	pg	g
-1		
l.w.	(s-

DP),								120	pg	g
-1	

l.w.	(a-DP),	

(serum)	

n.a.	 [21]	

8	 GC-ECNI-MS	 DB-5	(15	m	×	0.25	mm	×	0.10	µm)	
50	°C,	25	°C/min	to	300	°C	(5	

min)	
[M]

-
;	653.8	and	651.8	

1.1	pg	mL
-1		

(serum)	(s-DP),	3.3	

pg	mL
-1		
(serum)	

(a-DP)	

3.5	pg	mL
-1		

(serum)	(s-DP),						

10	pg	mL
-1		

(serum)	(a-DP)	

[22]	

n.a.	–	not	available337	
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Table	3.	Concentrations	of	PBDEs	and	other	HFRs	(pg	g-1)	in	the	analyzed	samples.	338	
Compounds LOD  

(pg g-1) 
LOQ  

(pg g-1) Biscuits Smoked Chicken Hyena Cheetah Lion 
serum 

Human Cord Blank Chicken 
Egg albumin Chicken 

Egg 
Sea Eagle 

Plasma  
Sea Eagle 

Plasma   Salmon Egg Serum Serum Blood Pool 

DEC602 1  2.5 <1 <1 <1 <1 66 12 <1 <1 5 <1 8 <1 14 

DEC603 1 2.5 <1 <1 <1 8 19 8 <2.5 <1 <2.5 <1 <2.5 9 <1 

syn-DP 0.03 0.10 <0.03 <0.03 <0.03 0.33 2.5 13 0.13 <0.03 9000 4 2680 1.95 <0.03 

anti-DP 0.05 0.15 <0.05 <0.05 <0.05 <0.15 6 18 0.19 <0.05 29000 6 3450 22 <0.05 

ΣDPs	 		   <0.03 <0.03 <0.03 0.33 9 31 0.32 <0.003 38000 10 6128 24 <0.003 

fAnti 		   -- -- -- -- 0.71 0.58 0.59 -- 0.76 0.4 0.56 0.92   

BDE 28 0.8 20 <0.8 <0.8 <0.8 <0.8 <20 <0.8 <0.8 <0.8 <0.8 <0.8 26 <0.8 <0.8 

BDE 49 0.3 1 <0.3 35 <1 <0.3 <0.3 <1 <0.3 <1 220 <1 70 1 12 

BDE 47 0.7 3 41 233 44 <3 11 4.5 <0.7 <0.7 540 6 455 3 16 

BDE 66 1 10 <1 <1 <10 <1 <1 <1 <1 <1 <1 <10 46 <1 <1 

BDE 100 0.4 4 9 51 6 <0.4 <0.4 4 <0.4 <0.4 440 7 270 4 4 

BDE 99 0.5  2 18 7 5 8 8 2 <2 <0.5 1390 26 587 3 6 

BDE 85 3 9 <9 9 <9 <3 <3 <3 <3 <3 20 <3 21 <3 <3 

BDE 154 0.05  0.22 1 22 <0.22 3 56 9 0.22 <0.05 340 2 126 1.4 2.7 

BDE 153 0.8 2 35 13 4 16 18 2 <0.8 <2 870 5 635 4 3 

BDE 138 0.3 1 1 20 2 <0.3 13 42 <0.3 <0.3 50 <0.3 58 <0.3 <1 

BDE 183 0.7 2 <0.7 <0.7 <0.7 <0.7 <2 <2 <0.7 <0.7 1900 4 1700 <0.7 3.5 

BDE 209 6 20 92 84 92 58 610 <6 <6 <6 12000 55 6650 26 1138 

ΣPBDEs     197 467 153 88 723 63 1.3 2 17800 105 10650 42 1185 

DBDPE 13  30 <13 <13 <13 <13 <13 <13 <13 <13 <13 <13 <13 <13 <13 

HBB 5  15 <15 <15 <15 <5 <5 <5 <5 <5 250 <5 50 <5 <5 

TBB 10  40 <40 <10 <10 <10 <10 <10 50 <10 <10 124 <10 <10 <10 

BTBPE 0.24  1 8 3 5 8 34 7.2 <1 <1 300 14 1990 4 4 

TBPH 5 15 72 32 53 <5 <5 <5 <5 <5 45 290 290 <5 159 

ΣNBFRs 		   94 44 60 8 34 7.2 50 -- 600 427 2325 4 163 

*<	xx:	below	the	respective	LOQ	or	LOD339	
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