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Figure S1. Schematic representation of the interactions established between SAM 
and surrounding amino acids in the PDB structure 2HR1. Averaged distances obtained 
during the MD simulation of the system with unprotonated Cys81 are given (Å). 
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QM subsystems and active space selected to trace the MFEPs with the 
string method 

A) Cys81 deprotonation step. 

 

a) 

 

 

 

 

 

 

b) 

 

Scheme S1. QM subsystem for the Cys81 deprotonation mediated by the Ser85 

residue highlighted in red. The active space selected to trace the MFEP was formed by 

distances d1, d2, d3 and d4. b) RMSD evolution of the nodes during the application of 

the string method. 
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a) 

 

 

 

 

 

 

 

b) 

 

Scheme S2. a) QM subsystem for the Cys81 deprotonation mediated by a water 

molecule highlighted in red. The active space selected to trace the MFEP was formed 

by distances d1, d2, d3 and d4. b) RMSD evolution of the nodes during the application 

of the string method. 
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B) Methylation step 

a) 

 

 

 

 

 

 

 

b) 

 

Scheme S3. a) QM subsystem for the methylation step highlighted in red. The active 

space selected to trace the MFEP was formed by distances d1, d2, d3, d4 and d5. b) 

RMSD evolution of the nodes during the application of the string method. 
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C) β-Elimination step 

a) 

 

 

 

 

 

 

 

b) 

 

Scheme S4. a) QM subsystem for the β-elimination step where Glu119 residue 

donates a proton to the N3 atom of cytosine and a water molecule abstracts the leftover 

proton H5, highlighted in red. The active space selected to trace the MFEP was formed 

by distances d1, d2, d3, d4 and d5. b) RMSD evolution of the nodes during the 

application of the string method. 

 



S7	
	

 

a) 

 

 

 

 

 

 

b) 

 

Scheme S5. a) QM subsystem highlighted in red for the elimination of Cys81 from the 

cytosine base and deprotonation of the N3 atom of cytosine by Glu119. The active 

space selected to trace the MFEP was formed by distances d1, d2 and d3. b) RMSD 

evolution of the nodes during the application of the string method. 
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Free Energy Perturbation Protocol 

We have estimated the free energy cost of moving a hydroxide anion from bulk 

water (aqueous solution, aq) to the active site (as) as the free energy difference 

of transforming one water molecule into that anion in both environments (see 

Scheme S6). To perform this we carried out two simulations. One where a 

water molecule was transformed into a hydroxide ion in a periodic box of water 

molecules, therefore calculating ΔG1. And another one where a water molecule 

remains inside the active site of the solvated enzyme-DNA-SAM system, 

therefore calculating ΔG2. Subtracting ΔG1 from ΔG2 we were able to obtain the 
free energy cost for the overall process (ΔGOH- (aq→as)) (see Scheme S6). 

For the process in aqueous solution a periodic box of size ~100x100x100 Å was 

employed (similar to that of the enzymatic system). Simulations were performed 

with a time step of 1 fs with the NAMD program employing the AMBER force 

field. Periodic boundary conditions were applied using the particle mesh Ewald 

method with a cutoff of 12 Å in the real part of the sum. Short range non-bonded 

interactions were calculated at every step using a smooth switching function 

with a cutoff from 10 to 12 Å. Simulations were carried out in the NVT 

ensemble. Langevin-Verlet dynamics were performed using a damping 

coefficient of 10 ps-1 at a target temperature of 300 K. Initial structures for each 

window of the FEP simulation were taken from a previous FEP simulation 

carried out in the forward direction with 100 windows and with a total simulation 

time of 11 ns. 

For the process in the active site, in order to keep the transformed water 

molecule into the active site, a semi-harmonic potential restraint of 100 

kcal·mol-1 was applied when the distance between the oxygen atom and the C5 

atom of the flipped out cytosine was larger than 5 Å. For both transformations, 

in aqueous solution (aq) and in the active site (as), a soft-core potential1 and a 

dual topology approach2,3 were used. The force field was smoothly changed 

from that of a water molecule to that of the hydroxide anion using a coupling 

parameter λ. In both cases we carried out a total of 100 windows between λ=0 

and λ=1 and for each window 110 ps of MD simulation were performed, being 

the total sum of the simulation of 22 ns for each transformation. Forward and 
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backward paths were simulated to evaluate the hysteresis, with full 

convergence (the differences were in both cases smaller than 0.1 kcal·mol-1). 

Initial structures for each window of the FEP simulation were taken from a 

previous FEP simulation carried out in the forward direction with 100 windows 

and with a total simulation time of 11 ns. The statistical error was calculated 
through the parseFEP plugin for VMD.4 

 

Scheme S6. Thermodynamic cycle for the calculation of the free energy cost of moving 

a hydroxide anion from the bulk (aq) to the active site (as) of M.HhaI using Free 

Energy Perturbation. 

 

For the calculation of ∆G3 we considered that the chemical potentials of water 

molecules in the bulk and in the active site are equal. Then the free energy 

difference was evaluated from the ratio between the concentration of water in 

the bull ( ~ 55 M) and in the active site: 

ΔG3 = RT ·ln
H2O[ ]aq
H2O[ ]as

 

 The concentration of water in the active site was evaluated from the average 

number of water molecules observed during the 100 ns simulation (6.0) and its 

average volume (367 Å3, as determined using the program CASTp).5 This 

resulted in a concentration in the active site of 27.2 M and then ∆G3 at 300 K is 
equal to 0.4 kcal·mol-1. 

To estimate the free energy of moving a hydronium cation from the active site to 

the bulk we follow the same protocol and scheme as the one described above. 

The thermodynamic cycle is now as follows: 
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Scheme S7. Thermodynamic cycle for the calculation of the free energy cost of moving 

a hydronium cation from the bulk (aq) to the active site (as) of M.HhaI using Free 

Energy Perturbation. 
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MD Simulation Analysis 

A) Cys81 Desprotonated system 

 

	

	

Figure S2. Root-Mean-Square Deviations calculated for for the backbone atoms of the 
protein (a) and the  DNA (b) chains, relative to the structure obtained after equilibration 
for the Cys81 deprotonated system. 
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Protein-DNA interactions 

There are two kinds of hydrogen bond interactions that can be established 

between M.HhaI and the DNA dodecamer: direct hydrogen bonding between 

donor/acceptor atoms of protein and DNA, and hydrogen bonds where a water 

molecule bridges between donor/acceptor atoms of these two entities. These 

water-bridged hydrogen bonds have been reported to be involved in the 

recognition and the stabilization of protein-DNA complexes.6 In our analysis the 

geometrical criteria used to identify a hydrogen bond interaction were a donor-

acceptor distance smaller than 3.2 Å and a donor-hydrogen-acceptor angle 

larger than 140 degrees. Figure S3 shows the number of direct and water-

bridged protein-DNA hydrogen bonds during our simulation. The total number of 

hydrogen bonds was 59.6 ± 5.2, being the average values for direct protein-

DNA and water-bridged protein-DNA hydrogen bonds of 30.7 ± 2.6  and 28.9 ± 

4.4, respectively. The number of direct protein-DNA interactions presents a 

lower standard deviation, showing that these interactions are rather specific. 

The number of water-bridged protein-DNA interactions displays a larger 

standard deviation, reflecting the mobility of these water molecules at the 

protein-DNA interface.  
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Figure S3. Number of direct DNA-protein hydrogen bonds (a) and number of water 

mediated protein-DNA hydrogen bonds (b) observed during the 100 ns simulation of 

the protein-DNA complex. 

a) 

b) 
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a) 
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Figure S4. Analysis of important protein-DNA hydrogen bond interactions. a) Average 

distances and their standard deviations (in Å) between heavy atoms involved in 

hydrogen bonds. b) Plot of the occupancies for direct protein-DNA hydrogen bonds 

during the simulation. We only plot those hydrogen bonds observed for at least 20% of 

the simulation time. Each block of the grid represents occupancies averaged during 2 

ns. Cells highlighted in red represent hydrogen bonds formed with the recognition 

sequence. The last column on the right displays the total occupancy numbers 

determined from the whole simulation.  

The most important direct protein-DNA interactions observed during our MD 

simulation of 100 ns are gathered in Figure S4. Averaged distances and 

occupancy rates for direct hydrogen bond interactions are depicted in Figure 

S4a and S4b, respectively. Shortest average distances and largest occupancy 

rates correspond to the recognition sequence (highlighted in red in Figure S4).  

The DNA dodecamer has 22 negative charges which are stabilized by a total of 

10 hydrogen bonds involving positively charged residues of the protein. Direct 

b) 
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hydrogen bond interactions established with Arg97, Arg163, Arg165, Arg209, 

Arg228 and Arg240 display average occupancies larger than 20% while 

interactions formed with Lys89, Lys122, Lys162 and Lys234 are broken and 
formed during the simulation displaying smaller average occupancies. 

DNA MTases have to stabilize not only the flipped base to be methylated (C18 

in the current system), but also the orphan base that remains in the DNA helix 

(G7) and the two nucleic bases that lose their π-stacking partner (G17 and 

G19). In our simulations the unpaired guanine base (G7) is hydrogen bonded to 

Gln237, as seen also in the X-ray structure.7 An experimental study showed 

that the Gln237Trp M.HhaI mutant has a much smaller catalytic ability than the 

wild type enzyme, which was attributed to the inability of the mutant enzyme to 

stabilize the flipped out state of DNA.8 In our simulation Gln237 establishes two 

hydrogen bonds with G7: one between the Gln237 Oε atom and the N2 atom of 

G7, and another one between Gln237 backbone nitrogen atom and the O6 atom 

of G7 (see Figure S4a). These interactions display short average distances and 

occupancy rates of 96.2 and 94.6 %, respectively (see Figure S4b). We also 

found that the unpaired G7 base can be hydrogen bonded to Ser87 during the 

simulation. This hydrogen bond interaction involves the O6 atom of the G7 

nucleic base and the Ser87 backbone oxygen atom, displaying an occupancy 
rate of 69.2%. 

Interactions between the protein and G17/G19 basis are important both for the 

recognition of the specific DNA sequence and for the stabilization of the DNA 

structure once the target cytosine flips out leaving these bases without one π-

stacking partner. G17 is doubly hydrogen bonded to Arg240 during the whole 

simulation (displaying occupancy rates of 92.5 % for the interaction between the 

N7 atom of G17 and the Nη1 atom of Arg240 and 82.8 % for the interaction 

involving the O6 atom of G17 and Nη2 of the Arg240). This residue has been 

proposed to be involved in substrate binding, loop closure and stabilization of 

DNA towards catalysis.9 A previous study devoted to the calculation of free 

energy profiles for the base flipping event showed that the largest contribution 

to DNA binding was the interaction between Arg240 and G17.10 G17 is also 

hydrogen bonded to Ile86 during the simulation displaying high occupancy 

numbers (71.3 %). Ile86 has been also reported in experimental studies8,11 to 
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be hydrogen bonded to G17, playing an important role for the stabilization of the 

extrahelical cytosine. The G19 nucleic base also interacts with Gly256. In our 

simulation this interaction displays a high occupancy rate (81.2 %).  

Previous structural analysis have shown that closure of the mobile loop formed 

by residues 80-100 (see Figure 1) is the main difference between the structure 

of the protein with and without DNA.9 This loop has a crucial role stabilizing the 

Michaelis complex. All the interactions concerning the residues of this loop are 

conserved in our simulations, with high occupancies rates and small average 

distances. In particular, the largest occupancy rates for interactions stablished 

between DNA and residues belonging to this loop correspond to Cys81, Gln82, 
Ile86, Ser87 and Arg97 (see Figure S4). 
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DNA Structure 

The binding process and the insertion of C18 in the catalytic pocket of M.HhaI 
provoke structural changes into the canonical structure of DNA. In spite of that, 

the hydrogen bond interactions between DNA base pairs are not interrupted. As 

explained in the main text, protein accommodates the flipped out cytosine base 

stabilizing the interactions lost by G7 with two highly conserved hydrogen bonds 

with the residue Gln237 and one hydrogen bond with Ser87. G19 and G17 

which lose their π-stacking partner are also stabilized with protein interactions. 

Figure S3 shows the average number of hydrogen bonds between the base 

pairs in the DNA duplex. Hydrogen bonds are maintained during the simulation 

with values close to the canonical forms, with the exception of the G7-C18 pair 

containing the flipped out cytosine and one of the base pair extremes (C12-

G13), which displays a lower number of hydrogen bonds and higher standard 

deviation. The average values of the number of canonical hydrogen bonds for 

the rest of the nucleic base pairs are 1.8 for the T-A pairs and 2.9 for the C-G 
pairs.  

 

Figure S5. Average number of canonical hydrogen bond interactions established 

between DNA base pairs for the Cys81 deprotonated system. Standard deviations are 

also shown as vertical lines.  
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B) Cys81 Protonated system 

	

Figure S6. Root-Mean-Square Deviations calculated for the backbone atoms of the 
protein (a) and the DNA (b) chains relative to the structure obtained after equilibration 
for the Cys81 protonated system.	
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 Figure S7. Number of direct DNA-protein hydrogen bonds (a) and number of water-

mediated protein-DNA hydrogen bonds (b) observed during the 100 ns simulation of 

the protein-DNA complex for the Cys81 protonated system. 
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Figure S8. Analysis of important protein-DNA hydrogen bond interactions for the 

Cys81 protonated system. Each block of the grid represents occupancies for direct 

protein-DNA hydrogen bonds averaged during 2 ns. We only plot those hydrogen 

bonds observed for at least 20% of the simulation time. Cells in red represent hydrogen 

bonds formed with the recognition sequence. The last column on the right side displays 

the total occupancy numbers determined from the whole simulation.  
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Figure S9. Average number of canonical hydrogen bond interactions established 

between DNA base pairs for the Cys81 protonated system. Standard deviations are 

shown as vertical lines.  
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Figure S10. Interactions established between the C18 base and amino acids of 
M.HhaI active site in the Cys81 protonated system. The plots show the instantaneous 
values observed during the simulations. The values shown in the active site scheme 
correspond to the averaged values and their standard deviations. Distances are given 
in Å.	
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Figure S11. Potential Energy Surface calculated in M.HhaI at the M06-2X/6-
31G**/MM level for (a) deprotonation of Cys81 by a DNA phosphate group mediated by 
Ser85 and (b) by a DNA phosphate group mediated by a water molecule. Isoenergetic 
lines are given in kcal·mol-1. 
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Table S1. Key averaged distances (in Å) obtained for reactants, intermediate, products 
and transition states of the two reaction mechanisms for the deprotonation of Cys81 in 
M.HhaI. Standard deviations are included. Free energies obtained after M06-2X/6-
311+G**/MM corrections are given in kcal·mol-1.  

	

 
  1 TS 1-2 2 

 

d( S(Cys81) -H(Cys81) ) 1.49 ± 0.04 1.87 ± 0.08 2.00 ± 0.08 
d( H(Cys81) - O(Ser85) ) 1.73 ± 0.05 1.11 ± 0.07 1.01 ± 0.03 
d( O(Ser85) - H(Ser85) ) 0.98 ± 0.03 1.03 ± 0.03 1.62 ± 0.04 
d( H(Ser85) - O(G17) ) 1.90 ± 0.09 1.59 ± 0.07 1.00 ± 0.03 

ΔG 0 14.3 ± 0.3 7.6 
  1 TS 1-2’ 2’ 

 

d( S(Cys81) -H(Cys81) ) 1.47 ± 0.04 1.92 ± 0.09 2.23 ± 0.09 
d( H(Cys81) - O(Wat) ) 2.02 ± 0.07 1.00 ± 0.03 0.97 ± 0.03 
d( O(Wat) - H(Wat) ) 0.97 ± 0.02 1.23 ± 0.04 2.59 ± 0.13 
d( H(Wat) - O(G19) ) 2.01 ± 0.12 1.15 ± 0.04 0.98 ± 0.03 

ΔG 0 14.8 ± 0.2 9.2 
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a) 

	

	

b) 

	

	

	

Figure S12. Potential Energy Surfaces for the methyl transfer and the nucleophilic 
attack of Cys81 in M.HhaI calculated at a) M06-2X/6-31G**/MM level and b) B3LYP/6-
31G** level. Isoenergetic lines are given in kcal·mol-1. 
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Figure S13. a) Scheme for the addition of the Cys81 to the cytosine cycle followed by 
i) the side reaction concerning the protonation of the N3 atom of the cytosine by the 
Glu119 residue or ii) by methylation without protonation of the N3 atom. b) AM1/MM 
PMFs, corrected at the M06-2X/6-311+G** level, obtained for the Cys81 approach (TS 
3-4) and proton transfer from the Glu119 residue to the cytosine N3 atom (TS 4-4’) in 
M.HhaI as a function of the collective path coordinate s. 
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Table S2. Key averaged distances (in Å) obtained for reactants, intermediate, products 
and transition states of the reaction mechanism for the Cys81 addition and proton 
transfer from the Glu119 residue to the cytosine base in M.HhaI. Standard deviations 
are included. Free energies obtained after M06-2X/6-311+G**/MM corrections are 
given in kcal·mol-1.  

 4 TS 4-4’ 4’ 

d( S(SAM) - CH3(SAM) ) 1.83 ± 0.14 1.84 ± 0.18 1.83 ± 0.20 

d( CH3(SAM) - C5(C18 ) 2.93 ± 0.12 3.10 ± 0.10 3.14 ± 0.14 

d( S(Cys81) - C6(C18) ) 2.10 ± 0.08 2.05 ± 0.09 1.98 ± 0.08 

d( Oε2(Glu119) - Hε2(Glu119) ) 0.97 ± 0.02 1.35 ± 0.08 1.98 ± 0.09 

d( HOε2(Glu119) - N3(C18) ) 2.62 ± 0.14 1.25 ± 0.06 1.01 ± 0.07 

d( Oε1(Glu119) - H41(C18) ) 2.32 ± 0.24 2.34 ± 0.33 2.43 ± 0.23 

d( O(Phe79) - H42(C18) ) 2.22 ± 0.17 2.12 ± 0.18 2.16 ± 0.21 

d( HNε(Arg165) – O2(C18) ) 1.97 ± 0.13 2.10 ± 0.18 1.97 ± 0.11 

d( HNη2(Arg165) – O2(C18) ) 2.09 ± 0.16 2.13 ± 0.13 2.12 ± 0.23 

d( HNη1(Arg163) – O2(C18) ) 1.99 ± 0.24 2.21 ± 0.14 2.15 ± 0.14 

ΔG -1.91 1.56 ± 0.3 -3.75 

 

Figure S14. Potential Energy Surface for the addition of Cys81 to the cytosine ring 
and proton transfer from Glu119 to the N3 atom of cytosine calculated at the M06-2X/6-
31G**/MM level, starting from state 3 in M.HhaI. Isoenergetic lines are given in 
kcal·mol-1. 
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Figure S15. Potential Energy Surface at the M06-2X/6-31G**/MM level in M.HhaI for 
the proton transfer from Glu119 to the N3 atom of the cytosine ring and the methyl 
transfer from cofactor SAM to the C5 position of  the cytosine ring starting from 
intermediate 4. Isoenergetic lines are given in kcal·mol-1. Note that the barrier for the 
methylation to a N3 protonated intermediate (red line) is significantly higher than for an 
unprotonated one (blue line). 
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Figure S16. Interactions established between the C18 base and amino acids of the 
Gln119 M.HhaI variant active site. The plots on the left show the instantaneous 
distances observed during the simulations. The values shown in the active site scheme 
displayed on the right correspond to the average values and their standard deviations. 
Distances are given in Å.  
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a) 

	

b) 

 

Figure S17. Potential Energy Surfaces for the β-elimination step involving a) the 
proton transfer between Glu119 and the N3 atom of cytosine and the proton transfer 
from the C5 atom of the cytosine to a water molecule and b) the breaking of the Cys81-
cytosine bond and the proton transfer back from N3 to the Glu119 residue. PESs were 
calculated at the M06-2X/6-31G**/MM level. Isoenergetic lines are given in kcal·mol-1. 
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Figure S18. Water channel connecting the hydronium ion formed in the active site 
after abstraction of the C5 proton by a water molecule with the bulk. 

 

 

 

 

 

 

 

 

 

 



S33	
	

 

References 

	

	 (1)	 Zacharias,	M.;	Straatsma,	T.	P.;	McCammon,	J.	A.	J.	Chem.	Phys.	1994,	100,	
9025-9031.	
	 (2)	 Gao,	J.;	Kuczera,	K.;	Tidor,	B.;	Karplus,	M.	Science	1989,	244,	1069-1072.	
	 (3)	 Pearlman,	D.	A.	J.	Phys.	Chem.	1994,	98,	1487-1493.	
	 (4)	 Liu,	P.;	Dehez,	F.;	Cai,	W.;	Chipot,	C.	J.	Chem.	Theory	Comput.		2012,	8,	2606-
2616.	
	 (5)	 Dundas,	J.;	Ouyang,	Z.;	Tseng,	J.;	Binkowski,	A.;	Turpaz,	Y.;	Liang,	J.	Nucleic	
Acids	Res.	2006,	34,	W116-W118.	
	 (6)	 Jayaram,	B.;	Jain,	T.	Annu.	Rev.	Biophys.	Biomol.	Struct.	2004,	33,	343-361.	
	 (7)	 Shieh,	F.	K.;	Youngblood,	B.;	Reich,	N.	O.	J.	Mol.	Biol.	2006,	362,	516-527.	
	 (8)	 Svedružić,	Ž.	M.;	Reich,	N.	O.	Biochemistry	2004,	43,	11460-11473.	
	 (9)	 Matje,	D.	M.;	Coughlin,	D.	F.;	Connolly,	B.	A.;	Dahlquist,	F.	W.;	Reich,	N.	O.	
Biochemistry	2011,	50,	1465-1473.	
	 (10)	 Huang,	N.;	MacKerell	Jr,	A.	D.	J.	Mol.	Biol.	2005,	345,	265-274.	
	 (11)	 Youngblood,	B.;	Buller,	F.;	Reich,	N.	O.	Biochemistry	2006,	45,	15563-15572.	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	



S34	
	

Complete References 

	

(38)	 Case,	D.	A.;	Darden,	T.	A.;	Cheatham,	T.	E.;	Simmerling,	C.	L.;	Wang,	J.;	Duke,	R.	
E.;	Luo,	R.;	Walker,	R.	C.;	Zhang,	W.;	Merz,	K.	M.;	Roberts,	B.;	Hayik,	S.;	Roitberg,	A.;	Seabra,	G.;	
Swails,	J.;	Goetz,	A.	W.;	Kolossváry,	I.;	Wong,	K.	F.;	Paesani,	F.;	Vanicek,	J.;	Wolf,	R.	M.;	Liu,	J.;	
Wu,	X.;	Brozell,	S.	R.;	Steinbrecher,	T.;	Gohlke,	H.;	Cai,	Q.;	Ye,	X.;	Hsieh,	M.	J.;	Cui,	G.;	Roe,	D.	R.;	
Mathews,	D.	H.;	Seetin,	M.	G.;	Salomon-Ferrer,	R.;	Sagui,	C.;	Babin,	V.;	Luchko,	T.;	Gusarov,	S.;	
Kovalenko,	A.;	Kollman,	P.	A.;	Amber	12;	University	of	California,	San	Francisco:	2012.	

	 (56)	 Frisch,	M.	J.;	Trucks,	G.	W.;	Schlegel,	H.	B.;	Scuseria,	G.	E.;	Robb,	M.	A.;	
Cheeseman,	J.	R.;	Scalmani,	G.;	Barone,	V.;	Mennucci,	B.;	Petersson,	G.	A.;	Nakatsuji,	H.;	
Caricato,	M.;	Li,	X.;	Hratchian,	H.	P.;	Izmaylov,	A.	F.;	Bloino,	J.;	Zheng,	G.;	Sonnenberg,	J.	L.;	
Hada,	M.;	Ehara,	M.;	Toyota,	K.;	Fukuda,	R.;	Hasegawa,	J.;	Ishida,	M.;	Nakajima,	T.;	Honda,	Y.;	
Kitao,	O.;	Nakai,	H.;	Vreven,	T.;	Montgomery,	J.	A.;	Peralta,	J.	E.;	Ogliaro,	F.;	Bearpark,	M.;	
Heyd,	J.	J.;	Brothers,	E.;	Kudin,	K.	N.;	Staroverov,	V.	N.;	Kobayashi,	R.;	Normand,	J.;	
Raghavachari,	K.;	Rendell,	A.;	Burant,	J.	C.;	Iyengar,	S.	S.;	Tomasi,	J.;	Cossi,	M.;	Rega,	N.;	Millam,	
J.	M.;	Klene,	M.;	Knox,	J.	E.;	Cross,	J.	B.;	Bakken,	V.;	Adamo,	C.;	Jaramillo,	J.;	Gomperts,	R.;	
Stratmann,	R.	E.;	Yazyev,	O.;	Austin,	A.	J.;	Cammi,	R.;	Pomelli,	C.;	Ochterski,	J.	W.;	Martin,	R.	L.;	
Morokuma,	K.;	Zakrzewski,	V.	G.;	Voth,	G.	A.;	Salvador,	P.;	Dannenberg,	J.	J.;	Dapprich,	S.;	
Daniels,	A.	D.;	Farkas;	Foresman,	J.	B.;	Ortiz,	J.	V.;	Cioslowski,	J.;	Fox,	D.	J.	Gaussian	09,	Revision	
C.01;	Wallingford	CT,	2009.	


