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EXPLORING THE IMPACT OF URBAN GROWTH ON LAND 

SURFACE TEMPERATURE OF KATHMANDU VALLEY, 

NEPAL 

 

 

ABSTRACT 

 

Kathmandu is experiencing rapid urban growth since last few decades. Cities are 

expanding across the countryside at the expense of productive land. Such urban 

sprawl has incurred adverse environmental consequences affecting quality of life of 

urban residents in the valley. Recently, Kathmandu has been identified to be on the 

verge of climate change, especially in the context of urban warming. Thus exploring 

the impact of urban growth on land surface temperature could be an effective means 

to unveil environmental issues caused by anthropogenic activities. This can be useful 

for the urban planners in urban planning and management as well as to raise public 

awareness regarding urban warming effect. Advancement in thermal Remote 

Sensing, GIS and statistical procedure has enabled monitoring land surface 

temperature and its correlation to land use and land cover. To analyze such 

relationship, we performed supervised classification and change detection to 

determine the spatial trend of land use and land cover change. After that we obtained 

the spatial pattern of LST using thermal band of Landsat images. Then we applied 

regression analysis to explore the relationship between surface temperature and land 

surface characteristics including both land use land cover types and land use and land 

cover indices. Based upon our analysis, we found that urban area has increased 

considerably by 259% during the period 1988-2014. The surface temperatures were 

found to be greater for bare soil and urban land use types. The regression analysis 

showed positive correlation between urban growth and LST. Finally we found LULC 

indices based approach better than LULC class for LST prediction. 
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1. INTRODUCTION 

1.1 Background & Motivation 
 

Urbanization is nowadays a rising trend globally, especially in an alarming rate in 

developing countries. This makes cities around the world grow both in number and 

size. Urban growth is indeed a development process that occurs over some period of 

time, as city and its suburbs expand into an adjoining countryside. It is primarily 

accredited to the population growth, as there is a global trend of thousands of people 

migrating to the cities every year (Bekele, 2005).  

 

Urban growth is characterized by the transformation of natural land covers into built 

up areas (Rimal, 2011). It causes depletion of greenery in the cities and subsequent 

increase in the impervious surface. Cities experience unprecedented changes in land 

use and land cover patterns due to urban growth. As urban growth persists, studies 

addressing their reciprocal impacts are gaining importance (Parker, 2010). Urban 

growth has adverse impact on land surface characteristics including its thermal 

capacity. The increased thermal storage capacity creates so called urban heat island 

(UHI) effect, observed as an elevated temperature of urban areas relative to rural 

ones, and it is an important research topic related to urban climate and environmental 

studies (Stewart & Oke, 2012).  UHI emerges through the modification of land 

surface in a way that favors heat storage and trapping (e.g. reduced vegetation), and 

anthropogenic heat release from vehicles, industries, and buildings (Oke, 1982; 

Sailor & Lu, 2004). It is one of the perilous environmental issues, which can cause 

negative impact on human and environment (Grimmond, 2007). It degrades air, 

influences local climate, increases ground level ozone production (Lo et al., 2003), 

and ultimately affects our quality of life. Therefore, the subject of urban growth and 

UHI has drawn attention from ecologists, urban planners, sociologists, 

administrators, policy makers, and finally to the urban residents (Bekele, 2005; Li et 

al., 2012). 
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Numerous studies related to UHI have been carried out so far (Chen et al., 2006; 

Coseo et al., 2015; Goward, 1981; Imhoff et al., 2010; Lo et al., 2003; Mirzaei, 2015; 

Rizwan et al., 2008; Saito et al., 1996; Sun et al., 2012; SRIVANIT et al., 2012; Tan 

et al., 2010; Tran et al., 2006; Weng et al., 2004; Yuan & Bauer, 2007). These 

studies cover a wide range of topics related to UHI such as: the influence of urban 

landscapes and LULC change in UHI phenomenon, spatial-temporal variation of 

UHI, relationship between UHI and LULC indices, UHI modeling and simulation, 

impact of UHI effect on heat wave and human welfare, and possible measures to 

mitigate UHI effect. These studies provide a remarkable contribution to researchers 

and policy makers concerned with UHI phenomenon. 

 

Land Surface Temperature (LST) is an important parameter in the UHI phenomenon, 

which manifests high spatial and temporal inhomogeneity especially in urban areas 

(Zaksek & Ostir, 2011). LST is actually the skin temperature of the land surface 

which differs from the land surface air temperature (SRIVANIT et al., 2012). It can 

be derived from freely available data sources such as Landsat, MODIS and ASTER. 

The thermal band of these sensors enables data collection on thermal properties of 

the land surface based on the amount of emitted energy. Besides, such data can also 

be used to monitor LULC change over time. Thus these two prospects enabled 

researchers to explore the link between LULC change and LST change over time. In 

this way, monitoring UHI effect due to LULC change has become feasible (Fabrizi et 

al., 2010). 

 

To obtain LST from thermal images, many algorithms have been proposed such as: 

Single Channel, Split window, Mono window, Radiative transfer equation etc. (Qin 

et al., 2001; Yu et al., 2014). However Split window relies on two spectrally adjacent 

thermal bands, but Landsat 4, 5 and even ETM+ possess only one thermal band. 

Thus this method is unsuitable for those images. Similarly the problem with the 

Radiative transfer equation method is that it requires in-situ radio sounding to be 

launched concurrently with satellite pass. Like Radiative transfer equation method, 

Mono window method also involves various parameters such as effective mean 

atmospheric temperature, emissivity and transmittance to be determined, which 
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requires in-situ measurement. Single Channel method on the other hand requires high 

quality atmospheric transmittance code to estimate the atmospheric features involved 

in the model, and is complicated. Therefore, explicitly an image based approach 

utilizing surface emissivity representing the brightness temperature only, without 

requiring atmospheric profile parameters has been considered in this study. 

 

Surface emissivity is indispensable for LST inversion, specifically for the image 

based method. Basically there are three methods to determine the land surface 

emissivity: Classification based emissivity method, NDVI based method and 

Temperature independent spectral indices method (Yu et al., 2014). For 

Classification based emissivity method, surface emissivity is obtained from 

classification image, but the emissivity value should be known in advance. This 

requires good knowledge of the study area and emissivity measurement on surface 

representative of different classes must be coincident with satellite transit time. 

Temperature independent spectral indices method is also complicated. Hence due to 

simplicity NDVI based method is suitable for our purpose. 

 

Since LST has a direct link to the land surface characteristics (Quattrochi &Luvall, 

1999) and on the other hand, LULC change is strongly related to the urban growth, 

the study of the relationship between LST and LULC is fundamental to explore the 

impact of urban growth on land surface temperature, including the UHI effect. The 

study of the relationship between LST and LULC change helps researchers to 

understand the cause, spatial-temporal distribution, consequences and possible 

measures to mitigate the UHI effect. 

 

LULC indices and LULC types are two major indicators of LULC mostly used in the 

study of LST and LULC relationship. There are various types of LULC indices 

proposed to investigate the correlations between LULC and LST. Amongst several 

indices, Normalized Difference Vegetation Index (NDVI), Normalized Difference 

Built up Index (NDBI) and Normalized Difference Water Index (NDWI) strongly 

correlate with LST (Chen et al., 2006). These indices are extracted using band ratios 

of different bands of satellite images. Each of these indices has a unique spectral 
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response to specific LULC types (Guo et al., 2015). For instance, NDVI is used to 

monitor vegetation health and predict agricultural production; NDBI is sensitive to 

built-up areas; and NDWI is used to monitor the water content in vegetation. Thus 

these indices can also be employed to delineate different LULC types based on 

appropriate threshold values. NDVI is extensively used in relation to LST; NDBI is 

used in mapping urban areas whereas NDWI is used to extract water bodies (Ahmed 

et al., 2013). However, these indices cannot give detailed insight on how urban 

landscape influences UHI phenomenon. The study of the relationship of LST with 

the land use classes is restricted. Moreover, LULC types are comparatively more 

stable than LULC indices over time. Therefore, LULC type has been also used in our 

study. The combined use of both LULC types and indices is assumed to give better 

understanding about the LST – LULC relationship. Regression analysis is generally 

used to explore the relationship between LST and LULC (Coseo & Larsen, 2014; 

Kim & Guldmann, 2014). The regression analysis and statistical measures are indeed 

useful to determine the influence degrees of LST within various LULC types (Zhu & 

Zhang, 2011).  

 

This research studies urban growth in the Kathmandu valley and explores land 

surface temperature variations among various land use land cover types in the valley. 

Like other developing countries around the world, urbanization is rampant in Nepal 

as well. According to ADB/ICIMOD (2006), the rate of urbanization in Nepal 

accounted 6.6% per annum during 1990s, which was among the highest in the Asia 

Pacific Region. Kathmandu is the most populated urban region in the country which 

has been facing rapid urbanization over the decades. Factors responsible for rapid 

urban growth in the valley are physical conditions of the valley, public service 

accessibility, employment opportunities, real estate market, population growth, 

political situation and government plans and policies. By physical conditions, it 

means that the valley has topography suitable for the residence. Kathmandu being the 

major economic hub of the country provides employment opportunities and has 

accessibility to the public services. Major commercials and government agencies are 

confined within the city core area of the valley. Real estate market is also flourishing 

in the region whereas government plans and policies in relation to land use are not 
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much effective. Likewise political turmoil in Nepal due to armed conflict between 

the state and the then Maoists rebels during the period of 1996 to 2006 caused 

displacement of many people from various parts of the country to the valley, as it 

was the most secure place at that time. Besides these factors, construction of 

Tribhuvan Highway connecting region of India, and Araniko Highway to China 

increased external influx to the valley. Nepal’s first and only international airport, 

Tribhuvan International Airport, located in the valley also attracted people to the 

valley (Thapa, 2009; Thapa & Murayama, 2009; DoR, 2004; Sharma, 2003; UN-

OHCHR, 2012; Ghimire & Upreti, 2008). 

 

Thus urban growth has been identified as a critical process in the valley. It has led to 

population influx, environmental deterioration, urban fragmentation, haphazard 

landscape development, stress on ecosystem structure, and alteration of land use 

patterns (Thapa, 2009). According to UNHABITAT (2015), Kathmandu is 

vulnerable to the impact of climate change. So this research aims to investigate the 

impact of urban growth on land surface temperature in the valley, since LST is an 

important factor controlling urban climate. Moreover, quantifying LULC change is 

also essential for monitoring spatial-temporal processes of urban growth and its 

environmental consequences in the valley. 

 

Research related to the relationship between LULC change and LST, or UHI effect 

in the Kathmandu valley has been limited so far. Even though climate change has 

been a hot topic, it seems like impact of urban sprawl on UHI effect has not been 

paid much attention. Thus the output of this research is assumed to fill this research 

gap through local scale analysis of landscape change detection and its influence on 

urban climate at a micro level. Our research will use surface temperature derived 

from airborne satellite image thermal band. On contrary to temperature data collected 

from weather stations, the satellite image data provides wide spatial coverage and is 

thus useful to reveal comprehensive spatial pattern of UHI at large scale more 

accurately. In our research, we determined LULC change over time, observed 

spatial-temporal pattern of urban growth through urban fragmentation, conducted hot 
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spot analysis to see the UHI formation and explored the relationship between LULC 

change and UHI effect comprehensively. 

 

This research presents a detailed study on the impact of urban growth on land surface 

temperature in the Kathmandu valley. It provides evidence on the alteration of land 

use and land cover due to urban growth and the existence of UHI phenomenon in the 

valley. Exploring the impact of urban growth on LST can be useful for the urban 

planners and decision makers for sustainable urban planning and to discover ways to 

solve the urban problems. Moreover the outcome of this research will play a 

prominent role in promoting awareness of not only the concerned authorities but also 

to the urban residents. This will encourage them to foster effective urban 

management and contribute to improve urban environment. Concerned authorities 

can enforce effective plans and policies regarding land use and urban management 

while general public can develop community resilience to UHI effect by taking 

initiatives even from their home like installing green roofs and increasing greenery in 

their premises. 

 

1.2 Aim & Objectives 

 Aim 

 

The aim of this research is to analyze the impact of urban expansion on land 

surface temperature for the three year periods: 1988, 2000 and 2014, using GIS 

and Remote Sensing techniques on Landsat imagery. 

 

Objectives 

 To use supervised maximum likelihood classification to determine the spatial 

pattern of land use land cover change and analyze the dynamics of urban land 

use transformation in the study area for the given time period.  

 To quantify change of each land cover class and determine the rate and 

spatial trend of urban growth. 
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 To determine land surface temperature change on each land use land cover 

type and investigate the relationship between surface temperature and land 

use land cover characteristics. 

 To determine the appropriate approach between land use indices and land use 

land cover class for the future prediction of land surface temperature pattern 

in the study area based on non-parametric regression. 

 

1.3 Research Questions 
 

 During the study period what changes have occurred in the LULC types? 

 How is the trend of urban growth in the study area? 

 How is the spatial pattern of land surface temperature in the study area? 

 What is the relationship between the land surface temperature and land 

surface characteristics? 

 Is there formation of Urban Heat Island in the study area? If so, how is its 

spatial-temporal pattern? 

 

1.4 Research Structure 

 

Figure 1 shows the brief structure of the thesis and the interconnection between its 

different chapters. Chapter 1 presents the background and motivation of the research, 

objectives and the research questions. Chapter 2 briefly describes about the data, 

software and the study area. Chapter 3 discusses on the detailed methodology used in 

this research. Chapter 4 presents the results and its discussions. Finally, Chapter 5 

concludes the research with the achievements, limitations of the research and the 

future works. 
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2. DATA & STUDY AREA 

2.1 Data 
 

Primary data used for this research include Landsat satellite imagery: Landsat 5 

Thematic Mapper (TM) and Landsat 8 Operational Land Imager (OLI), acquired on 

April 3, 1988; April 4, 2000; and April 11, 2014. These Landsat data can be freely 

accessed from the USGS portal, and is processed by NASA to generate radiometric 

calibration and atmospheric correction algorithms to the Level-1 products 

(http://earthexplorer.usgs.gov/). To ensure better comparison of surface temperature 

and UHI effect we used satellite images from the month of April for all three years, 

which lies in the summer season. Further detail about the Landsat imagery has been 

tabulated below, while their band designations are given in appendices section. 

Table 1: Detail Characteristics of images 

S.N. Satellite Sensor Bands 

(no.) 

Imagery Date Resolution 

(meter) 

Path/Row 

1 Landsat 5 TM 7 1988-04-03 30 141/041 

2 Landsat 5 TM 7 2000-04-04 30 141/041 

3 Landsat 8 OLI_TIRS 11 2014-04-11 30 141/41 

 

Landsat images are amongst widely used satellite remote sensing data and their 

spatial, spectral and temporal resolution made them useful for mapping and planning 

projects (Landsat 7, 2011). Landsat images were used to classify land use land cover 

classes, retrieve LST and calculate NDVI, NDBI and NDWI indices. Besides 

Landsat images, the secondary data used in this research were high resolution 

IKONOS images, digital Orthophotos, digital topographic maps and different layers 

of Kathmandu valley such as road networks, water bodies and designated areas 

prepared by the Department of Survey, Nepal. The secondary data also included 

reports, statistical data and geographical information from various organizations of 

Nepal like DHM. These ancillary data were mostly used in classification and its 

accuracy assessment. 

 

http://earthexplorer.usgs.gov/
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2.2 Software 
 

Various software tools were used for the image processing, spatial analysis and map 

creation. They are as follows: 

 ArcGIS 10.3.1 

 Geomatica 2016 

 R software 

 MATLAB 

 MS Office packages (Word & Excel) 

Most of the spatial analyses such as change detection, urban fragmentation, 

determination of LST, hot spot analysis, were conducted using ArcGIS, while 

Geomatica was specifically used for the data preparation – atmospheric correction of 

the Landsat images, and digital image classification. Linear regression was 

performed with R software whereas Kernel Ridge Regression was performed using 

MATLAB. Besides, MS Office packages (Word, Excel) were used for 

documentation, tabulation and graphical representation of the results. 

 

2.3 Data Preparation 
 

In general, raw digital images contain distortions due to variations in altitude, earth 

curvature and atmospheric refraction (Kaiser et al. 2008). However, Level-1 Landsat 

standard products, used in this study are free of distortions from the aforementioned 

sources (http://earthexplorer.usgs.gov/). Nevertheless, as the acquired images 

contained negligible amount of haze, they were subjected to haze removal within the 

Atmospheric correction procedure. The spatial reference system for all the datasets 

was WGS 1984, UTM zone 45 N. Therefore, data which were not in this system – 

especially digital topographic maps and other layers of Kathmandu valley, were 

projected to that system. Digital Orthophotos were rectified using IKONOS image 

with WGS 1984, UTM zone 45 N using first order polynomial (Affine) 

transformation method. A total number of 20 GCPs were used to register the 

Orthophotos. In this way digital Orthophotos were georeferenced using an image to 

http://earthexplorer.usgs.gov/
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image registration technique, which allowed Orthophotos to be used for direct 

comparison of features with Landsat images while collecting training samples for 

image classification and accuracy assessment. Finally, Landsat images were clipped 

to obtain the area of interest.  

 

2.4 Study area 
 

The study area is the Kathmandu valley of Nepal with an area of approximately 

42356 hectares. Kathmandu valley is made up of Kathmandu, Lalitpur and 

Bhaktapur districts. The valley is bowl shaped and is situated between 27
0
 32' 13" to 

27
0
 49' 10" N latitude and 85

0
 11' 31" to 85

0
 31' 38" E longitude. The average 

elevation is 1300 meters above mean sea level (Pant & Dongol, 2009). It is 

surrounded by four high hills: Shivapuri in the NW, Chandragiri in the SW, Nagarjun 

in the NE and Phulchoki in the SE. Their altitude ranges from 1500 m. to 2800 m. 

(Baniya, 2008). The major rivers flowing through the valley are Bagmati, Bishnumati 

and Manohara.  

Kathmandu valley is the most developed and populated place in Nepal. Majority of 

the government offices, headquarters and commercial centers are located in the 

valley, making it the economic hub of the country. The valley is historically 

important as well, as it owns seven World Heritage Sites (Tourism portal, 2017). 

With an area of less than one percent of the country’s total area only, Kathmandu 

valley accommodates 31% of the total urban population of the country (CBS portal, 

2017). Urban growth in the valley accelerated since 1980s, and the growth rate was 

substantially high during the 1990 decade (Sharma, 2003). 

As stated earlier, the valley is bordered by high hills and mountain ranges. They are 

composed of schist, gneiss and granitic rock in the North and slightly 

metamorphosed sedimentary rocks in the south, east and west. Different types of soil 

are found in the valley. Lacustrine soil is common in the lowlands, as geologists 

believe that Kathmandu valley was a big lake in the ancient time, while sandy soil 

and red soil are prevalent in the high hills. Mixed type of vegetation is found in the 



12 
 

valley with temperate, Pine and broad leaved forest being the major ones. The 

common species are Pinus roxburghii, Alnus castonopsis, Schima wallichi, Ulnus 

nepalensis (Adhikary, 2015; Katuwal, 2016; Piya, 2004; Shrestha, 1998). 

The climate of Kathmandu valley is sub-tropical cool temperate. Maximum 

temperature is 35.6
0
C in April and minimum is -3

0
C in January. In general, 

temperature is 19
0
C to 27

0
C during summer and 2

0
C to 20

0
C during winter. The 

climate is influenced by tropical monsoon of southeast and receives average rainfall 

of 1400 mm. during June to August. There are three main seasons: winter lies in the 

month of November to February; summer lies in the month of March to May; and 

rainy season during June to October (Pant & Dongol, 2009). 

Figure 2 shows the 3D perspective of the study area which is created by overlaying 

Landsat image over DEM in ArcScene. Figure 3 shows the location map of the study 

area. 

 

 

Figure 2: 3D perspective of the study area 
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Figure 3: Location map of the study area 
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3. RESEARCH METHODS 
 

This section deals with the various approaches applied to fulfill the aforementioned 

aim and objectives. These approaches illustrate the practical implications of GIS and 

Remote Sensing in relation to the use of spatial-temporal datasets to address real 

world problems, the UHI phenomenon in our case. The major methods used in our 

research are supervised maximum likelihood classification, change detection 

analysis, urban fragmentation, hot spot analysis and regression analysis.  

3.1 Supervised Maximum Likelihood Classification 
 

Supervised Maximum Likelihood Classification was used to classify the study area 

into land use land cover classes. In this method, the spectral characteristics of the 

classes were defined by identifying training samples. Knowledge about the area of 

interest played a vital role in this process. After the collection of training samples, 

image classification was carried out by applying the Maximum Likelihood 

Classification algorithm. The algorithm assigns a cell to the class of the highest 

probability, whereby the probability value is the statistical distance based on the 

mean values and covariance matrix of the clusters (Tempfli, 2009). 

At least 50 pixels in an average were taken from spectrally enhanced images for each 

class as training samples. Color composites based on band combinations - 5, 4, 3 in 

Landsat 8 and 4, 3, 2 in Landsat 5 TM were created to enhance image interpretation. 

Likewise high resolution IKONOS images, digital Orthophotos and digital 

topographic maps were also used as reference. The classification result included six 

land use land cover classes: Urban, Agriculture, Forest, Bare soil, Open area and 

Water. These classes were in accordance to the existing practices in the Kathmandu 

valley as well as the system adopted by the Survey Department of Nepal. Urban area 

covered built up areas comprising buildings, roads, airport runway and other 

impervious surfaces. Agriculture represents cropland while bare soil means clear 

exposed surfaces such as preconstruction areas, river banks not covered by the 

vegetation etc. Lands with little vegetation cover were classified as Open area. In this 
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way the final land use land cover maps were produced for all three years 1988, 2000 

and 2014 respectively. These maps enabled spatial-temporal change analysis. 

 

3.2 Accuracy Assessment 
 

Usually LULC maps derived from classification contain some errors due to several 

factors that range from the initial data acquisition procedure to the implementation of 

the classification technique. Thus accuracy assessment of classification results is 

mandatory. The most common method generally used for the accuracy assessment is 

the error matrix (confusion matrix).  An error matrix is an arrangement of numbers 

representing number of samples assigned to a specific category relative to the ground 

truth, in rows and columns. The rows in the matrix represents classification derived 

LULC maps while columns represent reference data collected from the field work. 

This matrix enables computation of several statistical measures such as overall 

classification accuracy, error of omission and commission, and kappa coefficient 

(Congalton and Green, 1999).  

Overall accuracy is defined as the ratio of the number of correctly classified pixels 

(i.e. the sum of the diagonal elements) to the total number of pixels checked, 

expressed in percentage. However, overall accuracy is an average, so it does not 

reveal how error is distributed between the classes. Therefore, other measures like 

error of omission and error of commission were introduced. Error of omission is the 

percentage of pixels that should have been put into a given category but were not. 

Error of commission is the percentage of pixels placed in a given category when they 

actually belong to the other category. Error of omission corresponds to Producer’s 

accuracy and error of commission corresponds to User’s accuracy. Thus Producer’s 

accuracy represents the percentage of a given category correctly identified on the 

map and User’s accuracy represents the probability that the given pixel will appear 

on the ground as it is categorized. The kappa statistics reflects the difference between 

actual agreement and the agreement expected by chance. It incorporates the off 

diagonal elements of the error matrix (Foody, 2002; Lillesand et al., 2007; Tempfli, 

2009). 
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The Kappa coefficient was calculated according to the equation (1) given by 

Congalton and Green (1999): 

  
 ∑    

 
    ∑          

 
   

   ∑          
 
   

         (1) 

 where,  

r = no. of rows in the error matrix 

Xii = no. of observations in row i column i (along the diagonal) 

Xi+ = marginal total of row i (right of the matrix) 

X+i = marginal total of column i (bottom of the matrix) 

N = total no. of observations in the matrix 

 

For the accuracy assessment of our classification results, 250 random points were 

taken from the classified image to compare with high resolution IKONOS images 

and digital Orthophotos. Based on this, we calculated the Overall accuracy, User’s 

accuracy, Producer’s accuracy and Kappa index to evaluate the classification 

accuracy. 

 

3.3 Land Surface Temperature Retrieval 
 

Land surface temperature was retrieved from the thermal infrared band of Landsat 

images (band 6 of Landsat TM 5 and band 10 of Landsat 8). The basic steps for the 

retrieval of LST given below are based on the guidelines provided in Landsat Data 

Users Handbook published by USGS (Landsat 7, 2011; Landsat 8, 2015). Besides, 

one of the methods discussed in the research article by Giannini et al. (2015) has 

been also taken as reference.  

i. Conversion of pixel values to radiance 

The pixel values from digital number units were converted into radiance 

using the header files parameters of Landsat images as follows: 
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For Landsat TM 5: 

Lλ = Grescale * QCAL + Brescale          (2)    

which can be also expressed as:  

Lλ = 
             

                 
 * (QCAL - QCALMIN  + LMINλ  

 

For Landsat 8: 

Lλ = ML* QCAL + AL          (3) 

ii. Atmospheric correction 

Removal of atmospheric effects from the thermal bands is essential to 

convert radiance to reflectance measures. Therefore, a specific 

atmospheric correction model called DOS-1 has been considered in this 

study. DOS-1 is applicable to multispectral image data only, and is 

explicitly an image based procedure, which means it does not require in 

situ measurements. DOS-1 model corrects for both atmospheric additive 

scattering component, attributed to path radiance and solar effects - solar 

irradiance and solar zenith (Chavez, 1996).    

 

iii. Conversion of spectral radiance to at-sensor brightness temperature 

             TB  
  

   
  
  

   
                                               (4) 

 

iv. Determination of emissivity 

The correct determination of surface temperature is constrained to an 

accurate knowledge of surface emissivity. The emissivity of a surface can 

be determined as the contribution of the different components that belong 

to the pixels according to their proportions (Synder et al., 1998). In this 

study we used NDVI threshold method to determine emissivity as 

proposed by Sobrino, Jiménez-Muñoz & Paolini (Sobrino et al., 2004).  

However, NDVI is calculated from the reflectance values of the visible 

and near infrared bands as follows: 
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NDVI  
           

           
          (5) 

 

where,      and      are the reflectance obtained by applying the DOS-

1 method as mentioned above, at the Near Infrared band and Red band, 

for atmospheric effect correction. 

 

v. Land Surface Temperature retrieval 

The land surface temperature corrected for spectral emissivity is 

computed as follows (Artis & Carnahan, 1982): 

LST  
  

   ( 
  
 

)     
                     (6)  

where, 

    λ is the central band wavelength of emitted radiance (11.45 µm) 

ρ = h * c/ σ (1.438*10
-2

m*K) with: h is the Planck’s constant 

(6.62*   10
-34

J*s), 

     c is the velocity of the light (2.998*10
8
 m/s) and 

     σ is the Boltzmann constant (1.38*10-23 J/K) 

 

vi. Convert land surface temperature value from Kelvin unit to degree 

Celsius  

LST (
0
Celsius) = LST (Kelvin) – 273.15         (7) 

 

Table 2 below defines all the parameters introduced above. 
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Table 2: Parameters in LST Retrieval 

Parameters Definition 

Lλ 

Grescale 

 

Brescale 

 

QCAL 

LMINλ 

LMAXλ 

QCALMIN 
 

QCALMAX 
 

ML 

 

AL 

 

K1, K2 

  
 

the spectral radiance at the sensor’s aperture 

the rescaled gain (the data product "gain" contained in the 

Level 1 product header or ancillary data record) 

the rescaled bias (the data product "offset" contained in the 

Level 1 product header or ancillary data record ) 

the quantized calibrated pixel value 

the spectral radiance that is scaled to QCALMIN 

the spectral radiance that is scaled to QCALMAX 

the minimum quantized calibrated pixel value (corresponding 

to LMINλ) 

the maximum quantized calibrated pixel value 

(corresponding to LMAX λ) 

the radiance multiplicative scaling factor for the band 

(RADIANCE_MULT_BAND_n from the metadata) 

the radiance additive scaling factor for the band 

(RADIANCE_ADD_BAND_n from the metadata) 

the calibration constants 

the emissivity of the surface 

 

 

 

3.4 Land use Land Cover Indices 
 

NDVI (Normalized Difference Vegetation Index), NDBI (Normalized Difference 

Built-up Index) and NDWI (Normalized Difference Water Index) indices were used 

to determine the relationship between LULC and LST. These indices can be useful to 

assess and monitor the urban thermal environment. Some of these indices were even 

used to delineate LULC types based on the appropriate threshold values. Besides 

LULC indices, DEM was also used in the analysis. DEM of the study area was 

generated based on the contour lines available at 20 meters interval and spot heights.  

LULC indices were extracted from the satellite images based on the following 

expressions: 
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NDVI = (NIR – R) / (NIR + R)     (Rouse et al., 1974)  (8) 

NDBI = (MIR – NIR) / (MIR + NIR)       (Zha et al., 2003)  (9) 

NDWI = (G – MIR) / (G + MIR)       (Xu, 2006)   (10) 

where, G, R, NIR, MIR are Green, Red, Near Infrared and Mid – infrared bands 

respectively. 

 

3.5 Regression Analysis 

3.5.1 Linear Regression 
 

We applied multiple linear regression analysis to determine the relationship between 

LST and LULC. A multiple linear regression analysis is the statistical process useful 

for estimating the relationships among multiple explanatory variables (independent 

variables) and a predictor (dependent variable). It is the generalization of linear 

regression to multiple variables which can be expressed as (Higgins, 2005): 

Yi = β0 + β1Xi1 + β2Xi2 + ………..+ βrXir + ⋴i         (11)   

where, we consider n no. of observations of one predictor and r explanatory 

variables. 

 Yi = i
th

 observation of the predictor 

 Xij = i
th

 observation of the j
th

 explanatory variable (j = 1, 2, 3…, r) 

 βj = parameters to be estimated 

 ⋴i = i
th

 independent identically distributed normal error 

We extracted LST and LULC indices – NDVI, NDBI, NDWI, and DEM for each 

pixel in the study area. Three thousand random points were obtained from the LST 

image and their corresponding LULC indices values were extracted in ArcGIS to use 

them in the linear regression model. Such model gives us a general idea about the 

relationship between LST and LULC. However we applied a non-linear regression 

method called Kernel Ridge Regression (KRR) to determine the predicted value of 

LST because this method is better and more flexible when many explanatory 
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variables are taken into account (Saunders et al., 1998). We used many LULC 

variables which may create non-linear correlations; therefore KRR would be suitable 

for our purpose.  

 

3.5.2 Non-linear Regression 
 

Ridge Regression technique is especially designed to deal with multi-collinearity or 

non-linear dependence of regressors (Rosipal & Trejo, 2001). It is a generalization of 

least square regression. For example, in case of linear regression, let us assume that 

the aim is to fit the linear function       to our training set  {(     
)   (     

)} 

where T is the no. of examples,    is a vector in R
n
 (n is no. of attributes) and  

 
⋴ R, t 

= 1,2,…,T. Least square recommends assessing      which minimizes: 

      ∑ ( 
 
     )

  
          (12) 

and using    for labeling future examples: if a new example has attributes   then the 

predicted label will be     . 

Ridge regression slightly modifies this equation to: 

       ‖ ‖ + ∑ ( 
 
     )

  
                       (13) 

where,   is a fixed positive constant. 

There are different ways to obtain the {     } parameters. One of them is applying 

constrained minimization methods to the so-called “dual version” of equation (13). In 

this case, the estimation depends on the dot products of the   elements, i. e.      . 

KRR is a modification of equation (13) in such a way that non-linear functions can 

be fitted implicitly. In this case the aim is related to the estimation of a mapping 

function    which “transforms” the training points to higher dimensional spaces 

(        ) whereby we can deal with the problem as a linearization of the non-

linear lower dimensional space where the    points lie. It can be shown that the dot 

products of the   elements, i.e.,       are transformed into        (  ) which is 

known as “transformation kernel” (Saunders et al., 1998). 
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3.5.3 Experimental setup for the appropriate approach assessment 

for LST prediction 
 

In order to determine the appropriate approach between LULC indices and LULC 

class for future LST prediction, first of all, we generated training sets for both LULC 

indices and LULC class. In case of LULC indices, we obtained training sets as we 

discussed previously for the linear regression method. But for the LULC class, 

initially we calculated the proportion of each land use land cover class using three 

different window sizes: 5 by 5, 10 by 10 and 20 by 20 which means 150 m, 300 m 

and 600 m pixel resolution respectively. Then we obtained their corresponding mean 

LST values. Zonal statistics tool was used to summarize the value of LST within 

each window. After that, we selected three thousand random samples from each of 

these three resolutions to generate the training sets for LULC class. Next, we trained 

KRR for both LULC class and LULC indices and then validated them on the 

corresponding test sets. As per our data, we used LST of 1988 and 2000, and LULC 

indices of 2014 to obtain the predicted values of LST in 2014. Similarly for LULC 

class, we used LST of 1988 and 2000, and LULC of 2014 for all 5*5, 10*10 and 

20*20 window cases to obtain the predicted LST for 2014. Finally we computed 

RMSE between measured LST values and predicted LST values in 2014 for all the 

training sets of both LULC indices and LULC class to determine the suitable 

approach for LST prediction. 

 

3.6 Hot Spot Analysis 
 

Hot Spot Analysis tool in ArcGIS was used to identify statistically significant hot 

spots and cold spots from our LST datasets. This tool calculates the Getis-Ord Gi* 

statistic given a set of weighted features. Thus the LST raster datasets were 

converted to polygon features prior to analysis. The Getis-Ord Gi* Statistics is 

defined as:  
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 ∑     

   ∑      
 
   

  
   

   

                   (14) 

where,    is the attribute value for feature  ,      is the spatial weight between 

feature   and  ,   is the equal to the total number of features and: 

 

X̅  
∑   

 
   

 
            (15) 

 

  √
∑   

  
   

 
 X̅             (16) 

 
Note: The Gi* statistic is the z-score so no further calculations are required. 

 

 

The resultant z-score tells whether the features with either high or low values cluster 

spatially. A feature with high value may not be statistically significant. To be 

statistically significant a feature should have a high value and be surrounded by other 

features with high values as well. Besides z-score the output feature class also 

contained p-value and confidence level bin (Gi_Bin). A high z-score and small p-

value for a feature would indicate spatial clustering of high values. On the other 

hand, a low negative z-score and a small p-value would indicate spatial clustering of 

low values (ESRI, 2016). On the basis of Gi_Bin, we categorized LST classes as 

very hot spot, hot spot, warm spot, not significant, cool spot, cold spot and very cold 

spot. 
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3.7 Urban Fragmentation 
 

As our research focuses on urban growth, the study of urban fragmentation is 

relevant. Urban fragmentation helps us to understand the urban landscape, so this 

research analyses the spatial-temporal dynamics of urban fragmentation in the study 

area. Fragmentation metrics proposed by Angel et al. (2012) have been used in our 

study. They are as follows: 

Infill: It is a new development that has occurred between two time periods within the 

urbanized open space of the earlier period, excluding exterior open space; 

Extension: A kind of development between two time periods in contiguous clusters 

that contained exterior open space in the earlier period and that were not infill; 

Leapfrog: All new construction that occurred between two time periods in the open 

countryside, entirely outside of the exterior open space of the earlier period; 

The terminologies introduced in the above metrics are defined as follows: 

Fringe open space: It consists of all pixels within 100 meters of urban and sub urban 

pixels; 

Captured open space: It consists of all open space clusters that are fully surrounded 

by built up and fringe open space pixels and are less than 200 hectares in area; 

Exterior open space: It consists of all fringe open space pixels that are less than 100 

meters from the open countryside; 

Urbanized open space: It consists of all fringe open space, captured open space and 

exterior open space pixels in the city; 

Urban built-up pixels: Pixels which have more than 50 percent of built-up pixels 

within their walking distance circle; 

Suburban built-up pixels: Pixels which have 10-50 percent of built-up pixels within 

their walking distance circle; 
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Rural built-up pixels: Pixels which have less than 10 percent of built-up pixels 

within their walking distance circle; 

Walking distance circle: It is a circle with an area of 1 km
2
 around a given built-up 

pixel. 

We applied Urban Landscape Analysis tool, developed by CLEAR, University of 

Connecticut (http://clear.uconn.edu/tools/ugat/index.html) to determine the spatial-

temporal dynamics of urban fragmentation. The tool classifies urban area into Urban 

built-up, Suburban built-up, Rural built-up, Urbanized open land, Captured open land 

and Rural open land, based on spatial density of built-up area. In addition, the tool 

also classifies the new development, which has occurred between two consecutive 

time periods, as infill, extension and leapfrog, based upon its proximity to the 

previously existing development. 

 

 

http://clear.uconn.edu/tools/ugat/index.htm
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4. RESULTS & DISCUSSION 

4.1 Land use land cover change in the study area 
 

Table 3 summarizes the overall accuracy, user’s accuracy, producer’s accuracy and 

kappa coefficient of LULC classification accuracy assessment for the years 1988, 

2000 and 2014. 

Table 3: Accuracy Assessment of classified images for different years 

 

LULC types 

1988 2000 2014 

User Ac. Pro Ac. User Ac. Pro Ac. User Ac. Pro Ac. 

Urban 86.11 83.78 93.10 81.81 90.00 87.50 

Agriculture 87.23 87.23 89.09 87.50 76.60 82.00 

Forest 91.22 89.65 92.10 94.59 91.66 91.66 

Open area 76.59 83.72 87.87 81.69 75.00 83.34 

Bare soil 81.08 78.94 77.77 90.32 85.71 88.23 

Water 92.30 88.88 80.76 95.45 95.00 88.36 

Overall Ac. 85.60  87.20  88.00  

Kappa stat. 0.82  0.84  0.85  

 

Note: User Ac. = User’s Accuracy  Pro. Ac. = Producer’s Accuracy           

          Overall Ac. = Overall Accuracy  Kappa stat. = Kappa Coefficient 

 

 

Therefore, the overall accuracies for the years 1988, 2000 and 2014 were 85.60 %, 

87.20 % and 88 % respectively. Forest and Water got the maximum accuracy in all 

three years. Meanwhile, Open area got the minimum accuracy. The kappa 

coefficients for the classification images were 0.82, 0.84 and 0.85 respectively. 

Based on the supervised maximum likelihood classification technique as discussed in 

the methodology section, LULC maps were obtained for all three years and then area 

estimates and change statistics were computed. Figures 4-6 show the LULC maps for 

the year 1988, 2000 and 2014 respectively. 
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LAND USE MAP 

Kathmandu Valley Nepal, 1988 

Scale 1:180000 

 

 

 

 

  

                       

 

Figure 4: Land use land cover map of study area in 1988 
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LAND USE MAP 

Kathmandu Valley Nepal, 2000 

Scale 1:180000 

 

 

 

 

 

Figure 5: Land use land cover map of study area in 2000 
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LAND USE MAP 

Kathmandu Valley Nepal, 2014 

Scale 1:180000 

 

 

 

 
            

Figure 6: Land use land cover map of study area in 2014 
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Table 4 summarizes the area estimates for the land use land cover classes of the 

study area derived from the classification results. Among all LULC types, Open area 

constituted the predominant type of land cover in all three years occupying 42.59 

percent of the total area in 1988, 45.25 in 2000 and 33.64 in 2014. Agriculture is the 

second largest land use type covering 19.85 percent of the total area in 1988, 19.72 in 

2000 and 21.61 in 2014. Bare soil follows Agriculture accounting for 15.38 percent 

of the total area which is approximately 1 percent greater than that of Forest in 1988. 

However, Forest precedes Bare soil by almost two folds in the succeeding years. 

Water constitutes the lowest land cover, which is around 2 percent of the total area. 

Urban shows dramatic increase in area from 5.75 percent in 1988 to 20.63 percent in 

2014. 

Table 4: Area statistics of land use land cover classes for 1988 to 2014 

LULC 1988 2000 2014 

Area (ha) % Area (ha) % Area (ha) % 

Urban 2436.64 

 

5.75 4207.63 9.93 8736.38 

 

20.63 

Agriculture 8406.26 

 

19.85 8351.02 

 

19.72 9154.87 

 

21.61 

Forest 6036.09 

 

14.25 6049.84 

 

14.28 6140.14 

 

14.50 

Open area 18040.71 

 

42.59 19168.08 

 

45.25 14249.17 

 

33.64 

Bare soil 6513.9 

 

15.38 3731.98 

 

8.81 3279.06 

 

7.74 

Water 922.16 

 

2.18 847.21 

 

2.00 796.14 

 

1.88 

 

Figure 7 is the graphical representation of area statistics of land use land cover 

classes presented in the Table 4 above. The graph demonstrates that Open area is the 

major LULC type. Water occupies the small proportion of the total area. There is a 

significant increase in the Urban while opposite trend can be seen for Bare soil and 

Open area. Water and Forest observed slight changes during the study period.  
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Figure 7: Land use land cover areas in different years 

 

Likewise, Figures 8-10 and Table 5 illustrate the changes in all LULC types from 

1988 to 2014. Table 5 shows the numerical change in area of all LULC types in 

terms of hectare and percentage with respect to that of corresponding LULC types in 

the previous year, whereas Figures 8-10 show the percentage change in area with 

respect to that of the given year graphically.  

Table 5: Land use land cover change during 1988 - 2014 

LULC 1988 – 2000 2000 - 2014 1988 – 2014 

Area (ha) % Area (ha) % Area (ha) % 

Urban 1770.99 

 

72.68 4528.75 

 

107.63 6299.74 

 

258.54 

Agriculture -55.24 

 

-0.66 803.85 

 

9.62 748.61 

 

8.90 

Forest 13.75 

 

0.23 90.3 

 

1.49 104.05 

 

1.72 

Open area 1127.37 

 

6.25 -4918.91 

 

-25.66 -3791.54 

 

-21.02 

Bare soil -2781.92 

 

-42.71 -452.92 

 

-12.14 -3234.84 

 

-49.66 

Water -74.95 

 

-8.13 -51.07 

 

-6.01 -126.02 

 

-13.66 
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During the first period (1988-2000) the land use change is characterized by abrupt 

rise in Urban area by approximately 73%. On the other hand Bare soil decreased by 

43%. Open area increased by 6% whereas Water decreased by 8%. However there is 

no significant change in Forest and Agriculture. 

 

     

  

 

Figure 8: Percentage change in LULC between 1988 and 2000 

 

Figure 9: Percentage change in LULC between 2000 and 2014 
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In the second period (2000-2014), Urban increased sharply by approximately 108%. 

Open area showed an opposite trend in this period as compared to the first period 

with area declining by 26%. For Bare soil the declining trend reduced sharply from -

43% to -12% in this period. Forest and Water maintained the same trend as that of 

the first period. Agriculture showed a sudden growth by 10%, though the changing 

trend was insignificant in the first period. 

 

      

  

 

 

This period (1988-2014) is in fact the overall change from the first and the second 

period. There is extreme increment in Urban land use by approximately 259% while 

Agriculture showed a nominal increment by 9%. Bare soil, Open area and Water 

were reduced by 50%, 21% and 14% respectively. Forest showed negligible 

increment of 2% over the period of 26 years. 

Figure 11 demonstrates urban growth during different time periods: 1988 – 2000, 

2000 – 2014 and 1988 – 2014. Urban growth has been categorized into three classes: 

infill, extension and leapfrog. From these maps, it can be clearly seen that extension 

type of growth was greater towards the north. This is due to the fact that lands on the 

 

Figure 10: Percentage change in LULC between 1988 and 2014 
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other directions especially to the west are comparitively less accessible, undulating 

and difficult to develop (Thapa, 2009).  Table 6 summarizes the proportion of urban 

growth types during different periods. The table shows that extension type of growth 

was dominant in all periods, whereas infill and leapfrog types of growth were 

comparitively low.  

    

  

 

 

 

 

 

 

Figure 11: Urban growth types in different periods 
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Table 6: Proportion of various urban growth types in different periods (%) 

 

Urban Growth type 

Different Periods 

1988 - 2000 2000 - 2014 1988 – 2014 

Infill 18.32 10.85 8.72 

Extension 67.90 82.22 84.19 

Leapfrog 13.78 6.93 7.09 

 

Apart from urban growth types, we also obtained urban landscape classes to analyze 

the impact of different levels of urbanization. Five classes: urban built-up, suburban 

built-up, rural built-up, urbanized open land and rural open land were mapped for 

urban landscape (Figure 12). Table 7 shows the proportion of urban landscape 

classes for different years. There is a gradual increment in urban built-up area at the 

expense of rural open land.   

         

        

 

Figure 12: Urban landscape classes for different years 
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Table 7: Proportion of various urban landscape types in different years (%) 

Urban landscape 1988 2000 2014 

Urban built-up 4.50 6.55 18.16 

Suburban built-up 2.91 2.82 4.02 

Rural built-up 0.54 0.55 0.37 

Urbanized open land 1.58 1.86 4.23 

Rural open land 90.46 88.22 73.21 

 

 

 

4.2 Spatial pattern of LST and LULC indices 

4.2.1 Land Surface Temperature 
 

Figure 13 shows the LST maps of the study area in 1988, 2000 and 2014. LST 

ranged from 13.96
0
C to 36.77

0
C in 1988, 15.84

0
C to 39.17

0
C in 2000 and 16

0
C to 

33.98
0
C in 2014. The maximum temperature increased by around 3

0
C during 1988 to 

2000 and then declined sharply in the year 2014 by around 6
0
C. However, there is a 

gradual increase in the minimum temperature in the subsequent years. The sudden 

fall in the maximum temperature during 2000 to 2014 can be reasonable, as some 

days of the year in the past can be hotter despite of the influence of urban warming 

phenomenon caused by urban growth over time. LST pattern analysis indicates low 

temperature represented by blue tone at the edges in all maps that stands for the 

forest area. High LST represented by a red patch in the middle represents the 

impervious surface of the airport and the red patches at the edges represent bare soil 

and even rocks in the high cliffs. The central yellow region represents the urban area. 

At meticulous observation of the pattern, gradual removal of blue tone in the middle 

and formation of uniform yellow tone can be seen, which gives the impression of the 

UHI formation. 
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Figure 13: LST of the study area for the years 1988, 2000 and 2014 

 

Figure 14 shows the mean LST within each LULC class in the study area. Forest LULC 

type got the minimum mean LST values in all three years (19.91
0
C in 1988, 21.96 in 

2000 and 20.58 in 2014) which is even lower than Water (21.52 in 1988, 23.99 in 2000 

and 23.56 in 2014). Bare soil got the maximum mean LST values in all three years 

(29.10 in 1988, 30.84 in 2000 and 28.93 in 2014). After Bare soil, Urban area got the 

highest mean LST values (26.97 in 1988, 28.63 in 2000 and 28.08 in 2014). The mean 

LST for Open area is 25.16 in 1988, 27.59 in 2000 and 26.37 in 2014. Similarly the 

mean LST value for Agriculture is 22.93 in 1988, 26.83 in 2000 and 25.66 in 2014. In 

this way, Forest and Water received low mean LST values, Agriculture and Open area 
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received medium, and Bare soil and Urban received high values. The comparison of 

mean LST for Urban LULC type in the given years reveals that even though the 

maximum temperature in 2014 was lower than in 1988 and 2000, the mean LST value of 

Urban LULC type in 2014 is close to that of 2000 and much higher than in 1988. This 

justifies the urban warming effect in the study area due to urban growth over time. 

 

 

Figure 14: Mean LST for each LULC class in different years 

 

 

4.2.2 Normalized Difference Vegetation Index 
 

Figure 15 shows the spatial distribution of NDVI in the study area. The area with the 

highest NDVI values appeared in the edges, which represent the forest area. Low 

NDVI values can be observed concentrated primarily in the central region which 

corresponds to the urban area. The area with the lowest NDVI values were found in 

the ponds and rivers which are manifested as small dark red patches and thin 

curvilinear features respectively.  
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Figure 15: NDVI within each LULC class in 1988, 2000 and 2014 

 

Figure 16 shows the bar chart of Mean NDVI values for each LULC class. The 

LULC class with the highest mean NDVI value is Forest with NDVI ranging from 

0.45 to 0.30 for 1988 to 2014.  The other LULC class with high NDVI value is 

Agriculture (0.24 to 0.37). Forest and Agriculture showed high NDVI values due to 

the dominance of vegetated cover. The lowest mean NDVI is for Water (-0.02 to 

0.018) since water lacks vegetation. However it can be seen that its value tends to be 

positive over time and the possible reason might be due to the vegetation growth in 

water with increasing pollutants. NDVI value for the Open area is approximately 

around 0.2 while NDVI value for both urban and Bare soil is around 0.1. 
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4.2.3 Normalized Difference Built-up Index 
 

NDBI maps (Figure 17) revealed an opposite pattern to the NDVI maps in the sense 

that Forest, Agriculture and other vegetated areas with high NDVI values received 

low NDBI values. Likewise urban area with low NDVI received high NDBI value. 

The lowest NDBI is possessed by Water while the highest value is possessed by Bare 

soil. In general, built up areas have higher reflectance in relation to MIR band and is 

thus expected to have higher NDBI but some studies show that reflectance for certain 

types of vegetation increases as water content decreases (Cibula et al., 1992; Gao, 

1996). The drier vegetation can even have higher reflectance to MIR resulting in 

higher NDBI (Gao, 1996). Therefore, considering dry vegetation in barren land in 

higher hills and possibly due to soil characteristics in low land, bare soil areas 

exhibited higher NDBI values. 

 

 

Figure 16: Mean NDVI values for each LULC class in 1988, 2000 and 2014 
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Figure 17: NDBI within each LULC class in 1988, 2000 and 2014 

 

Figure 18 shows the graph of mean NDBI within each LULC class for 1988, 2000 

and 2014. In general the NDBI values were low for most of the LULC classes. Water 

has the lowest NDBI value (-0.10 to -0.19). After Water, Forest and Agriculture have 

the low NDBI values (-0.17 to -0.09). Open area also shows quite low NDBI value 

(0.01 to 0.04). On the other hand, Bare soil and Urban LULC classes have 

substantially high NDBI values ranging from 0.12 to 0.22.  
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4.2.4 Normalized Difference Water Index 
 

Figure 19 shows the spatial distribution of NDWI in the study area. Most of the 

LULC classes received low NDWI value. As expected, Water got the highest NDWI 

value in all three years whereas Bare soil got the lowest NDWI. Regarding Forest 

LULC class, though the mean NDWI value is highly negative, some portion of 

Forest which is shadowed due to relief and consisting of moist soil showed quite 

high NDWI value. It can also be observed that the range of NDWI value slightly 

increases from the year 1988 to 2000 and then sharply decreases in 2014. 

 

 

 

 

 

   

 

Figure 18: Mean NDBI value for each LULC class in 1988, 2000 and 2014 
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Figure 19: NDWI within each LULC class in 1988, 2000 and 2014 

 

Figure 20 is a bar chart showing mean NDWI value within each LULC class for the 

years 1988, 2000 and 2014. As observed, Water is the only LULC class with positive 

NDWI value ranging from 0.15 to 0.22. Bare soil, Urban and Open area 

demonstrated highly negative NDWI (-0.19 to -0.42). Forest and Agriculture are the 

next LULC classes with lower NDWI value after them. 
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4.3 Relationship between LST & LULC characteristics 

4.3.1 Linear Regression of LST and LULC indices 
 

To assess the relationship between LST and LULC indices, we computed their 

correlation. NDVI, NDBI and NDWI were the land use land cover indices used for 

this purpose.  Since temperature can be influenced by the elevation as well, DEM 

was also added to the computation. The result shows that the correlation between 

LST and NDBI is significantly positive whereas the correlations between LST and 

NDVI, NDWI are significantly negative. However, the value of correlation 

coefficient is slightly negative in case of DEM (Table 8). This indicates that within 

the study area, built up area contributes to the increase in the LST while vegetation 

and water content have opposite effect. The influence of elevation is negative but 

quite low. This illustrates the importance of vegetation in the mitigation of UHI 

effect. 

 

 

Figure 20: Mean NDWI within each LULC class in 1988, 2000 and 2014 
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Table 8: Correlations between LST and LULC indices and DEM 

 

April 3, 1988 

 LST NDVI NDBI NDWI DEM 

LST 1.000 -0.716 0.822 -0.734 -0.219 

NDVI -0.716 1.000 -0.897 0.502 0.279 

NDBI 0.822 -0.897 1.000 -0.819 -0.169 

NDWI -0.734 0.502 -0.819 1.000 -0.009 

DEM -0.219 0.279 -0.169 -0.009 1.000 

 

April 4, 2000 

 LST NDVI NDBI NDWI DEM 

LST 1.000 -0.718 0.806 -0. 564 -0.325 

NDVI -0.718 1.000 -0.884 0.278 0.459 

NDBI 0.806 -0.884 1.000 -0.658 -0.301 

NDWI -0.564 0.278 -0.658 1.000 -0.048 

DEM -0.325 0.459 -0.301 -0.048 1.000 

 

April 11, 2014 

 LST NDVI NDBI NDWI DEM 

LST 1.000 -0.742 0.839 -0. 570 -0.669 

NDVI -0.742 1.000 -0.805 0.238 0.533 

NDBI 0.839 -0.805 1.000 -0.747 -0.485 

NDWI -0.570 0.238 -0.747 1.000 0.205 

DEM -0.669 0.533 -0.485 0.205 1.000 

 

 

A multiple regression between LST and the indices was then generated for each year, 

which is assumed to be useful for monitoring the thermal environment based on 

LULC and terrain. The regression models developed in the study are defined below: 

 

       LST = -14.79NDVI + 5.40NDBI - 22.56NDWI - 0.001DEM + 22.02          (1988) 

      LST = -6.70NDVI + 7.47NDBI - 9.69NDWI - 0.001DEM + 24.81       (2000) 

      LST = -11.80NDVI + 6.99NDBI – 11.08NDWI - 0.004DEM + 33.02         (2014) 

       

       where, the unit of LST is degree Celsius, and the unit of DEM is meters. 
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Table 9 shows the coefficients, standard error, t statistic, P-value and coefficient of 

determination (R
2
). The high value of coefficient of determination for all three years 

indicates strong linear relationship of the regression models in general. Moreover, P-

value for all predictors in all cases approximately equal to zero indicates that the 

predictors are meaningful additions to the generated models. In 1988, high 

magnitude of coefficients of NDVI and NDWI indicates their greater contribution to 

LST. In 2000, the contribution of NDVI, NDBI and NDWI are almost in the similar 

magnitude. However, the contribution of NDVI and NDWI are slightly greater than 

NDBI in 2014. The contribution of DEM in all three years is low in comparison to 

the LULC indices. 

 

Table 9: Regression Analysis Parameters 

April 3, 1988 

 Estimate Std. error t value P value R
2
 

Constant 22.02 0.24 90.01 0.00 0.71 

NDVI -14.79 1.38 -10.69 0.00  

NDBI -5.40 1.66 -3.25 0.00  

NDWI -22.56 1.47 -15.28 0.00  

DEM -0.001 0.00 -9.95 0.00  

 

April 4, 2000 

 Estimate Std. error t value P value R
2
 

Constant 24.81 0.25 98.10 0.00 0.67 

NDVI -6.70 1.05 -6.35 0.00  

NDBI 7.47 1.23 6.05 0.00  

NDWI -9.69 1.03 -9.32 0.00  

DEM -0.001 0.00 -7.94 0.00  

 

April 11, 2014 

 Estimate Std. error t value P value R
2
 

Constant 33.02 0.17 192.89 0.00 0.80 

NDVI -11.80 1.35 -8.72 0.00  

NDBI 6.99 1.59 4.38 0.00  

NDWI -11.08 1.41 -7.84 0.00  

DEM -0.004 0.00 -34.56 0.00  
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To verify the developed regression models graphically, we plotted scatterplot of the 

measured (original) LST against estimated LST obtained from the model. Figure 21 

shows the scatterplots for the three different years where it can be seen that the points 

tend to cluster in the linear fashion in the central region of the plot. The points are 

highly clustered in the year 2014 in comparison to the rest of the years. Therefore 

considering determination coefficient and visual examination of the scatterplot, the 

models seem to be satisfactory. 

 

 

 

 

Figure 21: Measured LST vs Estimated LST for developed regression models 
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4.3.2 Linear Regression of LST and LULC class 
 

We further developed regression models for each LULC class to understand its 

relation to LST comprehensively. Table 10 shows regression models for each LULC 

class in the study area for all three years. From the table we can notice that Open area 

LULC class has greater coefficient of determination in 1988, Bare soil in 2000 and 

Forest in 2014. Water has the lowest coefficient of determination in the year 1988 

and 2014. In 2000 Urban LULC class showed the lowest value. 

 

Table 10: Regression equations for each LULC class 

April 3, 1988 

LULC Regression equations R
2
 

Urban -0.4NDVI + 16.06NDBI + 12.85NDWI + 0.01DEM + 7.74 0.45 

Agriculture 4.94NDVI + 12.57NDBI + 3.08NDWI - 0.001DEM + 22.44 0.43 

Forest -7.65NDVI - 4.49NDBI - 16.10NDWI - 0.003DEM + 24.10 0.49 

Open area -10.27NDVI - 4.78NDBI - 19.68NDWI + 0.004DEM + 13.31 0.59 

Bare soil 0.19NDVI + 7.85NDBI - 8.50NDWI + 0.01DEM + 3.39 0.35 

Water -6.05NDVI - 2.14NDBI – 3.31NDWI + 0.004DEM + 17.13 0.15 

 

April 4, 2000 

LULC Regression equations R
2
 

Urban -16.95NDVI – 7.97NDBI – 7.74NDWI + 0.03DEM – 12.05 0.21 

Agriculture 1.72NDVI + 11.49NDBI + 3.90NDWI - 0.006DEM + 16.57 0.36 

Forest -13.88NDVI - 15.77NDBI - 25.28NDWI - 0.002DEM + 23.14 0.45 

Open area -3.32NDVI + 2.49NDBI – 10.28NDWI + 0.001DEM + 20.76 0.31 

Bare soil -10.09NDVI – 2.26NDBI - 18.20NDWI + 0.007DEM + 3.39 0.47 

Water -29.44NDVI - 19.12NDBI - 22.64NDWI - 0.004DEM + 31.72 0.38 

 

April 11, 2014 

LULC Regression equations R
2
 

Urban -3.54NDVI + 20.33NDBI + 16.58NDWI + 0.007DEM +20.48 0.44 

Agriculture -10.55NDVI - 1.58NDBI - 12.10NDWI - 0.002DEM + 29.44 0.39 

Forest 1.60NDVI – 1.51NDBI – 15.06NDWI - 0.004DEM + 27.17 0.66 

Open area -7.33NDVI + 2.22NDBI – 17.83NDWI - 0.002DEM + 28.49 0.55 

Bare soil -3.81NDVI + 4.54NDBI - 8.64NDWI - 0.001DEM + 24.20 0.19 

Water -4.69NDVI + 3.90NDBI – 5.39NDWI + 0.002DEM + 23.49 0.13 
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In summary, the relationship between LST and LULC indices varies depending upon 

the LULC class. The obtained results showed some anomalies in relation to the 

different trends observed for the same LULC class. For instance, NDBI positively 

affected LST in 1988 and 2014 for urban LULC class but its effect is negative in 

2000. One possible reason might be due to the multi-collinearity effect by the use of 

many predictors in the linear regression. Hence we recommend that linear regression 

can be useful to explore the general relationship between LST and LULC. However 

it may not be always the suitable choice particularly when we are interested to 

explore the relationship in depth, considering many LULC variables. Therefore, we 

decided to apply Kernel Ridge Regression for further analysis.  

 

4.3.3 Assessment of LULC indices and LULC class based approach for 

LST prediction 
 

We commenced our assessment procedure with the linear regression models based 

on LULC indices developed in the above section. We used the linear regression 

model of the years 1988 and 2000 to generate estimated LST for the consecutive year 

2014. Measured LST data of the year 2014 was used as test sample during the 

process. Then we computed RMSE between the test sample and estimated LST 

obtained from the model as shown in the following table. As the obtained RMSE 

values are high, linear regression model seems to be not suitable for the purpose of 

use for the LST prediction. 

 

Table 11: RMSE values for LULC indices and linear regression case 

Linear Regression Test Sample RMSE 

1988 2014 5.49 

2000 2014 2.27 

 

After that we switched on to the non-linear Kernel Ridge Regression (KRR). KRR 

was trained using the LULC indices and corresponding LST data of the years 1988 

and 2000 to produce estimated LST for the consecutive year 2014. Then we 
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computed the RMSE between the test sample and the obtained estimated LST, as 

shown in the following table. This time, the obtained RMSE values are better than 

the previous ones obtained through the linear regression.  

 

Table 12: RMSE values for LULC indices and KRR case 

Training Sample Test Sample RMSE 

1988 2014 1.37 

2000 2014 1.26 

 

Next we tested LULC class based approach with KRR. As mentioned earlier, we 

obtained LST and corresponding LULC proportion data at different window sizes 

5*5 10*10 and 20*20. Therefore we computed RMSE values for each window case. 

Initially KRR was trained with 1988 and 2000 data. Then we obtained estimated LST 

for the year 2014 based on the training samples of 1988 and 2000 for all 5*5, 10*10 

and 20*20 window cases. The RMSE was then determined between the test samples 

and obtained estimated LST for the year 2014 as follows. 

 

Table 13: RMSE values for LULC class and KRR case 

Training Sample Test Sample Window size RMSE 

1988 2014 5*5 1.90 

1988 2014 10*10 1.86 

1988 2014 20*20 1.78 

2000 2014 5*5 1.88 

2000 2014 10*10 1.54 
2000 2014 20*20 1.41 

 

Comparing the RMSE values we can conclude that LULC indices based approach 

using recent training sample is more suitable for the future LST prediction of the 

study area. Applying KRR for LULC indices of 2000 to predict LST for the year 

2014 yielded the lowest RMSE of 1.26 between the test sample and the estimated 

LST for that year. Figure 22 depicts the scatterplot between measured and estimated 

LST for this particular case. 
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4.4 Impact of urban growth on UHI effect 
 

Getis-ord Gi* Statistics was applied to the LST dataset to detect the presence of hot 

or cold spots over the study area. This is considered to be an effective approach to 

visualize the effect of urban heat island (Goswami et al., 2013). By this method, we 

are concerned with the thermal pattern rather than the absolute value of mean surface 

temperature. It should also be noted that the identification of hot or cold spots by this 

method does not necessarily imply the mean surface temperature being high or low. 

Figure 23 shows the Hot Spot maps of the study area for the three different dates. 

 

 

 

 

 

 

Figure 22: Measured LST vs. Estimated LST for LULC indices and KRR case for 2000 
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Figure 23: Hot Spot Analysis for LST in different years 

 

The maps for the year 1988 and 2000 primarily show heat island in the airport area 

and the core urban area. However there is a dramatic change in the year 2014. There 

is a formation of big heat island covering almost the whole urban area in that year. 

There is a gradual removal of cold region in the central region during the period 

1988-2000. The cold region is observed in the areas of high vegetation cover such as 

forest, open areas and agriculture. This justifies the importance of vegetation in 

minimizing the urban heat island effect.  

Tables 14-16 show the percentage distribution of different thermal types over various 

LULC classes. In other words, they show the contribution of various LULC types in 

the spatial distribution of thermal pattern. Generally cold region is observed to 

occupy the greater area than hot region. However in the year 2014, hot region 

superseded cold region. Not-significant region also occupies large portion in our 
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study area. Though the contribution of urban area in the very hot region was minimal 

in the year 1988 and 2000, it increased by around 8% in the year 2014. Forest and 

Agriculture are the coldest LULC types. Figure 24 shows the LULC distribution 

specifically in the Hot Spot area that is the area observed to be the hot spot at 99% 

confidence level. Dominant land use observed in the Hot Spot area is Open area in 

the first two years, but it is superseded by the Urban area in 2014. It can be stated 

that the Urban area showed more impact on Hot Spot over time in the study area. 

Table 14: Proportion of various thermal region in different LULC in 1988 (%) 

LULC Very cold 

 

Cold 

 

Cool 

 

Not Sig. Warm 

 

Hot 

 

Very Hot 

 

Urban 0.328 

 

0.398 

 

0.291 

 

3.913 

 

0.162 

 

0.210 

 

0.447 

Agriculture 15.192 

 

1.755 

 

0.737 

 

2.133 

 

0.011 

 

0.009 

 

0.005 

 

Forest 12.345 

 

0.559 

 

0.252 

 

0.998 

 

0.026 

 

0.033 

 

0.034 

 

Open area 5.035 

 

3.020 

 

1.845 

 

20.716 

 

1.335 

 

2.201 

 

8.439 

 

Bare soil 0.305 

 

0.292 

 

0.224 

 

7.206 

 

0.859 

 

1.644 

 

4.844 

 

Water 0.653 0.224 0.133 1.049 0.035 0.032 0.047 

 

Total 33.860 6.251 3.485 36.018 2.431 4.132 13.819 

 

 

Table 15: Proportion of various thermal region in different LULC in 2000 (%) 

LULC Very Cold Cold Cool Not Sig. Warm Hot Very Hot 

Urban 0.106 0.127 0.122 6.450 0.642 0.708 1.775 

Agriculture 11.416 2.228 1.044 4.837 0.057 0.064 0.068 

Forest 13.005 0.445 0.152 0.654 0.009 0.007 0.008 

Open area 5.374 2.583 1.693 23.208 1.798 2.730 7.867 

Bare soil 0.066 0.072 0.047 2.249 0.433 0.887 5.053 

Water 0.537 0.185 0.092 0.962 0.048 0.078 0.095 

Total 30.506 5.642 3.152 38.363 2.988 4.476 14.869 
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Table 16: Proportion of various thermal region in different LULC in 2014 (%) 

LULC Very cold Cold Cool Not Sig. Warm Hot Very Hot 

Urban 0.000 0.0003 0.001 6.129 1.987 4.031 8.475 

Agriculture 1.602 2.018 1.287 15.521 0.439 0.460 0.283 

Forest 13.713 0.387 0.127 0.264 0.001 0.001 0.0003 

Open area 3.332 1.467 0.896 17.350 1.893 3.122 5.579 

Bare soil 0.0002 0.005 0.008 1.920 0.599 1.368 3.839 

Water 0.014 0.057 0.048 1.073 0.122 0.192 0.371 

Total 18.663 3.937 2.370 42.259 5.043 9.175 18.549 

 

            

a) Year: 1988     b) Year: 2000 

                

           c) Year: 2014 

 

Figure 24: LULC distribution (% area) in Hot Spot area 
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We know that urban growth causes urban landscape changes. Therefore it is 

important to relate urban landscape to the land surface temperature to understand 

how urban fragmentation causes the UHI effect. Table 17 shows that urban built-up 

is the hottest landscape type whereas rural open area is the coldest landscape type. 

The spatial pattern of LST can be visualized from the table as we transit through the 

different zones from the hottest urban built-up landscape type to the coldest rural 

open area landscape type, which helps us to visualize the UHI formation in the study 

area. Moreover, the lower LST of urbanized open area in comparison to urban built-

up and suburban built-up indicates the importance of open space such as parks and 

other recreational areas to minimize the UHI effect. 

 

Table 17: Mean LST by urban landscape in degree Celsius 

Urban landscape 1988 2000 2014 

Urban built-up 26.92 28.98 28.67 

Suburban built-up 26.10 27.89 27.84 

Rural built-up 25.90 27.13 26.95 

Urbanized open land 25.90 27.56 27.11 

Rural open land 24.74 26.19 25.88 

 

 

Table 18 shows the mean LST for each urban growth type during different 

development periods. Infill growth has the maximum mean LST whereas Leapfrog 

has the minimum mean LST in all periods. This is because infill area is usually 

surrounded by the built-up area itself having high LST value which positively 

influences the LST of infill area, while leapfrog area is surrounded by the other 

LULC types such as open area, agriculture etc. having low LST value, which 

negatively influences the LST of leapfrog area. 
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Table 18: Mean LST by urban growth type in degree Celsius 

Urban growth type 1988-2000 2000-2014 1988-2014 

Infill 28.00 28.08 28.17 

Extension 27.75 27.26 27.51 

Leapfrog 27.30 27.04 27.13 

 

To explore the impact of urban growth on land surface temperature, we applied 

linear regression to analyze the relationship between urban land cover and surface 

temperature. Using zonal statistics tool in ArcGIS we determined the mean LST at 

each percentage of urban cover from 0% to 100%. Figure 25 shows the linear 

regression models for the three different years. The regression models indicate that 

for every 1% increase in urban area, there will be increase in mean LST by 0.012
0
C 

in 1988, 0.026
0
C in 2000 and 0.039

0
C in 2014 respectively. 

 

     

 

Figure 25: Linear regression between urban cover and LST 
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5. CONCLUSION 
 

The study revealed high rate of urban growth in Kathmandu valley. The main drivers 

of such growth are high population influx and improper land use plan. As a result, 

productive agricultural land, open area are being replaced by the concrete structures. 

This trend is expected to be more severe in future unless proper land use plans and 

policies are implemented. Various types of urban growth such as infill, extension and 

leapfrog were found to exist in the valley. However, infill type of urban growth is 

more hazardous in the sense that it fills up existing open area making cities 

congested and the consequences of such growth were apparent during Nepal 

Earthquake 2015, when many people lose their lives due to inaccessibility to the safe 

open places for emergency evacuation. 

Based on our analysis of thermal pattern of the study area over the given period of 

time, we found gradual increase in temperature in urban area. There was the 

formation of urban heat island in the central urban area of the valley. The study 

proved that the surface temperature is influenced by the urban growth. Urban growth 

not only increases the UHI effect but also affects quality of life of the people residing 

in the urban area.  

We also explored the relationship between LST and LULC through regression 

analysis. The results indicated strong linear relationship between surface temperature 

and LULC indices. We then performed regression analysis between LST and LULC 

indices for each LULC class. This exhibited variations in the relationship depending 

upon the LULC types. Regarding determination of the appropriate approach for LST 

prediction, we compared LULC indices and LULC class based methods and found 

that LULC indices method gives better prediction in comparison. 

However there were some limitations in the study. The resolution of the images was 

just moderate for classification and change detection purpose. Despite of massive 

repository of Landsat imagery, sometimes it is difficult to get the suitable images as 

per our requirement. In addition, due to spectral mixing of different land cover within 

the pixels and complex landscape of the study area, pixel based classification did not 

give us higher accuracy. Likewise our study focused on LST pattern rather than its 
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absolute value over the area of interest. Furthermore, our study is primarily based on 

daytime LST during summer season considering only three years.  

Hence we recommend that as urban growth in Kathmandu valley is in critical 

condition it is high time that concerned authorities take necessary initiatives and 

urban residents develop resilience to urban growth and UHI effect. We also 

recommend using high resolution images and other classification method so that 

more LULC classes at higher accuracy can be obtained. To obtain robust results for 

LULC-LST relationship it is better to take into account both daytime and nighttime 

temperature data for more years. Similarly, if absolute temperature is also to be 

prioritized then atmospheric correction parameters considering local climatic 

parameters has to be applied. Last but not the least we need to assess other regression 

methods as well to understand the LULC-LST relationship in depth. 
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APPENDICES 
 

 

 

1. Band Designations for Landsat 4-5 Thematic Mapper (TM) 

(Source: USGS portal) 

 

 

2. Band Designations for Landsat 8 OLI (Source: USGS portal)
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