
Increasing the Performance of Data Centers
by Combining Remote GPU Virtualization with Slurm

Sergio Iserte∗, Javier Prades†, Carlos Reaño†, and Federico Silla†
∗Universidad Jaume I, Spain

Email: siserte@uji.es
†Universidad Politécnica de Valencia, Spain

Email: japraga@gap.upv.es, carregon@gap.upv.es, fsilla@disca.upv.es

Abstract—The use of Graphics Processing Units (GPUs)
presents several side effects, such as increased acquisition
costs as well as larger space requirements. Furthermore,
GPUs require a non-negligible amount of energy even while
idle. Additionally, GPU utilization is usually low for most
applications. Using the virtual GPUs provided by the remote
GPU virtualization mechanism may address the concerns
associated with the use of these devices. However, in the
same way as workload managers map GPU resources to
applications, virtual GPUs should also be scheduled before job
execution. Nevertheless, current workload managers are not
able to deal with virtual GPUs. In this paper we analyze the
performance attained by a cluster using the rCUDA remote
GPU virtualization middleware and a modified version of the
Slurm workload manager, which is now able to map remote
virtual GPUs to jobs. Results show that cluster throughput
is doubled at the same time that total energy consumption is
reduced up to 40%. GPU utilization is also increased.

Keywords-GPGPU; CUDA; HPC; virtualization; InfiniBand;
data centers; Slurm; rCUDA

I. INTRODUCTION

GPUs (Graphics Processing Units) are used to reduce the
execution time of applications. However, the use of GPUs
is not exempt from side effects. For instance, when an MPI
(Message Passing Interface) application not requiring GPUs
is executed, it will typically spread across several nodes of
the cluster using all the CPU cores available in them. At that
point, the GPUs in the nodes executing the MPI application
will not be available for other applications given that all the
CPU cores are busy.

Another important concern related to the use of GPUs in
clusters is has to do with the way that workload managers
like Slurm [11] track the accounting of resources. These
workload managers use a fine granularity for resources
such as CPUs but not for GPUs. In this regard, they can
assign individual CPU cores to different applications, what
allows a shared usage of the CPU sockets present in a
server among several applications. On the contrary, workload
managers use a per-GPU granularity. That is, the entire
GPU is assigned to an application in an exclusive way,
thus hindering the possibility of sharing these accelerators
among several applications even if those accelerators present

enough resources for all the applications.
In order to address these concerns, the remote GPU vir-

tualization mechanism could be used. This software mech-
anism allows an application being executed in a computer
which does not own a GPU to transparently make use of
accelerators installed in other nodes of the cluster. This
feature would not only reduce the costs associated with the
acquisition and later use of GPUs, but would also increase
the overall utilization of such accelerators because workload
managers would assign those GPUs concurrently to several
applications as far as GPUs have enough resources for all
of them. Notice, however, that workload managers need
to be enhanced in order to deal with virtual GPUs. This
enhancement would basically consist in replacing the current
per-GPU granularity by a finer granularity that should allow
GPUs to be concurrently shared among several applications.
Once this enhancement is performed, it is expected that over-
all cluster performance is increased because the concerns
previously mentioned would be reduced.

In this paper we present a study of the performance of
a cluster that makes use of the remote GPU virtualization
mechanism along with an enhanced workload manager able
to assign virtual GPUs to waiting jobs. To that end, we have
used the rCUDA [7] remote GPU virtualization middleware
along with a modified version of Slurm [3], which is now
able to dispatch GPU-accelerated applications to nodes not
owning a GPU and, therefore, the use of a remote (or virtual)
GPU must be scheduled.

II. PERFORMANCE ANALYSIS

In this section we study the impact that using the remote
GPU virtualization mechanism has on the performance of a
data center. To that end, we have executed several workloads
in a cluster by submitting a series of randomly selected job
requests to the Slurm queues. After job submission we have
measured several parameters such as total execution time
of the workloads, energy required to execute them, GPU
utilization, etc. We have considered two different scenarios
for workload execution. In the first one, the cluster uses
CUDA and therefore applications can only use those GPUs
installed in the same node where the application is being



Table I: Applications used in this study. Configuration details for each application
Application Configuration Execution time (s) Memory per GPU
GPU-Blast 1 process with 6 threads in 1 node 21 1599 MB
LAMMPS 4 single-thread processes in 4 different nodes 15 876 MB
mCUDA-MEME 4 single-thread processes in 4 different nodes 165 151 MB
GROMACS 2 processes with 12 threads each one in 2 nodes 167
BarraCUDA 1 single-thread process in 1 node 763 3319 MB
MUMmerGPU 1 single-thread process in 1 node 353 2104 MB
GPU-LIBSVM 1 single-thread process in 1 node 343 145 MB
NAMD 4 processes with 12 threads each one in 4 nodes 241

executed. In this scenario, an unmodified version of Slurm
has been used. In the second scenario we have made use
of rCUDA and therefore an application being executed in a
given node can use any of the GPUs available in the cluster.
Moreover, a modified version of Slurm [3] has been used so
that it is possible to schedule the use of remote GPUs. These
two scenarios will allow to compare the performance of a
cluster using CUDA with that of a cluster using rCUDA.

In order to present the performance analysis, we first
present the cluster configuration and the workloads used in
the experiments.

A. Cluster Configuration

The testbed used in this study is based on the use of a
cluster composed of 16 1027GR-TRF Supermicro servers.
Each of the 16 servers includes two Intel Xeon E5-2620 v2
processors (six cores with Ivy Bridge architecture) operating
at 2.1 GHz and 32 GB of DDR3 SDRAM memory at
1600 MHz. They also have a Mellanox ConnectX-3 VPI
single-port FDR InfiniBand adapter connected to a Mellanox
Switch SX6025 (InfiniBand FDR compatible) to exchange
data at a maximum rate of 56 Gb/s. Furthermore, an
NVIDIA Tesla K20 GPU is installed at each node. One
additional node (without GPU) has been leveraged to execute
the central Slurm daemon responsible for scheduling jobs.

B. Workloads

Several workloads have been considered in order to
provide a more representative range of results. The work-
loads are composed of the following applications: GPU-
BLAST [10], LAMMPS [1], mCUDA-MEME [6], GRO-
MACS [9], BarraCUDA [5], MUMmerGPU [4], GPU-
LIBSVM [2], and NAMD [8]. Table I provides additional
information about the applications used in this work, such
as the exact execution configuration used for each of the
applications, their execution time, and the GPU memory re-
quired by each application. For those applications composed
of several processes or threads, the amount of GPU memory
depicted in Table I refers to the individual needs of each
particular thread or process. Notice that the amount of GPU
memory is not specified for the GROMACS and NAMD
applications because we are using non-accelerated versions
of these applications. The reason for this choice is simply
to increase the heterogeneity degree of the workloads by

using some CPU-only applications, as it could be the case
in many data centers. The previous applications have been
combined in order to create three different workloads as
shown in Table II.

As can be seen, the eight applications used present dif-
ferent characteristics, not only in the amount of processes
and threads used by each of them and their execution
time but they also present different GPU usage patterns,
what includes both memory copies to/from GPUs and also
kernel executions. Therefore, although the set of applications
considered is finite, it may provide a representative sample of
a workload typically found in current data centers. Actually,
the set of applications in Table I could be considered from
two different point of views. In the first one, the exact
computations performed by each application would receive
the main focus. In this point of view, some applications
address similar problems, like LAMMPS, GROMACS, and
NAMD. However, in the second point of view, the exact
problem addressed by each application is not the focus but
applications are seen as processes that keep CPUs and GPUs
busy during some amount of time and require some amount
of memory. Now the focus is the amount of resources re-
quired by each application and the time that those resources
are kept busy. From this second perspective, the set of
applications in Table I becomes even more representative.

Table III displays the Slurm parameters used for launching
each of the applications. The use of real and virtual GPUs
has been considered in the table. Notice that once Slurm
has been enhanced, Slurm users are able to submit jobs
to the system queues in three different modes: (1) CUDA:

Table II: Workload composition

Workload
Application Set 1 Set 2 Set 1+2
GPU-Blast 112 57
LAMMPS 88 52
mCUDA-MEME 99 55
GROMACS 101 47
BarraCUDA 112 51
MUMmerGPU 88 52
GPU-LIBSVM 99 37
NAMD 101 49
Total 400 400 400



Table III: Slurm launching parameters
Application Launch with CUDA Launch with rCUDA exclusive Launch with rCUDA shared
GPU-Blast -N1 -n1 -c6 –gres=gpu:1 -n1 -c6 –rcuda-mode=excl –gres=rgpu:1 -n1 -c6 –rcuda-mode=shar –gres=rgpu:1:1599M
LAMMPS -N4 -n4 -c1 –gres=gpu:1 -n4 -c1 –rcuda-mode=excl –gres=rgpu:4 -n4 -c1 –rcuda-mode=shar –gres=rgpu:4:876M
mCUDA-MEME -N4 -n4 -c1 –gres=gpu:1 -n4 -c1 –rcuda-mode=excl –gres=rgpu:4 -n4 -c1 –rcuda-mode=shar –gres=rgpu:4:151M
GROMACS -N2 -n2 -c12 -N2 -n2 -c12 -N2 -n2 -c12
BarraCUDA -N1 -n1 -c1 –gres=gpu:1 -n1 -c1 –rcuda-mode=excl –gres=rgpu:1 -n1 -c1 –rcuda-mode=shar –gres=rgpu:1:3319M
MUMmerGPU -N1 -n1 -c1 –gres=gpu:1 -n1 -c1 –rcuda-mode=excl –gres=rgpu:1 -n1 -c1 –rcuda-mode=shar –gres=rgpu:1:2104M
GPU-LIBSVM -N1 -n1 -c1 –gres=gpu:1 -n1 -c1 –rcuda-mode=excl –gres=rgpu:1 -n1 -c1 –rcuda-mode=shar –gres=rgpu:1:145M
NAMD -N4 -n48 -c1 -N4 -n48 -c1 -N4 -n48 -c1

no change is required to the original way of launching
jobs. (2) rCUDA shared: the job will use the remote virtual
GPUs, which will be shared with other jobs, and (3) rCUDA
exclusive: the job will use the new remote virtual GPUs
but it will not share them with other jobs. In the first case,
CUDA will be used (column labeled “Launch with CUDA”).
In the second and third cases, rCUDA will be leveraged.
In the second approach, the column labeled as “Launch
with rCUDA shared” shows that the amount of memory
required at each GPU must be specified in the submission
command. In the third case, the column labeled as “Launch
with rCUDA exclusive” shows that no GPU memory is
declared because the GPU assigned to a given job will be
not shared with other jobs.

C. Performance Analysis

Figure 1 shows, for each of the workloads depicted
in Table II, the performance when CUDA is used along
with the original Slurm job scheduler (results labeled as
“CUDA”) as well as the performance when rCUDA is used
in combination with the modified version of Slurm. In this
case, label “rCUDAex” refers to the results when remote
GPUs are used in an exclusive way by applications whereas
label “rCUDAsh” refers to the case when remote GPUs can
be shared among several applications. Among both rCUDA
uses, the shared one is the most interesting one. The exclu-
sive case is considered in this paper only for comparison
purposes. Figure 1(a) shows total execution time for each
of the workloads. Figure 1(b) depicts the averaged GPU
utilization for all the 16 GPUs in the cluster. Data for GPU
utilization has been gathered by polling each of the GPUs
in the cluster once every second and afterwards averaging

all the samples after completing workload execution. The
nvidia-smi command was used for polling the GPUs. In
a similar way, Figure 1(c) shows total energy required for
completing workload execution. Energy has been measured
by polling once every second the power distribution units
(PDUs) present the cluster. Used units are APC AP8653
PDUs, which provide individual energy measurements for
each of the servers connected to them. After workload com-
pletion, the energy required by all servers was aggregated
to provide the measurements in Figure 1(c).

As can be seen in Figure 1(a), workload “Set 1” presents
the smallest execution time, given that it is composed of
the applications requiring the smallest execution times. Fur-
thermore, using rCUDA in a shared way reduces execution
time for the three workloads. In this regard, execution time
is reduced by 48%, 37%, and 27% for workloads “Set 1”,
“Set 2”, and “Set 1+2”, respectively. Notice also that the use
of remote GPUs in an exclusive way also reduces execution
time. In the case for “Set 2” this reduction is more noticeable
because when CUDA is used the NAMD application (with
101 instances in the workload) spans over 4 complete
nodes thus blocking the GPUs in those nodes, which cannot
be used by any accelerated application during the entire
execution time of NAMD (241 seconds). On the contrary,
when “rCUDAex” is leveraged, the GPUs in those four
nodes are accessible from other nodes and therefore they can
be used by other applications being executed at other nodes.
Regarding GPU utilizacion, Figure 1(b) shows that the use
of remote GPUs helps to increase overall GPU utilization.
Actually, when “rCUDAsh” is used with “Set 1” and “Set
1+2”, average GPU utilization is doubled with respect to the

0

4000

8000

12000

16000

Set 1 Set 2 Set 1+2Ex
e

cu
ti

o
n

 T
im

e
 (

s)

Workload

CUDA rCUDA ex rCUDA sh

(a) Total execution time of the workloads.

Set 1 Set 2 Set 1+2
Workload

CUDA rCUDA ex rCUDA sh

0

0.1

0.2

0.3

0.4

0.5

G
P

U
 U

ti
liz

at
io

n

(b) Average GPU utilization.

0
Set 1 Set 2 Set 1+2

Workload

CUDA rCUDA ex rCUDA sh

4

8

12

16

En
e

rg
y 

(k
W

h
)

(c) Total energy consumed.

Figure 1: Performance results from the 16-node 16-GPU cluster.



use of CUDA. Finally, total energy consumption is reduced
accordingly, as shown in Figure 1(c), by 40%, 25%, and 15%
for workloads “Set 1”, “Set 2”, and “Set 1+2”, respectively.

Several are the reasons for the benefits obtained when
GPUs are shared across the cluster. First, as already men-
tioned, the execution of the non-accelerated applications
makes that GPUs in the nodes executing them remain idle
when CUDA is used. On the contrary, when rCUDA is
leveraged, these GPUs can be used by applications being
executed in other nodes of the cluster. Notice that this
remote usage of GPUs belonging to nodes with busy CPUs
will be more frequent as cluster size increases because
more GPUs will be blocked by non-accelerated applications
(also depending on the exact workload). Another example
is the execution of LAMMPS and mCUDA-MEME, which
require 4 nodes with one GPU. While these applications
are being executed with CUDA, those 4 nodes cannot be
used by any other application from Table I: on the one
hand, the other accelerated applications cannot access the
GPUs in those nodes because they are busy and, on the other
hand, the non-GPU applications (GROMACS and NAMD)
cannot use those nodes because they require all the CPU
cores and LAMMPS and mCUDA-MEME already took one
core. However, when GPUs are shared among several appli-
cations, GPUs assigned to LAMMPS and mCUDA-MEME
can also be assigned to other applications that will run in
any available CPU in the cluster, thus increasing overall
throughput. This concurrent usage of the GPUs brings to
a second cause for the improvements shown in Figure 1.

The second reason for the improvements shown in Fig-
ure 1 is related to the usage that applications make of GPUs.
As Table I showed, some applications do not completely
exhaust GPU memory resources. For instance, applications
mCUDA-MEME and GPU-LIBSVM only use about 3%
of the memory present in the NVIDIA Tesla K20 GPU.
However, the unmodified version of Slurm (combined with
CUDA) will allocate the entire GPU for executing each of
these applications, thus causing that almost 100% of the
GPU memory is wasted during application execution. This
concern is also present for other applications in Table I.
Moreover, if NVIDIA Tesla K40 GPUs were used instead of
the NVIDIA Tesla K20 devices employed in this study, then
this memory underutilization would be worse because the
K40 model features 12 GB of memory instead of the 5 GB
of the Tesla K20 devices. On the contrary, when rCUDA is
used in a shared way, GPUs can be shared among several
applications provided that there is enough memory for all
of them. Obviously, GPU cores will have to be multiplexed
among all those applications, what will cause that all of them
execute slower.

Another possible point of view related to sharing GPUs
among applications is that all the applications sharing the
GPU execute slower because they have to share the GPU
cores. However, despite of the slower execution of each

individual application, the entire workload is completed
earlier, as shown in Figure 1. This means (1) that the
time spent by applications waiting in the Slurm queues is
reduced and (2) the execution of each individual application
is completed earlier. As a consequence, data center users
increase their satisfaction about the service received.

III. CONCLUSIONS

In this paper we have carried out a thorough performance
evaluation of a cluster using a modified version of Slurm
which is able to schedule the use of the virtual GPUs
provided by the rCUDA middleware. The main idea is that
the rCUDA middleware decouples GPUs from the nodes
where they are installed, therefore making the scheduling
process much more flexible at the same time that a better
usage of resources is achieved.

Results suggest that cluster performance can be notice-
ably increased just by modifying the Slurm scheduler and
introducing rCUDA in the cluster. It is also expected that as
GPUs feature larger memory sizes, the benefits presented in
this work will become also larger.

ACKNOWLEDGMENT

This work was funded by Generalitat Valenciana under
Grant PROMETEOII/2013/009 of the PROMETEO program
phase II. The author from Universidad Jaume I was sup-
ported by project TIN2014-53495-R from MINECO and
FEDER. The authors are grateful for the generous support
provided by Mellanox Technologies and the equipment
donated by NVIDIA Corporation.

REFERENCES

[1] W. M. Brown et al., “Implementing molecular dynamics on
hybrid high performance computers: Particle-particle particle-
mesh,” Computer Physics Communications, 2012.

[2] C. C. Chang et al., “Libsvm: A library for support vector
machines,” ACM Trans. Intell. Syst. Technol., 2011

[3] S. Iserte et al. “SLURM support for remote GPU virtualiza-
tion: implementation and performance.” SBAC-PAD 2014

[4] S. Kurtz et al., “Versatile and open software for comparing
large genomes,” Genome Biology, 2004

[5] P. Lam et al., “BarraCUDA - a fast short read sequence aligner
using graphics processing units”, BMC Research Notes, 2012

[6] Y. Liu et al., “CUDA-MEME: Accelerating motif discovery
in biological sequences using CUDA-enabled graphics pro-
cessing units,” Pattern Recognition Letters, 2010

[7] A. J. Peña et al., “A complete and efficient CUDA-sharing
solution for HPC clusters,” Parallel Computing, vol. 40, 2014.

[8] J. C. Phillips et al., “Scalable molecular dynamics with
namd,” Journal of Computational Chemistry, 2005

[9] S. Pronk et al., “Gromacs 4.5: a high-throughput and highly
parallel molecular simulation toolkit,” Bioinformatics, 2013

[10] P. D. Vouzis et al., “GPU-BLAST: Using GPUs to accelerate
protein sequence alignment,” Bioinformatics, 2010.

[11] A. Yoo et al., “Simple linux utility for resource management,”
Job Scheduling Strategies for Parallel Processing, 2003


