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Abstract. We prove that under the extended Carleson’s condi-
tion, a sequence (xn) ⊂ BH is linear interpolating for H∞(BH) for
an infinite dimensional Hilbert space H. In particular, we construct
the interpolating functions for each sequence and find a bound for
the constant of interpolation.

1. Introduction

Let A be a space of bounded functions defined on X. A sequence
(xn) in X is called interpolating for A if for any sequence (an) ∈ `∞,
there exists f ∈ A such that f(xn) = an for all n ∈ N. We consider the
linear and continuous R : A → `∞ defined by R(f) = (f(xn)). The
sequence (xn) is interpolating for A if and only if there exists a map
T : `∞ → A such that R◦T = Id`∞. If T is linear, the sequence (xn) is
said to be linear interpolating for A. For any α = (αj) ∈ `∞, let Mα =
inf {‖f‖∞ : f(xj) = αj, j ∈ N, f ∈ A} . The constant of interpolation
for (xn) is defined by M = sup {Mα : α ∈ `∞, ‖α‖∞ ≤ 1} .

It is a classical result in function theory that a sequence (zn) in the
open unit disc D ⊂ C is interpolating for H∞, the space of analytic
bounded functions on D, if and only if Carleson’s condition holds, i.
e.:

There is δ > 0 such that
∏
k 6=j

ρ(zk, zj) ≥ δ for any j ∈ N, (1.1)

where ρ(zk, zj) denotes the pseudohyperbolic distance for points zk, zj ∈
D, given by

ρ(zk, zj) =

∣∣∣∣ zk − zj1− zkzj

∣∣∣∣ .
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Recall the Schwarz-Pick lemma: ρ(f(z), f(w)) ≤ ρ(z, w) for any
z, w ∈ D and f ∈ H∞, ‖f‖ ≤ 1. If ψ is an automorphism of D, then
ρ(ψ(z), ψ(w)) = ρ(z, w).

If we deal with complex Banach spaces E, we denote by BE its
open unit ball. A function f : BE → C is said to be analytic if
it is Fréchet differentiable. Denote by H(BE) the space of analytic
functions f : BE → C and by H∞(BE) the space {f : BE → C :
f is analytic and bounded }, which becomes a uniform Banach algebra
when endowed with the sup-norm ‖f‖ = sup{|f(x)| : x ∈ BE} and it
is, obviously, the analogue of the space H∞ for an arbitrary Banach
space.

Sufficient conditions for a sequence to be interpolating for H∞(BE)
where given by the authors in [GM]. Bearing in mind the Davie-

Gamelin extension of f ∈ H∞(BE) to f̃ ∈ H∞(BE∗∗), the authors
proved that a sufficient condition for a sequence (xn) ⊂ BE∗∗ to be lin-
ear interpolating for H∞(BE) is that the sequence of norms (‖xn‖) is in-
terpolating for H∞. Examples of sequences which satisfy this condition
are, for instance, those which grow exponentially to the unit sphere,
which we call the Hayman-Newman condition: 1−‖xk+1‖ < c(1−‖xk‖)
for some 0 < c < 1 for any k ∈ N. Interpolating sequences on H∞(BE)
have been very useful to study the spectra of composition operators on
spaces of analytic functions (see [GGL], [GLR] and [GM2]).

During all the manuscript, we will deal with a complex Hilbert
spaceH. The notion of pseudohyperbolic distance can be carried over
to H∞(BH) by considering for any x, y ∈ BH ,

ρH(x, y) = sup{ρ(f(x), f(y)) : f ∈ H∞(BH), ‖f‖ ≤ 1}, (1.2)

where ρ(z, w) is the pseudohyperbolic distance in D. B. Berndtsson
[B] showed that a sequence (xn) in the open unit Euclidean ball Bn

of Cn is interpolating for H∞(Bn) if the following extended Carleson’s
condition holds:

There is δ > 0 such that
∏
k 6=j

ρH(xj, xk) ≥ δ ∀j ∈ N. (1.3)

As P. Galindo, T. Gamelin and M. Lindström pointed out in [GGL],
the result given by Berndtsson can be extended to the case of an infinite
dimensional complex Hilbert space H by interpolating on finite subsets
of the sequence with uniform bounds and applying a normal families
argument.

The aim of this paper is to adapt the proof given by Berndtsson
to the infinite dimensional case and prove that under the extended
Carleson’s condition 1.3, a sequence (xn) ⊂ BH is linear interpolating.
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In particular, we will construct the interpolating functions for each
sequence and will find a bound for the constant of interpolation.

For our purpose, we will study the automorphisms on BH and will
adapt some results given by B. Berndtsson (see [B]) to the infinite
dimensional case.

2. Background

The results of this section and further information about the auto-
morphisms of BH and the pseudohyperbolic distance on BH can be
found in [GR].

Automorphisms on BH. Recall that the set of automorphisms on
D is denoted by Aut(D). It is well-known that this set is given by all
the mappings f : D→ D which are the composition of rotations with
Möbius transformations ma : D −→ D given by

ma(z) =
a− z
1− āz

for any a ∈ D. (2.1)

The analogues of Möbius transformations on H are ϕa : BH −→
BH , a ∈ BH , defined according to

ϕa(x) = (saQa + Pa)(ma(x)) (2.2)

where sa =
√

1− ‖a‖2, ma : BH −→ BH is the analytic map

ma(x) =
a− x

1− 〈x, a〉
, (2.3)

Pa : H −→ H is the orthogonal projection along the one-dimensional
subspace spanned by a, that is,

Pa(x) =
〈x, a〉
〈a, a〉

a

and Qa : H −→ H, is the orthogonal complement, Qa = Id−Pa. Recall
that Pa and Qa are self-adjoint operators since they are orthogonal
projections, so 〈Pa(x), y〉 = 〈x, Pa(y)〉 and 〈Qa(x), y〉 = 〈x,Qa(y)〉 for
any x, y ∈ H.

The set of automorphisms on BH is given by all the mappings ϕ :
BH → BH which are the composition of such analogous Möbius trans-
formations with unitary transformations U of H. Recall that unitary
transformations U of H are self-maps of H satisfying 〈U(x), U(y)〉 =
〈x, y〉 for all x, y ∈ H.

Remarks on the pseudohyperbolic distance. It is clear by the
definition that for any x, y ∈ BH ,

ρ(f(x), f(y)) ≤ ρH(x, y) for any f ∈ H∞(BH), ‖f‖∞ ≤ 1, (2.4)
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It is also well-known that

ρH(x, y) = ‖ϕy(x)‖ (2.5)

so making some calculations we obtain

ρH(x, y)2 = 1− (1− ‖x‖2)(1− ‖y‖2)
|1− 〈x, y〉|2

. (2.6)

3. Results

First, we recall Proposition 2.1 in [GLM]:

Proposition 3.1. Let E be a complex Banach space and (xn) ⊂ BE.
If there exists M > 0 and a sequence of functions (Fj) ⊂ H∞(BE)
satisfying Fj(xn) = δj,n for any j ∈ N and

∑
j |Fj(x)| ≤ M for all

x ∈ BE, then (xn) is linear interpolating for H∞(BE).

We will call (Fn) a sequence of Beurling functions for (xn). Under
conditions of Proposition 3.1, we have that T : `∞ → H∞(BE) defined
by T ((αn)) =

∑
n αnFn is a well-defined, linear operator such that

‖T‖ ≤ M and T ((αn))(xk) = αk for any k ∈ N, so (xn) is linear
interpolating. In particular, the constant M is an upper bound for the
constant of interpolation.

The following calculations are straightforward and can be found in
[GM].

Lemma 3.2. We have the following statements:

1− x ≤ − log x for 0 < x ≤ 1. (3.1)

<e
[

1 + αz

1− αz

]
=

1− |α|2|z|2

|1− αz|2
for any α ∈ D, z ∈ D. (3.2)

The following three lemmas are just calculus:

Lemma 3.3. The function u2 exp (−ut/8) is bounded from above by
min{1, 256

e2t2
} for 0 ≤ u ≤ 1 and t > 0.

Lemma 3.4. Let 0 < ck < 1 for any k ∈ N and suppose that h(t) is a
non-increasing function on (0,∞). Then,

n∑
j=1

cjh

(∑
k≥j

cj

)
≤
∫ ∞
0

h(t)dt.

The following result will be needed to simplify the proof of Theorem
3.11. The proof is just an exercise.
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Lemma 3.5. Let (an) ⊂ [0, 1) such that limn an = 1. Then, (an) can
be reordered into a non-decreasing sequence (bn) such that limn bn = 1.

Now we provide a lemma which includes some calculations related
to the automorphisms ϕx.

Lemma 3.6. Let x, y ∈ BH and ϕ−y : H −→ H the corresponding
automorphism defined as in 2.2. Then, we have that

〈ϕy(x), ϕy(z)〉 = 1− (1− 〈x, z〉)(1− 〈y, y〉)
(1− 〈x, y〉)(1− 〈y, z〉)

.

Proof. Since for any x ∈ BH we have ϕy(x) = (syQy + Py) (my(x)),
and bearing in mind that P and Q are orthogonal, we obtain that

〈ϕy(x), ϕy(z)〉 = 〈(syQy + Py) (my(x)), (syQy + Py) (my(z))〉 =

s2y〈Qy(my(x)), Qy(my(z))〉+ 〈Py(my(x)), Py(my(z))〉 =

(1− ‖y‖2)〈Qy(y − x), Qy(y − z)〉+ 〈Py(y − x), Py(y − z)〉
(1− 〈x, y〉)(1− 〈z, y〉)

by (2.3) just making some calculations. Since we have that Pa +Qa =
IdH for any a ∈ H, we obtain that

〈ϕy(x), ϕy(z)〉 =
〈y − x, y − z〉 − ‖y‖2〈Qy(y − x), Qy(y − z)〉

(1− 〈x, y〉)(1− 〈y, z〉)
.

The complement of the orthogonal projection is given by

Qy(x) = x− 〈x, y〉
〈y, y〉

y,

hence Qy(y − x) = −Qy(x) and Qy(y − z) = −Qy(z). Moreover,

〈−Qy(x),−Qy(z)〉 = 〈Qy(x), Qy(z)〉 = 〈x− 〈x, y〉
〈y, y〉

y, z − 〈z, y〉
〈y, y〉

y〉 =

〈x, z〉 − 1

‖y‖2
〈x, y〉〈y, z〉 − 1

‖y‖2
〈x, y〉〈y, z〉+

1

‖y‖2
〈x, y〉〈y, z〉 =

〈x, z〉 − 1

‖y‖2
〈x, y〉〈y, z〉 =

〈x, z〉〈y, y〉 − 〈x, y〉〈y, z〉
‖y‖2

.

So, 〈ϕy(x), ϕy(z)〉 =
〈x− y, z − y〉 − ‖y‖2 〈x,z〉〈y,y〉−〈x,y〉〈y,z〉‖y‖2

(1− 〈x, y〉)(1− 〈y, z〉)
=

〈x− y, z − y〉 − 〈x, z〉〈y, y〉+ 〈x, y〉〈y, z〉
(1− 〈x, y〉)(1− 〈y, z〉)

.
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Adding and subtracting 1 and arranging terms, we obtain that the
numerator equals to (1− 〈x, y〉)(1− 〈y, z〉)− (1− 〈x, z〉)(1− 〈y, y〉).

Therefore, dividing by the denominator and making calculations, we
obtain

〈ϕy(x), ϕy(z)〉 = 1− (1− 〈x, z〉)(1− 〈y, y〉)
(1− 〈x, y〉)(1− 〈y, z〉)

,

and the lemma is proved. �

Considering z = x, we obtain that formulas 2.5 and 2.6 are the same
expression for the pseudohyperbolic distance for x, y ∈ BH .

We will also need some technical lemmas. For the first one, we will
need Proposition 5.1.2 in [R], which is stated as follows,

Lemma 3.7. Let a, b, c be points in the unit ball of a finite dimensional
Hilbert space. Then,

|1− 〈a, b〉| ≤ (
√
|1− 〈a, c〉|+

√
|1− 〈b, c〉|)2

Then, we obtain the following lemma,

Lemma 3.8. Let H be an infinite dimensional complex Hilbert space
and x1, x2, x3 ∈ BH . Then,

|1− 〈x1, x2〉| ≤ 2(|1− 〈x1, x3〉|+ |1− 〈x2, x3〉|)
and

1− |〈x1, x2〉| ≤ 2(1− |〈x1, x3〉|+ 1− |〈x2, x3〉|).

Proof. Let x1, x2, x3 ∈ BH and set the space H1 = span{x1, x2, x3}.
We have that H1 is itself a Hilbert space and we can consider an or-
thonormal basis {e1, e2, e3} of H1. Consider for j = 1, 2, 3 the vec-
tors yj = (y1j , y

2
j , y

3
j ) given by the components of xj in that basis. It

is clear that these vectors are in the unit Euclidean ball of C3 and
〈xj, xk〉 = 〈yj, yk〉, so we apply Lemma 3.7 to deduce

|1− 〈x1, x2〉| ≤ (
√
|1− 〈x1, x3〉|+

√
|1− 〈x2, x3〉|)2 =

|1− 〈x1, x3〉|+ |1− 〈x2, x3〉|+ 2
√
|1− 〈x1, x3〉|

√
|1− 〈x2, x3〉|.

By the arithmetic-geometric means inequality, we have |1−〈x1, x2〉 | ≤

|1− 〈x1, x3〉|+ |1− 〈x2, x3〉|+ 2
|1− 〈x1, x3〉|+ |1− 〈x2, x3〉|

2
=

2(|1− 〈x1, x3〉|+ |1− 〈x2, x3〉|).
To prove the other result, notice that

1− |〈xj, xk〉| = min
θ∈[0,2π)

|1− eiθ〈xj, xk〉|.
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We have that 1 − |〈x1, x3〉| = |1 − eiα〈x1, x3〉| and 1 − |〈x2, x3〉| =
|1− eiβ〈x2, x3〉| for some α, β ∈ [0, 2π). Then, applying the inequality
above, we have that

1− |〈x1, x2〉| = 1− |〈eiαx1, eiβx2〉| ≤ |1− 〈eiαx1, eiβx2〉| ≤
2(|1− eiα〈x1, x3〉|+ |1− eiβ〈x2, x3〉|) =

2(1− |〈x1, x3〉|+ 1− |〈x2, x3〉|). �

Then, we can prove the following lemma, which extends Lemma 6 in
[B] to the infinite dimensional case. We give the proof for the sake of
completeness.

Lemma 3.9. Let H be a Hilbert space and xk, xj ∈ BH . If ‖xk‖ ≥
‖xj‖, then

1− |〈xk, x〉|2

1− |〈xk, xj〉|2
≥ 1

8

1− ‖xk‖2

1− |〈xj, x〉|2
for any x ∈ BH . (3.3)

Proof. By Lemma 3.8, 1 − |〈xk, xj〉| ≤ 2(1 − |〈xk, x〉| + 1 − |〈x, xj〉|),
and we consider two cases depending on x ∈ BH . If 1 − |〈xk, x〉| ≥
1− |〈xj, x〉|, then 1− |〈xk, xj〉|2 ≤ 8(1− |〈xk, x〉|) so, bearing in mind
that ‖xk‖ ≥ ‖xj‖,

1− |〈xk, x〉|2

1− |〈xk, xj〉|2
≥ 1

8

1− |〈xk, x〉|2

1− |〈xk, x〉|
≥ 1

8
≥ 1

8

1− ‖xj‖2

1− |〈xj, x〉|2
≥ 1

8

1− ‖xk‖2

1− |〈xj, x〉|2
.

If 1− |〈xk, x〉| ≤ 1− |〈xj, x〉|, then 1− |〈xk, xj〉|2 ≤ 8(1− |〈xj, x〉|) so,

1− |〈xk, x〉|2

1− |〈xk, xj〉|2
≥ 1

8

1− |〈xk, x〉|2

1− |〈xk, x〉|
≥ 1

8

1− ‖xk‖2

1− |〈xk, x〉|
≥ 1

8

1− ‖xk‖2

1− |〈xj, x〉|2
,

so we are done. �

We will also need the following lemma,

Lemma 3.10. Let {xn} ⊂ BH and δ > 0 satisfying∏
k 6=j

ρH(xk, xj) ≥ δ for all j ∈ N. (3.4)

Then, we have that

∞∑
k 6=j

(1− ‖xk‖2) ≤ 2 log

(
1

δ

)
1 + ‖xj‖
1− ‖xj‖

for any j ∈ N, (3.5)
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and for any j ∈ N,
∞∑
k=1

(1− ‖xk‖2) ≤
(

1 + 2 log
1

δ

)
1 + ‖xj‖
1− ‖xj‖

. (3.6)

Proof. Taking squares and logarithms in 3.4 we obtain

−
∞∑
k 6=j

log ρH(xk, xj)
2 ≤ −2 log δ = 2 log

1

δ
.

By (3.1), we have that 1−ρH(xk, xj)
2 ≤ − log ρH(xk, xj)

2 for any k 6=
j, so bearing in mind (2.6), we obtain

∞∑
k 6=j

(1− ‖xk‖2)(1− ‖xj‖2)
|1− 〈xk, xj〉|2

≤ 2 log
1

δ
.

In consequence,
∞∑
k 6=j

(1− ‖xk‖2) =
∞∑
k 6=j

(1− ‖xk‖2)(1− ‖xj‖2)
|1− 〈xk, xj〉|2

|1− 〈xk, xj〉|2

1− ‖xj‖2
≤

2

(
log

1

δ

)
(1 + ‖xj‖)2

1− ‖xj‖2
= 2

(
log

1

δ

)
1 + ‖xj‖
1− ‖xj‖

and the lemma is proved. �

Now we are ready to prove the result for complex Hilbert spaces. In
addition, we will provide an upper estimate for the constant of inter-
polation depending only on δ.

Theorem 3.11. Let H be a Hilbert space and (xn) a sequence in BH .
Suppose that there exists δ > 0 such that (xn) satisfies the general-
ized Carleson condition (1.3) for δ. Then, there exists a sequence of
Beurling functions (Fn) for (xn). In particular, the sequence (xn) is
interpolating for H∞(BH) and the constant of interpolation is bounded
by

128(1 + 2 log 1
δ
)

eδ
.

Proof. Define, for any k, j ∈ N, k 6= j, the analytic function gk,j :
H −→ C given by gk,j(x) = 〈ϕxk(x), ϕxk(xj)〉. For each j ∈ N we
define the function Bj : BH −→ C by Bj(x) =

∏
k 6=j gk,j(x). First we

check that the infinite product converges uniformly on rBH = {x ∈
BH : ‖x‖ ≤ r} for fixed 0 < r < 1. Let x ∈ rBH . We have, by Lemma
3.6, that

1− gk,j(x) = 1− 〈ϕxk(x), ϕxk(xj)〉 =
(1− 〈x, xj〉)(1− 〈xk, xk〉)
(1− 〈x, xk〉)(1− 〈xk, xj〉)

.
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Since |1− 〈x, xj〉| ≤ 1 + r, |1− 〈x, xk〉| ≥ 1− r and |1− 〈xk, xj〉| ≥
1− ‖xk‖‖xj‖ ≥ 1− ‖xj‖, we have that

|1− gk,j(x)| ≤ 1 + r

1− r
1− ‖xk‖2

1− ‖xj‖
,

so for any j ∈ N, the series
∑

k 6=j |1 − gk,j(x)| is uniformly convergent

on rBH by Lemma 3.10. In particular, the infinite product
∏

k 6=j gk,j(x)

converges uniformly on compact sets, so Bj ∈ H(BH). In addition, no-
tice that for x ∈ BH , |Bj(x)| =

∏
k 6=j |gk,j(x)| =

∏
k 6=j |〈ϕxk(x), ϕxk(xj)〉| ≤∏

k 6=j ‖ϕxk(x)‖‖ϕxk(xj)‖ ≤ 1, so ‖Bj‖∞ ≤ 1 and we obtain that Bj ∈
H∞(BH). It is clear that Bj(xk) = 0 for k 6= j since ϕxk(xk) = 0 and,
according to 2.5, we have that

|Bj(xj)| =
∏
k 6=j

|gk,j(xj)| =
∏
k 6=j

|〈ϕxk(xj), ϕxk(xj)〉| =

∏
k 6=j

‖ϕxk(xj)‖2 =
∏
k 6=j

ρ(xk, xj)
2 ≥ δ2.

Consider the functions qj, Aj ∈ H(BH) for any k ∈ N defined by

qj(x) =

(
1− ‖xj‖2

1− 〈x, xj〉

)2

,

Aj(x) =
∑

{k:‖xk‖≥‖xj‖}

(1− ‖xk‖2)(1− ‖xj‖2)
1− |〈xk, xj〉|2

1 + 〈xk, x〉
1− 〈xk, x〉

.

The function qj is clearly analytic and bounded. By Lemma 3.5, we
will consider that the sequence (‖xn‖) is non-decreasing, so {k : ‖xk‖ ≥ ‖xj‖} =
{k : k ≥ j}. Notice also that for 0 < r < 1 and x ∈ rBH we have that
|Aj(x)| ≤∑

k≥j

(1− ‖xk‖2)(1− ‖xj‖2)
1− ‖xj‖2

1 + r

1− r
≤ 1 + r

1− r
∑
k≥j

(1− ‖xk‖2)

so by Lemma 3.10, the series converges uniformly on rBH and hence
Aj ∈ H(BH). Moreover, exp (−Aj) belongs toH∞(BH) since | exp (−Aj) | =
exp (−<e Aj) and using formula 3.2, we have

<e Aj(x) =
∑
k≥j

(1− ‖xk‖2)(1− ‖xj‖2)(1− |〈xk, x〉|2)
(1− |〈xk, xj〉|2)(|1− 〈xk, x〉|2)

> 0.

Consider Cδ = 1/(1 + 2 log 1/δ) and for any j ∈ N, the analytic
function Fj : BH −→ C defined by

Fj(x) =
Bj(x)

Bj(xj)
qj(x)2 exp (−Cδ(Aj(x)− Aj(xj))).
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It is clear that Fj(xj) = 1 and Fj(xk) = 0 for any k 6= j. We claim
that there exists M > 0 such that

∑∞
j=1 |Fj(x)| ≤ M for any x ∈ BH .

Indeed, by (3.2) that

<e Aj(x) =
∑
k≥j

(1− ‖xk‖2)(1− ‖xj‖2)(1− |〈xk, x〉|2)
(1− |〈xk, xj〉|2)(|1− 〈xk, x〉|2)

.

In particular, for x = xj, we obtain

<e Aj(xj) =
∑
k≥j

(1− ‖xk‖2)(1− ‖xj‖2)(1− |〈xk, xj〉|2)
(1− |〈xk, xj〉|2)(|1− 〈xk, xj〉|2)

.

Using formula (2.6) we obtain that

<e Aj(xj) =
∑
k≥j

(1− ρH(xk, xj)
2) = 1 +

∑
k>j

(1− ρH(xk, xj)
2)

and by (3.1), we have that <e Aj(xj) ≤

1−
∑

{k:‖xk‖>‖xj‖}

log ρH(xk, xj)
2 ≤ 1−

∑
k 6=j

log ρH(xk, xj)
2 ≤ 1 + 2 log

1

δ
.

Moreover, to estimate <e Aj(x) from below we use Lemma 3.9 and
we obtain that

<e Aj(x) ≥ 1

8

1− ‖xj‖2

1− |〈xj, x〉|2
∑
k≥j

(1− ‖xk‖2)2

|1− 〈xk, x〉|2
.

We define for any k ∈ N,

bk(x) =
1− ‖xk‖2

1− |〈xk, x〉|2

so

<e Aj(x) ≥ 1

8
bj(x)

∑
k≥j

|qk(x)|. (3.7)

It is clear that 1 − |〈xj, x〉|2 = (1 + |〈xj, x〉|)(1 − |〈xj, x〉|) ≤ 2|1 −
〈xj, x〉|, so

|qj(x)| =
∣∣∣∣ 1− ‖xj‖2

1− 〈x, xj〉

∣∣∣∣2 ≤ 4

(
1− ‖xj‖2

1− |〈x, xj〉|2

)2

= 4bj(x)2.
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Using that |Bj(xj)| ≥ δ, |Bj(x)| ≤ 1, the bound for <e Aj(xj) and
3.7, we obtain

|Fj(x)| ≤ 4

δ
|qj(x)|bj(x)2 exp

(
−Cδ

(
1

8
bj(x)

∑
k≥j

|qk(x)| − 1

Cδ

))
≤

4e

δ
|qj(x)|bj(x)2 exp

(
−1

8
Cδbj(x)

∑
k≥j

|qk(x)|

)
.

Since 0 ≤ bk(x) ≤ 1, we consider u = bj(x) and t = Cδ
∑

k≥j |qk(x)| > 0
and apply Lemma 3.3 to conclude that

|Fj(x)| ≤ 4e

δCδ
Cδ|qj(x)|h

(
Cδ
∑
k≥j

|qk(x)|

)
,

where h(t) = min{1, 256/e2t2}. Hence, summing on j, we obtain

∞∑
j=1

|Fj(x)| ≤ 4e

δCδ

∞∑
j=1

Cδ|qj(x)|h

(∑
k≥j

Cδ|qk(x)|

)
,

and applying Lemma 3.4 , we obtain that

∞∑
j=1

|Fj(x)| ≤ 4e

δCδ

∫ ∞
0

h(t)dt =
4e.32

e2δCδ
=

128

eδCδ
.

Hence , by Proposition 3.1, we conclude that (xn) is linear interpolat-
ing. �

Given (xn) ⊂ BH satisfying the extended Carleson’s condition and
any (αn) ∈ `∞, the function f(x) =

∑∞
j=1 αjFj(x), where Fj is defined

as in Theorem 3.11, is well-defined and interpolates the values αn in
the points xn for any n ∈ N.

Notice also that the function

f(δ) =
1

δC2
δ

=
1 + 2 log 1/δ

δ

is non-increasing for 0 < δ ≤ 1. Since limδ→1 f(δ) = 1, un upper bound
for the constant of interpolation is close to 128

e
if we deal with sequences

satisfying the extended Carleson’s condition with δ close to 1. Can the
number 128

e
be decreased?
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