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Abstract 

The use of self-assembled monolayers (SAM) of fullerene derivatives reduces the 

hysteresis of perovskite solar cells (PSCs). We have investigate three different fullerene 

derivatives observing a decrease on hysteresis for all the cases. Several processes can 

contribute to the hysteresis behavior on PSCs. We have determined that the reduced 

hysteresis observed for devices with SAM is produced by a decrease of the capacitive 

hysteresis. In addition, with an appropriated functionalization SAM can increase 

photocurrent even when no electron selective contact (ESC) is present and SAM is 

deposited just on top of the transparent conductive oxide. Appropriated 

functionalization of the fullerene derivative, as introducing -CN groups, can enhance 

cell performance and reduce hysteresis. This work paves the way for a future 

enhancement of PSCs by a tailored design of the fullerene molecules that could actuate 

as an ESC by themselves. 

1 
 



 

 

TOC Figure 

 

2 
 



 

 After the first reports on all-solid perovskite solar cells (PSCs),1,2 the interest of 

the scientific community on this kind of devices has boosted. Successive improvements 

of the cell configuration, deposition methods, perovskite composition (combination of 

organic and inorganic cations with halide anions) as well as hole and electron 

transporting materials,3-7 have produce record certified devices with efficiencies as high 

as 22.1%.8 Nevertheless, despite the spectacular enhancement in very few years, many 

aspects related to the behavior of halide perovskites and to the working principles of 

PSCs remain unclear and are still under debate. One of these debates is the role of the 

charge selective contacts, not only in terms of the overall efficiency but also in terms of 

the anomalous phenomena widely observed in PSCs; for instance, the hysteresis present 

in the Current-Potential (J-V) curves. Many different contacts have been studied for 

PSCs, which show their important role on the solar cell efficiency, stability and 

hysteresis.9,10It is commonly established that the use of fullerene derivatives in PSCs 

with inverted configuration produce devices without J-V hysteresis; however, recent 

papers demonstrate that this statement cannot be generalized, for example significant 

hysteresis has been detected at low temperature even with the presence of fullerene 

derivatives.11,12 Hysteresis in inverted configuration devices appears in different 

conditions and shows different and using TiO2mesoporous scaffold.11,13,14 In this 

communication, we have studied the effect of a Self-Assembled Monolayer (SAM) of 

different fullerene derivatives specifically functionalized to anchor to an oxide surface. 

The effect of the anchoring moiety, the insertion of additional functional groups in the 

fullerene unit for a more intimate contact with the perovskite and the role of compact 

selective contacts have been analyzed by focusing on the solar cell performance and 

hysteresis.  
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 Very recently, capacitive and non-capacitive components, whose origins are 

believed to arise from different physical and/or chemical mechanisms, have been 

identified in the hysteresis of PSCs.14 Capacitive hysteresis is directly proportional to 

the Current-Potential (J-V) curve scan rate, s. A capacitor with capacitance C presents a 

measured current s·C in the J-V curve observed during the voltage sweep. The change 

of the scan rate direction produces consequently a change in the sign of the current 

provoking the hysteresis. Moreover non-capacitive hysteresis is not proportional to scan 

rate and has a different physical origin as we discuss below. We have observed that 

perovskite solar cells (PSCs) prepared with a SAM of fullerene derivatives present a 

mixed hysteresis behavior; firstly, they exhibit the typical capacitive component of a 

standard PSCs prepared with TiO2 as an electron selective contact (ESC), although the 

hysteresis is significantly less pronounced when the fullerene SAM is introduced; 

secondly, a non-capacitive hysteresis previously observed also in inverted PSCs with 

fullerene was also detected in PSCs with a SAM. 

 The photovoltaic performance does not only depend on the light absorbing 

material but also on the efficient charge extraction at the selective contacts.15 TiO2 is 

probably the most extensively used ESC in PSCs, although organic ESC are receiving 

an increasing attention.16 In accordance with this, it has been shown that the use of 

fullerene derivative layers,17,18 the deposition of a thin fullerene layer19,20 or even the 

use of a SAM on top of a TiO2,
21 reduces significantly the photoluminescence lifetime, 

thus indicating a better electron extraction when the fullerene derivatives substitute the 

TiO2 or even when the fullerene is on the top of the TiO2 layer. Therefore, modifying 

the ESC-perovskite interface can significantly enhancethe electron injection and 

electron transfer, as well as reducing the charge recombination.19,21 As it has previously 

been commented, the approach that consists in functionalizing the ESC with fullerene 

4 
 



derivatives has been investigated in this work. Fullerenes have high electron affinity and 

are good electron acceptors. Their π-conjugated structure enables the charge 

delocalization, thus enhancing the electron extraction. As it has already been mentioned, 

fullerenes have reduced the hysteresis effect observed in PSCs from the standard J-V 

measurements. In this sense, it is especially interesting to analyze how a single fullerene 

monolayer can affect the ESC-perovskite interface properties. It is worth pointing out 

that such interesting approach constitutes a valuable tool for a better understanding of 

the hysteresis origins and its subsequent minimization, while it is based on easy and 

material saving procedures compared to the approach based on the exploitation of thin 

layer of a fullerene derivative. Additionally, we have also analyzed how the SAM of the 

fullerene derivatives behave when no compact TiO2 layer is employed; in particular, we 

have observed that the deleterious effect of removing the compact TiO2 can be 

relatively mitigated by the presence of the SAM. The presence of compact TiO2 and/or 

fullerene derivative SAM has a huge impact on the J-V hysteresis and an appropriate 

choice of the fullerene derivative can avoid the photocurrent reduction observed when 

no compact TiO2 is used. 

 In this work, we have analyzed three different fullerene derivatives (1-3), see 

Figure 1a, whose syntheses is described in detail in the experimental section. The 

fullerene derivatives have been functionalized with a carboxyl group (-COOH), which is 

a widely employed functional group for anchoring to the TiO2 surface. We have 

selected as a reference the fullerene derivative 3, already reported in the literature,21 

where a benzoic acid is linked to the fullerene through a N-methylpyrrolidine, and we 

have prepared a couple of variations by changing, on the one hand, the connection 

between the fullerene and the benzoic acid (using a cyclohexane instead of a 

pyrrolidine). On the other hand, we have introduced two cyanide groups in the fullerene 
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moiety, which significantly modify the reduction potential values of the molecule and 

provide further anchoring group through the lone pair nitrogen atoms, see Figure 1a. 

These modifications have allowed us to study not only the influence of the bridging 

functional group that connects the fullerene with the oxide substrate, but also the 

influence of the functional groups that contact directly with the perovskite layer, i.e. the 

cyanide groups from 1, see Figure 1a.The optical absorption of the fullerene derivatives 

has been analyzed, see Figure S1; very similar features have been observed and a band 

gap of ~2 eV has been estimated for all three fullerene derivatives, see Table S1. In 

addition, the HOMO and LUMO energies and the redox potentials, see Table S2, have 

been measured using cyclic voltammetry, see Figure S2. 

 

Figure 1: a) Functionalized fullerenes studied in this work. Configuration of the 

perovskite solar cell analyzed in this work, devices b) with (CL) and c) without (NCL) 

TiO2 compact layer on top of FTO have been analyzed. Nanostructured TiO2 layer (NS-

TiO2) was used for all the samples. 
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 In order to analyze the effect of the fullerene derivatives we have selected the 

probably most extended configuration for PSCs, see Figure 1b. In this configuration a 

Compact Layer (CL) of TiO2 is deposited on top of a glass/FTO substrate. A 

mesoporous layer of TiO2 has been subsequently deposited. The deposited perovskite 

CH3NH3PbI3, hereafter MAPbI3, not only infiltrates into the mesoporous layer of TiO2 

but also produces a perovskite capping layer on top, see Figure S3. Finally, spiro-

OMeTAD as a Hole Selective Contact (HSC) and a gold layer are deposited in order to 

extract efficiently the photo-generated holes. A similar configuration but with No TiO2 

Compact Layer (NCL) has been also studied, see Figure 1c. Reference samples have 

been produced by the direct deposition of perovskite on the bare substrates, while 

devices with interfacial fullerene derivative SAM have been produced by dipping the 

TiO2substrates in a chlorobenzene solution containing the desired fullerene derivative 

during 24 hours, see the experimental section for more details. After the SAM 

deposition, the surface nature of the substrate is clearly modified, which is manifested 

through a greater hydrophobicity of the surface. 

 The effect of using 2 and 3 derivatives on the cell performance can be observed 

in the J-V curves under 1 sun illumination, plotted in Figure 2a and 2b, respectively. 

The reference sample, using the configuration reported in Figure 1b with compact layer 

and without SAM, is denoted as CL sample. Samples with 2 and 3 SAM are called CL/2 

(Figure 2a) and CL/3 (Figure 2b), respectively. The averaged values of the solar cell 

parameters are summarized in Table 1. It can be clearly observed that the most 

conspicuous effect of the presence of the SAM is a clear reduction of the hysteresis. The 

properties of the TiO2-perovskite interfaces have been modified after SAM deposition, 

as can be clearly observed from the strong quenching of the photoluminescence (PL), 
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see Figure 2c, conventionally attributed to an improved charge extraction.21 However, in 

contrast to previous reports,21 we have not detected any increase of the photocurrent, 

which is not altered or is even slightly reduced when the fullerene SAM is introduced, 

see Figure 2a and 2b respectively. In addition, the slight decrease of Voc detected for 

samples with SAM and the larger dark current detected when SAM is used, in some 

cases (see Figure S4), makes that it is not possible to discard an increase of the 

recombination when SAM is used. 

 

Figure 2: Current-voltage curves for forward and reverse scans for perovskite solar cell 

with a SAM of a) 2 and b) 3. c) Photoluminescence intensity of reference sample and 

samples with SAM of 2 and 3. 

  

Table 1. Characteristic parameters of the solar cells analyzed in this work: short circuit 

current, Jsc, open circuit voltage, Voc, fill factor, FF, and photoconversion efficiency, η. 

Averaged values and the corresponding standard errors have been calculated using the 

results obtained by at least 10 cells prepared at each condition, see Table S3 and S4. 

Two different set of samples have been prepared with their corresponding reference 

samples, in order to compare samples produced with the same experimental conditions. 

Samples were prepare under air atmosphere and temperature and humidity conditions 

vary from batch to batch. Consequently we compare samples containing SAM with 

reference samples produced in the same batch. The hysteresis index (HI) was calculated 

using Eq. 1 for the J-V curves shown in Figure 2 and 3. 
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Device Scan direction Jsc (mA/cm2) Voc (mV) FF (%) η (%) HI 

CL reverse 19.8±0.6 909±15 75.4±2.1 13.5±0.6 0.067±0.004 
forward 19.3±0.6 827±18 63.4±2.2 10.1±0.7 

CL/3 reverse 19.2±0.5 822±13 71.4±1.9 11.2±0.3 0.019±0.005 
forward 18.7±0.8 797±15 70.3±2.0 10.47±0.22 

CL/2 reverse 19.2±0.6 839±12 67±4 10.9±0.8 0.036±0.003 
forward 18.7±0.5 818±8 66±5 10.0±0.8 

Device Scan direction Jsc (mA/cm2) Voc (mV) FF (%) Eff (%)  
CL reverse 17.1±1.3 792±18 68±5 9.1±0.9 0.20±0.07 

forward 14.5±2.2 728±54 49±9 5.4±1.7 

NCL reverse 11.9±.1.7 817±16 64±5 6.2±1.0 0.32±0.03 
forward 11.2±1.8 768±35 41±3 3.6±0.7 

CL/1 reverse 18.1±1.3 780±11 63±13 8.9±1.9 0.092±0.016 
forward 16.6±0.9 779±6 71.4±2.1 9.2±0.5 

NCL/1 reverse 17.4±1.9 753±17 64±6 8.4±1.6 0.198±0.014 
forward 14±3 708±61 43±6 4.4±1.3 

 

 The observed hysteresis has been quantified by calculating the HI as follows:22 

      (1) 

Where Jrev(Voc/2) and Jfor(Voc/2) are the currents when half of the Voc voltage is applied 

for reverse (from Voc to zero) and for forward (from zero to Voc) voltage scans, 

respectively. A device without hysteresis presents a HI of zero while higher values of 

HI indicate a more pronounced hysteresis. When 2 and 3 SAM are used the HI is 

significantly reduced, 2 and 4-fold, respectively. 

 In order to get further insights about the particularities of the observed hysteresis 

for samples with fullerene derivatives, J-V curves under dark with different scan rates 

have been measured, see Figure 3. The hysteresis observed in PSCs has not a single and 

general origin for all the cases. Very recently, it has been shown that the J-V hysteresis 

under dark of standard devices using TiO2/spiro-OMeTAD as ESC/HSC has a 

capacitive origin that is directly proportional to the scan rate.14,23 This hysteresis is 

observed at low applied voltages and we have also observed it when the fullerene 
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derivative SAMs are deposited, see dotted frame in Figure 3, and its dependence with 

the scan rate in the inset of Figure 3. Additionally, we have also observed another 

hysteresis feature at applied voltages of around 0.5 V at very low scan rates, and 

consequently this is believed to arise from a non-capacitive process, see dashed frame in 

Figure 3. Inverted non-capacitive hysteresis under dark has been observed for inverted 

PSCs using PEDOT/PCBM as HSC/ESC; however, the non-capacitive hysteresis is still 

observed for standard PSCs with TiO2 contact, but it is in general less evident. It has 

been suggested that the origin of non-capacitive hysteresis could be related to the 

reactivity of the perovskite at the interface with the contact.14,24 This non-capacitive 

hysteresis has been also observed in devices in which neither TiO2 nor organic electron 

conductors played a role as symmetrical Au/perovskite/Au samples and explained in 

that case by the formation of blocking contacts at the perovskite/Au interface and the 

modification of these contact properties following strong polarization.25 A more 

systematic study will be needed to unveil the single o multiple origin of non-capacitive 

hysteresis in each case. While capacitive hysteresis just difficult the determination of 

solar cell parameters and will not have any effect at cell working DC conditons, the 

determination of the physical origin/s of non-radiative hysteresis could have important 

implications in PSCs. It will be especially important if the physical origin is related with 

surface reactivity as it could limit the long term solar cell stability.  

 Interestingly, the observed non-capacitive hysteresis behavior has an inverted 

nature, first observed by Almora et al.,14 compared to the capacitive hysteresis, see 

black arrows in Figure 3. Moreover, very recently, inverted hysteresis under 

illumination has been also reported for mixed-halide mixed-organic cation perovskites 

and in MAPbI3 devices with a mesoporous TiO2 scaffold covered with a thin insulating 

Al2O3 shell, and its origin is attributed to an energetic extraction barrier at the TiO2 
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interface with dipole layer formation.26 In both cases a clear interfacial nature of the 

phenomena is pointed out and further research will be needed to clarify whether the 

origin of the inverted hysteresis arises from the same or, on the contrary, from different 

effects depending on the nature of the contact. 

 

Figure 3: Dark J-V curves in logarithm scaled current representation at different scan 

rates for a perovskite solar cell with a SAM of 3. Capacitive hysteresis dependent of the 

scan rate is highlighted with a dotted frame, while Non capacitive hysteresis non-

observed at high scan rates is highlighted with a dashed frame. Black arrows indicate 

the scan direction. Inset: capacitive current, Jcap, vs. scan rate, symbols represent the 

experimental points while solid line is the linear fit. Jcap is the contribution of the 

capacitive current.14 

 

 Consequently we can conclude that the decrease of the hysteresis observed when 

fullerene derivative SAMs are employed is due to a decrease of the capacitive hysteresis 
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observed for PSCs with TiO2 as ESC.14 Moreover, for samples with fullerene SAM is 

observed the non-capacitive hysteresis of the J-V curve under dark also observed for 

low scan rates in inverted PSCs with organic selective contacts and in devices with TiO2 

as ESC.14 To this extent, PSCs with fullerene derivative SAM is located half way 

between both types of PSCs, as present lower capacitive hysteresis than samples with 

TiO2 contact and higher capacitive hysteresis than inverted cells with organic contacts 

where capacitive hysteresis is practically negligible.   

 Moreover, the variation of the bridging group between the fullerene and the 

benzoic acid, fullerenes 2 and 3, does not introduce any significant change on the 

performance of the PSCs, see Figure 2. Compounds 2 and 3 present the same bandgap, 

see Table S1, and LUMO position, see Table S2, and induce a PL quenching of the 

perovskite quite similar, thus indicating that comparable charge injecting properties are 

induced; therefore the effect of the connecting cyclohexane and pyrrolidine groups 

induces a negligible effect on the final cell performance. However, the properties 

induced by the fullerene derivative 1 are significantly changed from the reference 

fullerene 3 when the connecting part containing the carboxylic group is kept unchanged 

but a couple of cyanide groups are introduced into the fullerene framework, see Figure 

1a. Cyanide are electron withdrawing groups that cause a higher polarization of the 

molecule. Cyanide groups does not significantly change the bandgap compared to the 3 

derivative, see Table S1, but they have a strong effect on the LUMO energy position, 

which decreases in 20-14 meV compared to the 2/3 counterparts, respectively, see Table 

2. 

 A new set of samples has been prepared using a 1 SAM, see Table 1 and Figure 

4a. Again, the use of a SAM reduces the J-V curve hysteresis, but with derivative1 the 

efficiency of the PSC increases mainly due to the increase of the measured 
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photocurrent. Note that for scan rates in the order of the one used in this work (50 

mV/s) the stabilized photocurrent lies between forward and reverse curves.27 The origin 

of this beneficial effect could be ascribed to the direct contact between the highly polar 

cyanide groups and the perovskite layer, thus allowing an enhanced coupling of the 

fullerene-perovskite interface. However, an effect of SAM that changes the wettability 

of the substrate affecting the morphology of the perovskite layer28 needs a detailed 

study beyond the scope of this manuscript. In addition, a strong PL quenching of the 

perovskite emission has been also observed when the 1 SAM is used, see Figure S5. 

Note that when the compact layer is removed a partial PL quenching it is also observed, 

see Figure S5. This fact can be attributed to an increase of surface recombination as the 

increase of dark current points out, see Figure S4. However, the PL quenching when 

SAM is added is stronger thus indicating a significant enhancement of the charge carrier 

injection. An improved design of the anchoring groups of the fullerene derivatives, as 

well as the coupling enhancement of the fullerene-perovskite interface induced by the 

introduction of compatible functional groups, e.g. cyanide groups, provide a broad 

range of possibilities for the exploration of the PSCs performance by means a simple 

approach consisting in the insertion of an interfacial SAM layer. 
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Figure 4: J-V curves for forward and reverse scans under 1 sun illumination comparing 

samples with and without fullerene 1 SAM. a) Perovskite solar cells with compact layer 

(CL) of TiO2 with and without a SAM of 1. b) Perovskite solar cells without SAM 

comparing samples with compact layer (CL) of TiO2 and with no compact layer (NCL) 

of TiO2. c) Perovskite solar cells with SAM of 1 comparing samples with compact layer 

(CL) of TiO2 and with no compact layer (NCL) of TiO2. d) Perovskite solar cells with 

no compact layer (CL) of TiO2 comparing samples with and without a SAM of 1. 

 

 Finally, we have studied the effect of removing the compact TiO2 ESC, but 

maintaining the TiO2 scaffold. When the ESC is removed the efficiency of the device is 

severely affected, see Table 1 and Figure 4b, mainly due to the strong decrease of 

photocurrent, indicating the important role of the compact layer. A detailed analysis of 

the scaffold effect is beyond the scope of this work. We have already reported that ESC 
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plays a fundamental role in the control of interfacial recombination.29 Nevertheless, 

when 1SAM is employed, there is practically no current decrease, see Figure 4c, due to 

the interfacial passivation effect induced by the SAM. The use of SAM reduced the 

hysteresis even when no ESC is present, see Fig. 4d and HI in Table 1. However, in the 

case of NCL samples the reduction of hysteresis induced by the presence of SAM is 

significantly lower, see Figure 4d, than in the case of samples with ESC. Several 

reasons could affect the efficiency of SAM for hysteresis mitigation when no ESC is 

present: the reactivity of the surface is different, the monolayer quality on FTO may not 

be as good as on TiO2 or probably the charge transfer between fullerene and FTO or 

TiO2 could differ significantly. Further analysis is needed to clarify this important 

question that relates contact nature and hysteresis effect. The use of an appropriated 

fullerene derivative as 1 can significantly mitigate the impact of removing the CL on the 

Jsc; further mitigation of the hysteresis effect by exploring suitable modifications of the 

fullerene derivative could allow the complete removal of the inorganic ESC, which 

could provide high impact benefits from the industrial point of view, as it will permit a 

simplification of the device configuration and processing, for instance it would avoid a 

high temperature step in the preparation of PSCs. 

 In summary, we have analyzed PSCs with different [60]fullerene derivatives 

SAMs at the ESC-perovskite interface, which induces in all the cases an important 

reduction of the J-V curve hysteresis. We have determined that the hysteresis reduction 

is due to the decrease of the capacitive hysteresis typically observed for oxide-based 

anodes in PSCs. SAM samples also present non-capacitive hysteresis in the dark J-V 

curve, observed at low scan rates, typically observed in inverted PSCs with organic 

contacts and in lower extend in standard PSCs with compact TiO2 ESC. To this extend 

PSCs with SAMs of fullerene derivatives are mid way devices between standard and 
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inverted PSCs. In addition, we have determined that the design of new fullerene 

derivatives plays a very important role in the overall solar cell performance, as it has 

been demonstrated by the inclusion of cyanide groups that enhance the direct coupling 

with the perovskite layer, thus improving the solar cell parameters, as photocurrent, 

compared to the reference device with no SAM. However, other aspects as the increase 

of recombination need to be controlled to optimize the system. The beneficial effect of 

the SAM can even be extended to the complete removal of the ESC. We have observed 

that only a slight reduction of the hysteresis is observed when 1 SAM is used with no 

compact TiO2 layer; the 1 SAM passivates the FTO surface, thus maintaining the device 

photocurrent. This work explains the origin of the hysteresis reduction when a fullerene 

derivative SAM is employed and paves the way for a future enhancement of PSCs by 

means of a tailored design of the fullerene molecules that could actuate as an ESC by 

themselves, without further need of a TiO2 compact layer. 

 

Methods 

Chemicals: Titanium diisopropoxidebis(acetylacetonate), lead chloride (PbCl2), 

dimethylformamide (DMF), anhydrous chlorobenzene, lithium 

bis(trifluoromethylsulphonyl)imide (Li-TFSI) and 4-tert-butylpiridine (TBP) were 

purchased from Sigma-Aldrich. TiO2 18NRT paste was purchased from Dyesol and 

Methylammonium iodide (MAI) was purchased from TCI. All the materials were used 

as received. The different fullerene derivatives were synthesized at IMDEA Institute as 

detailed below. 

Synthesis of [60]fullerenes derivatives: [60]Fullerene 3.A mixture of 4-

Carboxybenzaldehyde (104 mg, 0.70 mmol), C60 (100 mg, 0.14 mmol) and sarcosine 

(25 mg, 0.28 mmol) were dissolved in toluene and the mixture was refluxed for 5 hours. 
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The reaction mixture was allowed to reach room temperature and the solvent was 

removed under vacuum. The crude was purified by flash column chromatography on 

SiO2, using CS2/Toluene and then Toluene/ethyl acetate (2:1). The black solid obtained 

was further purified by repeated (3x) precipitation and centrifugation in methanol to 

yield the corresponding hybrids as black solids. 1H NMR (DMSO-d6, 300 MHz, 298 K) 

δ 13.0 (s, 1H), 8.04 (d, J = 7.6 Hz, 2H), 7.94 (d, J = 7.8 Hz, 2H), 5.22 (s, 1H), 5.11 (d, J 

= 9.4, 1H), 4.35 (d, J = 9.4 Hz, 1H), 3.17 (s, 3H). 

[60]Fullerene 2. In a dried 500 mL round bottom flask, 358 mg (0.497 mmol) of C60 

was dissolved in 250 mL of dry toluene and sonicated for 15 min. 3,4-

Bis(bromomethyl)benzoic acid (156.2 mg 0.507 mmol), potassium iodide (585 mg 3.5 

mmol), and 18-Crown-6 (250 mg 0.94 mmol) were sequentially added while stirring 

under dry nitrogen. The reaction mixture was stirred and heated at reflux for 14 hours. 

The reaction mixture was allowed to reach room temperature and the solvent was 

removed under vacuum. The crude was purified by flash column chromatography on 

SiO2 using (CS2/Toluene and then Toluene/THF (2:1)). The black solid obtained was 

further purified by repeated (3x) precipitation and centrifugation in methanol to yield 

the corresponding hybrid as black solid. 1H NMR (DMSO-d6, 300 MHz, 298 K) δ 13.1 

(s, 1H), 8.35 (d, J = 1.6 Hz, 1H), 8.14 (dd, J = 7.8 Hz, J = 1.6 Hz, 1H), 7.90 (d, J = 7.8 

Hz, 1H), 5.06 (m , 2H), 4.66 (m , 2H). 

[60]Fullerene 1. A mixture of 4-Carboxybenzaldehyde (14.2 mg, 0.09 mmol), C60-CN2 

(80 mg, 0.10 mmol) and sarcosine (41.4 mg, 0.47 mmol) were dissolved in 

chlorobenzene (20 mL) and the mixture was refluxed for 20 hours. The reaction mixture 

was allowed to reach room temperature and the solvent was removed under vacuum. 

The crude was purified by flash column chromatography on SiO2, using CS2/Toluene 

and then Toluene/THF (2:1). The black solids obtained was further purified by repeated 
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(3x) precipitation and centrifugation in methanol to yield the corresponding hybrids as 

black solids. 1H NMR (DMSO-d6, 300 MHz, 298 K) δ 13.0 (s, 1H), 8.25-7.59 (m), 

5.02-4.56 (m), 2.90-2.60 (m).MS-ESI m/z 950.1 [M+H]+. 

Solar Cell Fabrication: Fluorine doped tin oxide (FTO) coated glass substrates 

(Pilkington TEC15, ∼15 /sq) were etch         

substrates were sonicated for 15 minutes in a solution of milliQ water and soap 

(Hellmanex), rinsed with milliQ water, sonicated for 15 minutes in a solution of 

ethanol, rinsed with acetone and dried with compressed air. After that, a UV/ozone 

treatment was performed for 15 minutes. TiO2 compact layer was deposited onto the 

substrates by spray pyrolysis at 450ºC, using titanium 

diisopropoxidebis(acetylacetonate) in ethanol (1:39, v/v), with oxygen as carrier gas. 

Mesoporous TiO2 layer was deposited by spin coating at 6000 rpm during 40 s using 

TiO2 paste diluted in ethanol (1:3.5, weight ratio). After drying at 80 ºC 10 min, it was 

heated at 470 ºC for 30 min and cooled down to room temperature. The different 

fullerene derivatives were dissolved in chlorobenzene (2mg/mL) and filtered with a 

0.2µm PTFE filter. The substrates were heated 10 min at 120 ºC, immersed in these 

solutions for 24 hours, rinsed with chlorobenzene and then dried for 10 min at 120 ºC. 

The perovskite solution was prepared by mixing 2.64 M of methylammonium iodide 

and 0.88 M of lead chloride at a 3:1 mol ratio in DMF. The substrates were heated 10 

min at 60ºC and then the solution was spin-coated at 500 rpm for 5s and 2000 rpm for 

60 s in air conditions. After the deposition, the substrates were heated at 100 ºC during 

90 min in an oven under air stream. Spiro-OMeTAD was deposited by spin coating at 

4000 rpm for 30 s. The spiro-OMeTAD solution was prepared by dissolving 72.3 mg of 

spiro-OMeTAD, 28.8 μL of TBP and 17.5 μL of a stock solution of 520 mg/mL of Li-

TFSI in acetonitrile, in chlorobenzene. The deposition of 60 nm of gold was carried out 
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by thermal evaporation at 10-6 mbar. Samples were prepared under air conditions and 

the humidity can vary in our laboratory between 30-60 % and consequently samples 

prepared with different conditions cannot be straightforward compared among them. 

Our approach is to prepare reference samples for all the batches and compare each 

sample with its respective reference, see Table 1. 

Characterization: The current-voltage curves were measured with a scan rate of 50 

mV/s in Abet Technologies Sun 2000 Class A solar simulator with a Keithley 2612 

Source Meter, AM1.5G and 100mW·cm-2. The measurements were performed using a 

shadow mask whose area was 0.089 cm2.For the PL measurements, a commercial red 

laser diode (650 nm) was used as excitation source. The measurements were carried out 

using a spectrophotometer CCD based detector (charge-coupled device, AndoriDUS 

DV 420A-OE) coupled with a spectrograph as a diffraction grating (Newport 77400). 
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Normalized absorbance spectra and cyclic voltammetry measurements of the fullerene 

derivatives. Photoluminescence spectra and dark current of the complete devices. 
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