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ABSTRACT 

In this research we present a stylized financial agent-based model with 

heterogeneous noise traders that imitate each other on a dynamic network structure. 

Following Tedeschi et al. (2009, 2012), we show how an expectation feedback system 

can reproduce synchronization effects generating large fluctuations in returns. Moreover, 

we assess how ‘herding’ can give rise to some stylized facts such as volatility clustering 

and fat tailed distributions in some investigated variables such as indegree or returns, 

(see Cont, 2001). We demonstrate how the transition from periods of network 

centralization, corresponding to high synchronization in agents’ expectations, to periods 

of decentralization, when traders play randomly, is the key ingredient to reproduce these 

statistical properties above-mentioned. The model is an evolution of Tedeschi’s (2009), 

since we introduce and endogenous evolution mechanism of the intensity of choice, β. 

Here this parameter is updated daily according to the guru’s surviving period. Our 

findings show that there exists a strong correlation between the “guru evolution” and the 

returns time series. 

 

Keywords: volatility clustering, fat-tail distributions, noise traders, intensity of 

choice, guru 
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1. THEORETICAL FRAMEWORK. 

1.1. Agent Based Model. 

 Agent Based Models (from now onwards AMBs) are computational systems used 

to simulate and observe the actions and interactions of individuals within artificial 

markets. Basically, they help us to analyze more complex environments via the 

interaction of many heterogeneous agents. According to this view, a market economy 

can be analyzed as a self-organizing entity. In many complex systems in nature, there 

are global phenomena that are the irreducible result of local interactions between 

components whose individual study would not allow us to see the global properties of 

the whole combined system. Thus, a growing number of researchers show that many 

macro properties of the economic system are not directly encoded by any of the single 

components involved, but are the self-organization outcomes of the interactions of the 

components. Thus, given the presence of imperfections in the market organization, 

economic dynamics is the result of the communication and interaction of a myriad of 

heterogeneous agents and not the fruit of some invisible hand optimal process. 

In a recent paper, Iori & Porter (2012) show strengths and weaknesses of this 

approach. On the one hand, the usage of these simulations are supported in order to 

better understand the economy and the financial markets as an evolving system to 

prevent the financial crisis. On the other, some skeptical economists hardly criticize the 

usage of these simulations by claiming that these models pay too much attention to the 

well-known “stylized facts”1 from the temporary financial series, which are inconsistent 

with the standard asset pricing models. However, Farmer & Foley (2009) highlight the 

lack of clarity about asset pricing models and recognize the necessity of going beyond 

as well as applying the ABM methodology to create wider models able to incorporate 

multiple markets. Indeed, the CRISIS Project and FuturICT knowledge Accelerator are 

the most relevant undertaken projects that have made an attempt to create a large-scale 

market model. However, as Iori & Porter (2012) suggest  

it is generally accepted that there are many empirical financial 

phenomena which are difficult to explain using traditional models. As 

many authors have noted the empirical distributions of returns of many 

market indices and currencies, over different but relatively short time 

intervals, shows an asymptotic power law decay (Mandelbrot (1963); 

Pagan (1996); Guillaume et al. (1997); Gopikrishnan et al. (1999).  

                                                           
1  It has been detected a set of empirical common properties in asset returns in most of research. This 
“stylized facts” are analyzed by Cont (2001). 
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1.2. Modelling approaches. 

The ABM that we introduce is a financial market model where the market 

mechanism is the major area of interest. In order to build a model with these 

characteristics, it is important to understand both the structure of the market and the 

modeling of behavior. First, regarding the market structure, as we will see in the following 

sections, our model is based on a decentralized market where it does not exist a market 

maker such as risk neutral and endowed with unbounded liquidity, whose function is 

absorbing surpluses and making trading always viable. Second, regarding the modeling 

of agents’ behaviors, we refer to the herding and social learning phenomena further 

developed by Tedeschi (2016) and Tedeschi, Iori & Gallegati (2009, 2012) where the 

agents known as “noise traders” or “zero intelligence agents” base their expectations on 

the expectations of others investors to whom they are connected, which are “gurus” or 

links that will be updated through a fitness mechanism. 

In order to comprehend the proposed modeling approach, we have to highlight its 

three key ingredients: i) zero intelligence agents, ii) which interact through a market 

mechanism in order trade stocks and iii) interacting directly in order to form their 

expectations on prices. In the next subsections, we present how agent-based literature 

deals with these three classes of models. 

1.2.1. Zero Intelligence Agents 

ZI Agents Models are mainly based on an investigation or research with noise 

traders, who are able to significantly vary from a completely random behavior to the fact 

of having a budgetary limitation or some short of specific strategy. In general, we can 

pinpoint two main characteristics in the vast majority of these models: lack of (explicit) 

learning and a minimalist approach to agent behavior. 

Even though there exists some previous work elaborated by Becker (1962), the 

first investigation on ZI trading for financial market was conducted by Gode & Sunder 

(1993). While they were trying to describe what a ZI agent is about, they noted that “it 

has no intelligence, does not seek or maximize profits, and does not observe, remember, 

or learn. It seems appropriate to label it as a zero-intelligence trader” (p.4, 1993). In fact, 

the researchers also compared the behavior of profit-motivated human traders to ZI 

agents and then divided their investigation into three main stages. Firstly, they use the 

mechanism of a double auction where buyers and sellers submit limit orders bids or asks 

and can accept these bids or asks, all of them subject to budget constraints. In the 

second double auction, the same subjects are subject to no budget constraint. In the 
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third stage, they deeply analyze the results and draw on the main conclusions. The key 

result is that for their model, in terms of the aggregate property of allocative efficiency2, 

ZI traders perform comparably well to human traders. 

In the same line of research, Duffy & Únver (2006) conducted an experiment in 

order to examine whether a simple ABM can generate bubbles and similar crashes to 

the ones that have already been observed in previous experiments. This study focuses 

on better understand the behavior of ZI agents in order to deal with the characteristics of 

asset bubble environments, making it possible through near-zero-intelligence traders in 

a double auction context as in the previous model. 

1.2.2.  Heterogeneous Agents with Market Mediated interactions. 

This class of models try to emphasize some important characteristics of the 

different mechanisms of price formation, that is the detail of how exchanges occur in 

financial markets. In this regard, stock markets can be organized in different ways. There 

are, for example, supply demand in-balance markets which require the presence of a 

market maker, double action and order-driven markets. Among the several financial 

agent-based models, some works have paid more attention to the fact of reproducing 

the behavioral rules of traders, others, instead, have focused the analysis on the market 

microstructures. Very few models, however, have jointly combined agents’ 

microfoundation with markets’ microstructures. 

The model of Caldarelli et al (1997) was one of the former ones which introduced 

this sort of models. Thus, a prototypical stock market model is proposed, in which only 

the interactions among traders without external influences are taken into account. Each 

agent trades according to his/her own strategy by speculating about the prices 

fluctuations of the artificial market. Again, this model reproduces a record of prices very 

close to the ones observed in the real financial markets. 

Moreover, Lux & Marchesi (1999) described a financial market model with chartists 

and fundamentalists, which gave rise to scaling laws. Here there is a market maker 

reacting to imbalances between demand and supply. The fundamentalist agents 

purchase or sell if the value of the market is beyond or below the fundamental value 

while the chartists form a more heterogeneous group due to the fact that they are 

constantly changing from positive to negative expectations and the other way round, 

which will clearly define their role as buyers or sellers. A burst of volatility is produced if 

                                                           
2 Allocative efficiency is total profit divided by maximum total profit, or sum of consumer and producer surplus. 
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the proportion of agents, which use chartist strategies, overcomes a given threshold. 

These stages of instability are rapidly over and it is known as “on-off-intermittency”3. 

The above models use some kind of switching, either between classes or 

strategies. For instance, Chiarella & Iori (2002) built a market model with agents that 

used mixed strategies with different weight or components. Introducing an order-driven 

market model with heterogeneous agents trading via a central order matching 

mechanism, the researchers examined how different trading strategies may affect the 

dynamics of price, bid-ask, trading volume and volatility. Attention is also given to how 

some features of market design (tick size and order lifetime) affect market liquidity. 

In the same vein, Chiarella & Iori (2009) show an order driven market similar to the 

one designed in 2002 where agents based their expectations on future asset returns on 

weighted average of three different components: fundamentalist, chartist and noise 

trader. Furthermore, agents differ in the characteristics describing these components, 

such as time horizon, risk aversion and the weights given to the various components. 

The key result from this investigation is that the chartist strategies are responsible of 

generating fat tails and clustering in the artificial price data generated by the model. Also, 

it shows that the increase of volatility is probably due to the presence of large gaps in 

the book because of the expectations from both chartist and fundamentalist components. 

1.2.3. Heterogeneous Agents with Direct Interactions.  

In the models with direct interactions, that is to say, without any mechanism that 

mediates among agents, we can observe that these include sophisticated learning 

behaviors and explicit modeling of the direct interactions of agents. Thus, there exist 

three different levels of direct interactions: (a) global interactions, where an agent 

uniformly randomly interacts with another agent, (b) local interactions on a lattice, where 

interactions are constrained to a set of neighbors but in a regular way and (c) local 

interactions on a network which can evolve from early models where the network is 

assumed to later models where the network structure may arise endogenously. 

A canonical investigation on this type of models was developed by Kirman (1993). 

This investigation included the idea of herding by using ants as the object of their study. 

The ants rely on two random food sources from which they can change through an 

individual process of recruitment: two ants meet and one switches to another’s source 

with probability (1-δ) even though there exists an additional probability ϵ that an ant 

                                                           
3   This concept of market behavior is explain more extensively by Lux and Marchesi (2000). 
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changes from one source to another with no interaction. The experiment shows that 

initially the ants are more focused on one of the sources and that later on they change 

their attention through herding, phenomenon that is compared to human when choosing 

a certain restaurant.  

Based on the experiments carried out by Kirman (1993) and Lux & Marchesi 

(2000), Westerhoff (2009) develops an agent-based financial market model where the 

agents may follow technical and fundamental rules to determine their speculative 

investment position. The mechanism of opinion changes here is more sophisticated than 

Kirman’s (1993). The probability that agents adopt a new speculation strategy will 

depend on the past profits of that strategy. This is achieved by means of fitness variables 

AC y AF for chartist strategies and fundamental ones respectively, each a discounted sum 

of the past returns. This switching leads to periods where fundamental strategies 

dominates the markets and consequently prices fluctuate around its fundamental value 

and there will be other periods dominated by technical strategies, which result in an 

increase in volatility, spectacular bubbles and crashes. 

Challet, Marsili & Zhang (2000) introduced the concept known as Minority Game4 

in their model. One of the most relevant parts of this investigation is based on observing 

what happens when an agent knows ahead of time the actions of a subset of other 

agents. This can vary its strategies in relation to the tendencies that it observes and 

consequently, it always wins at least the average of other agents. 

A simple model of stock market with a random communication structure is also 

provided in Cont & Bouchaud (2000) where the interactions among agents give raise to 

heavy tails in the distribution of stock price variations in the form of an exponentially 

truncated power law. The key element of the model is communication between agents, 

which is modeled here by a set of clusters that coordinate individual demand. This model 

thus indicates a relation between the excess kurtosis observed in asset returns, the 

market order flow, and the tendency of market participants to imitate each other. 

Last but not least, Tedeschi, Iori & Gallegati (2012) suggest a very similar model 

to the one suggested in our experiment. The researchers introduce an order-driven 

market with heterogeneous traders where the concept of herding becomes completely 

relevant. The agents, mainly “noise traders” have the incentive of imitating themselves 

                                                           
4  The basic Minority Game was formulated by physicists Damien Challet and Yi-Cheng Zhang in 1997 to 
avoid the main obstacle of the El Farol problem, the definition of agents´ strategies.  
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among them, which causes the appearance of the so-called “gurus”5. Thanks to the 

fitness mechanism that measures the relative wealth from the previous period of an 

agent i , agents ZI are able to change their willingness to follow an agent k by another 

new agent (guru) j . Thus, thanks to this mechanism, gurus can rise and fall in popularity 

over time. One of the main results of this experiment is that the suggestions that noise 

traders quickly go bankrupt and are eliminated from the market is unrealistic in presence 

of herding and the expectations feedback system6 and positive intelligence agents 

cannot invade a market populated by noise trader when herding is high. 

1.3. What we propose: and introduction to our model. 

In this section we present a financial market model able to reproduce important 

regularities emerging in financial time series. The main goal of this research is to identify 

the main conditions under which imitation leads to fat tails and volatility clustering and 

how herding effects may be responsible for the persistence of asset price. Even though 

stocks returns are uncorrelated, the absolute values are auto correlated. For this reason, 

they reflect an inclination to move from quiet periods to more turbulent ones. Regarding 

the surviving period of significant positive autocorrelation of absolute stock returns, they 

last for a year or more, and they decay at a rate which is slower than exponential. 

We develop an expectation feedback system populated by noise traders. Initially, 

these agents start with the same amount of wealth. As time goes by, some of them will 

became richer than others and consequently, heterogeneous, according with the 

empirical evidence that the market participants are very heterogeneous in size. 

Moreover, in contrast with the prevailing economic view that informed agents need to 

hide their private informations in order to profit it, (see Benabouy and Laroque, 1992; 

Caldentey and Stacchetti, 2007), our uninformed gurus gain the highest profits when 

they reveal their expectations to the highest number of followers. The generation of 

“herding” that provokes excess demand, bubbles and volatility clustering is conducted 

by the introduction of an endogenous mechanism of imitation. By using a preferential 

attachment rule (Barabasi and Alberti, 1999), each trader is followed by another one with 

a probability proportional to its profit. 

                                                           
5  In our artificial financial market model each agent has an outgoing link and can have various incoming 
links. The agent with most incomings links is known as the “guru”. 
6  “Positive feedback in a stock market refers to the situation where positive (negative) expectations 
about the price do lead to a price increase (decrease)” (Tedeschi, Iori and Gallegati, 2012). 
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 Besides, this mechanism generates an evolving network structure ranging from 

the random graph to the power-law one7. This allows us to analyze how the imitation 

among traders affects the evolution of the network topology and how it has influence on 

market returns. Most of the studies on herding effects have examined how herding can 

go along with large price fluctuation but only a few papers have investigated its role on 

the communication network structure and on traders’ wealth, which is one of the main 

aims of the present study.  

It is crucial to understand how expectations feedback system with ‘zero intelligence 

agents’ works. If a guru shares pessimistic expectations about an asset, he/she decides 

to sell. His/her followers imitate his/her strategy driving to a higher fall in the prices. Thus, 

the guru has cash to buy a higher amount of assets than he/she had at the beginning. 

Conversely, if a guru shares an optimistic expectation about an asset, he/she decides to 

buy. The neighbors that follow his/her strategies imitate the guru’s strategy driving prices 

up. In this moment, the guru has assets that he/she bought cheaper.  

The agents in our market are zero intelligence agents which present random 

expectations about future returns and a random demand function. This differs to other 

models where sophisticated strategies are implemented (Brock and Hommes 1998; 

Chiarella et al. 2009; Lux and Marchesi 2000). This is due to several reasons. Firstly, 

they help us to deeply examine the impact of imitation on prices dynamics. Secondly, 

the analysis of the impact of noise traders on prices’ movement is thorough in the 

literature. For instance, some authors (Figlewski et al., 1979: Shiller, 1984; De Long et 

al., 1990) show that “irrational” aggressive noise traders can destabilize prices driving 

them away from the fundamental value and earn larger returns. 

The main reason for using this AMB to develop our model is that the mainstream 

economy literature does not provide us with satisfactory and adequate information to 

conduct a deep analysis of the situations of crisis. As Iori and Porter claim 

The highly stylized, analytically tractable traditional models in economics 

and finance are not well-suited to study crisis situations (Bouchaud [2008], 

Farmer and Foley [2009], Kirman [2010]; in fact there is no framework in 

classical economics for the understanding crises. ABMs on the contrary can 

                                                           
7 A power-law distribution is observed when, on the one hand, there are many individual elements with 
almost no popularity, and on the other, few elements with high popularity. 
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represent unstable systems with crashes and booms that develop out of non-

linear responses to proportionally small change (2012, p.2) 

Our findings show that the phenomenon of herding leads to a market populated by 

zero intelligence agents to present fat tail distributions and volatility clustering. In this 

context, we can observe two possible scenarios: (a) coordinated periods of strategies 

that produce bubble prices and volatility in returns, and (b) non-coordinated periods of 

strategies where returns remain stable and some agents compete to concentrate the 

majority of incoming links. 

The rest of the research is organized as follows. In section two we explain how the 

market works and which are its characteristics. In the next section we comment the main 

results obtained in the investigation. In section four we develop the main conclusions 

and to conclude we list the references used to conduct the experiment. 

2. THE MODEL. 

In this section we present how the communication and imitation among agents 

affect the expected returns and how our artificial market works. We implement a realistic 

mechanism of price formation based on the Euronext and the London Stock Exchange 

mechanism. In this financial market the price dynamics is determined by the structure of 

the exchange process without using any ad hoc mechanism. Agents of the artificial 

market may execute two types of orders: buy or sell. On the one hand, a trader can 

execute an order known as “market order to sell (buy)”. This instruction is automatically 

executed when the selling price (buying price), called ask (called bid) is lower (higher) 

than the market price. On the other hand, when a sell order (buy order) is higher (lower) 

than the market price, there is a “limit order to sell (buy)”. Limit orders are thus stored in 

the exchanges books expecting to be executed due to the market’s prices fluctuations. 

Thus, limit orders still unmatched after a predetermined time horizon are removed from 

the book. 

2.1. The market microstructure. 

We introduce an order driven market with all buyers and sellers displaying the 

prices at which they are willing to buy or sell securities, and the quantity of securities 

desired to be bought or sold. Our artificial model is populated by N traders that can place 

market and limit orders. Market orders are placed when a purchase or sale offer reaches 

a quote in the opposite side of the market and are immediately executed at the current 

best price on the list. On the contrary, limit orders are placed when a purchase or sale 

offer does not reach a quote on the opposite side of the market and are kept and 

executed in the exchange´s book using time and price priority.  
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It is through a number of periods (days) kt  with k = 1,…T  that trading takes places. 

In this way, there are τ intraday operations each day of trading. When the period starts, 

traders make expectations about the price at the end of a given time horizon Ƭ. Thus, 

the future price expected by agent i  at time kt  + τ is given by  

                                                   (1) 

Where is the agent’s expectation on the spot return which may be 

affected by the expectations of other agents due to the communication network among 

traders and is the price that all agents can see at the beginning of each period. 

Once agents have determined their expectations about the future price, they 

randomly enter the market to establish a limit price and an order size to submit their 

orders. Those traders with bullish expectations decide to purchase at price i

tb , which will 

obviously be lower than the expected future price . Those traders with 

bearish expectations decide to sell at price i

ta , which will be higher than in expected 

price. The purchase and sale price, namely bid and ask, are uniformly distributed around 

the current price and calculated according the following rule:
 

                                     (2) 

Where are random variables uniformly distributed in the interval (0,1) and   is 

the price at the time the order is submitted. In formula (2) it can be observed that the 

price that buyers are willing to pay is between
bpmin , which is the worst buy order, and the 

expected future price previously calculated . Conversely, the price that 

and apmaxsellers are willing to sell is between their future price expectation  

which corresponds to the best sell order in this moment.  

When transactions occur, price is recalculated as follows:  is calculated 

by the price at which a transaction occurs. If there are not occurring transactions, a proxy 

for the price is given by the average of the quoted ask q

ta  (the lowest ask listed in the 

book) and the quoted bid  (the highest bid listed in the book):      



14 
 

For this reason, the updated price with this proxy variable will be between the lowest 

selling price and the highest purchase price included in the book q

ta < pt < q

tb .  

The order book is the list of all buy and sell limit orders at a given instant of time, 

with their corresponding price and volumes. A limit order indicates the maximum (or 

minimum) price at which a trader is willing to buy (or sell) a certain quantity of shares. At 

a given point in time, all limit buy orders are below the best buy order called the ‘bid 

price’. On the other hand all sell orders are above the best sell order called the ‘ask 

price’. With the appearance of a new order, such as buy order, it either adds to the book 

if it is below the ask price, or generates a trade at the ask price if it is above (or equal to) 

it, (we call all these ‘market orders’). More in detail, if the maximum price that a buyer is 

willing to offer is higher than the price a seller is willing to sell, that is i

tb >
t

qa , agents 

place market orders to buy stocks at a current quoted ask 
t

qa
. If it appears that the buyer 

wants to buy more stocks than available at this price, he/she will continue buying the 

next offer available until it satisfied their demand or when there is no more sell orders in 

the book at a price smaller than i

tb . If   i

tb  >
t

qa  traders submit limit orders.  

Symmetrically, if the price at which a seller is willing to sell is lower than the current 

quoted bid, that is i

ta <
t

qb , then, investors place market orders to sell stock at a price 
t

qb

. If the demand available on the book at this price is not sufficiently large, he fills the 

available demand at the bid and then moves on to check the second best bid price, 

iterating the process until the agent has no more stock to sell or there are no more buy 

orders in the book at a price greater than i

ta . 

In our financial market, agents have a random demand function and the size of 

their order is only bounded by budget constraints. Agents hold a finite amount of cash 

and stocks  in their portfolio. The size  of agents’ orders is 

determined as follows: 

- If the agents expect a price decrease, they sell a random fraction of their 

assets   

- If the agents expect a price increase, they invest a random fraction of their 

cash in the assets equal to 

if they execute/submit a limit order 

 if they execute/submit a market order (agents buy at the 

current ask) 

with  to be a random variable uniformly distributed on the interval (0,1). 
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The essential details of the trading mechanism can be explained easily. We can find four 

different situations: 

- When an agent is willing to sell a random fraction of his/her stock at a lower 

price (price per asset) than the buying quoted price, place a market order to 

sell that will be executed at the best buying price in that specific moment. 

- When this agent is willing to sell a random fraction of his/her stock a higher 

price (price per asset) than the buying quoted price, place a limit order to be 

kept in the order book awaiting for the selling quoted price to decrease in order 

to be executed. 

- When an agent is willing to buy a random amount of stock at a higher price 

(price per asset) than the selling quoted price, place a market order to buy that 

will be executed at the lowest selling price in that specific moment. 

-      When this agent is willing to buy an amount of stock at a lower price (price per 

asset) than the buying quoted price, place a limit order to buy to be kept in the order 

book awaiting for the selling quoted prices to decrease in that specific moment. 

When agents execute a market order, their cash and stock amounts proportionally 

vary to such order. When agents execute a limit order, even though there is no change 

in the composition of the portfolio in that moment, the cash they commit to buy and the 

stocks they commit to sell are also temporarily removed from their portfolios. In this way, 

agents cannot spend money or sell stocks that have already been committed in the book. 

If the order is cancelled, the stocks and cash that were retained are returned in the 

portfolios of the corresponding agents. 

2.2. The agents’ microfoundation. 

The market we present consists of zero intelligent agents, also known as “noise 

traders”. These agents are heterogeneous. Therefore, at the beginning of each day they  

have different expectations about the spot return    in the interval 

and have different forecasts of the returns’ volatility, σ i

tk
. Expected returns are thus given 

by  

     (3) 

where σ i

tk
 is a positive, agent specific, constant and ϵ t  ̴ N(0,1) is a normal noise. In order 

to determine how the interaction among agents affects asset price and volatility returns, 

we have introduced a communication structure in which nodes represent agents and the 

hedges are the connective links between them. 
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Thanks to this communication network, traders ask opinion on other traders, more 

precisely on their neighborhood, so they can revise and change their expectations and 

consequently their future price (see Eq.1). Specifically, we model an imitation 

mechanism, by implementing a preferential attachment rule (Barabasi and Albert, 1999) 

such that each trader is imitated by others with a probability proportional to its wealth. 

The noise trader is the agent i , who imitates agent j , known as the guru. Therefore, 

the agent i  updates his/her expected returns according to the trader j , this is   

 

All agents depart from the same level of economic wealth W t=0 = Ct=0 + pt=0St=0. 

Clearly, as times passes by and operations are performed, some of them become richer 

than others, what strongly determines who imitates and who is being imitated. In order 

to quantify the agents’ success, we use a measure that indicates us the fitness from 

every agent at time t as well as their wealth relative to the wealth W t

max
 of the richest 

agent i max : 

                                                         f
i

t
=

W
i

t

W t

max
                                                         (4) 

Each agent i  starts with one outgoing with a random agent j , that is to say, each agent 

can only imitate one guru’s strategy and, instead, can have several incoming links from 

other agents. At the beginning of each period, links are rewinded as it follows: each agent 

i cuts his outgoing link, with agent k, and forms a new link with a randomly chosen agent

j , with a probability: 

                                                                             (5)         

and with a probability equal to 1 - p
i

t  
of keeping  his/her actual link.  Gurus are the most 

successful ones, which will make them obtain higher fitness, and as consequence they 

will have more probabilities to obtain more incoming links. In order for the links not to be 

directed and exclusively to the gurus with more fitness, the algorithm introduces a certain 

amount of randomness modeling imperfect information and bounded rationality of agents 

so as the links with more successful agent have a finite probability to be cut in favor of 

links with less successful ones. The parameter β in Eq. (5) represents the intensity of 
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choice and indicates the trust that traders have in the information (expectation) about 

other agents’ performance. If β is zero, agents act in an independent way from one 

another. However, when β increases, the agents have more similar behaviors and their 

rationality increases due to the fact that they have more confidence on the guru’s 

expectations and there are more agents that actually copy their strategies. Somewhat, β 

measures the “imitative behavior”, since the more beneficial strategy will attract more 

confidence from the noise traders and, thus, it will have more agents imitating it. In our 

model, β is related to the guru’s life span:  the longer the period the guru survives, the 

higher his signal credibility. We set β equal to 1 and increase it by more than 1 every day 

the guru survives. When the guru is replaced, the new β is set again to the value of 1.   

3. SIMULATIONS AND RESULTS. 

3.1. Implementation of the model. 

In order to proceed with the market simulation, we have worked with data in C 

language. By using the software “Code Blocks”, the numerical orders have been 

transformed into financial market simulations. For this reason, before advancing the 

results obtained in this research, some fundamental aspects of the programming process 

have to be mentioned. Specifically, we present five essential elements that cannot be 

omitted in order to compile the C source code and the two principal functions of our 

model: the Matrix and the Trade functions. Once we explain its main characteristics, the 

basic syntax of the C language can be further understood. Thus, the programming 

process includes the flowing steps: libraries, defines, global variables, functions 

declaration and main function. 

3.1.1.  Libraries 

This is the first stage of the programming process. As shown in Figure 1, libraries 

include useful functions for different types of tasks. For this reason, depending on the 

experiment conducted we decide to execute the libraries that contain the specific 

functions in order to achieve it. This operation uses the directive #include. 

 

 

 

 

 

 

 

 

Figure 1. Examples of libraries to be executed. 
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3.1.2. Defines 

Once we have established the library to be employed, the second stage is to define 

the set of basic parameters. Besides, we assign the initial values to these parameters by 

establishing the starting conditions of the system. This operation uses the directive 

#define. 

 

 

 

 

 

Each line of Figure 2 shows a variable along with its respective initial value. For 

instance, the variable “VOL” indicates that one hundred traders compose our market. In 

the same way, the variable “DAY” shows the different intra-day negotiation periods so we 

can deduce that there are three hundred negotiation periods every single day. 

3.1.3. Global Variables 

In this third stage, two types of variables using data in language C can be defined: 

global and local. After the definition of #define, the global variable is immediately called 

in the main body of the source code apart from the rest of functions. Besides, these 

variables exist in any part of the source code in contrast to the local, which only exists 

inside a function that performs a specific task. In this way, local variables recur each time 

that the function is called or executed. On the contrary, global variables do not need to 

be created each time that a function is called as we can see in Figure 3. 

 

 

 

 

Both global and local variables may differ depending on the type. The language C 

provides several, but we have only employed five types of available variables: char 

(characters), int (basic integer type), long (long integer type), float (single precision 

floating point) and double (double precision floating point). 

3.1.4. Functions declaration 

In this stage, the programmer must declare the functions that he/she is going to 

use in the source code. Moreover, with the declaration function we determine the set of 

instructions that implement the model’s behaviors into the source code. 

Figure 2. Examples of parameters employed in this model. 

Figure 3. An example of a global variable. 
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There are two different options to declare a function, but it is the void function the 

one we have employed in this model due to its flexibility and simplicity (see Figure 4). 

 

 

 

3.1.5. Main Function  

All the elements used in our model must be included into the main function in order 

to be compiled and executed by the machine. The compiler only executes what lies within 

its curly braces { }. For this reason, we claim that the main function is the core of every 

program. Figure 5 shows a stylized example of how all elements are included into the 

main function. 

 

 

In the previous section, we have just emphasized the importance of including all 

the elements into the main function to be executed by the machine. In order to conclude 

with the description of the programming process, the most important functions of the 

main: 

 

 

Figure 5.A stylized example of included elements into the main function in our Financial Model. 

Figure 4.The typical function declaration in our Financial Model. 
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3.1.5.1. The Matrix Functions. 

There are two functions that describe the network topology that we use: Matrix1 

and Matrix3. 

Matrix1: This function implements a random attachment among traders. The most 

common situation is to assume a random interaction as the initial configuration of an 

evolving network at the beginning of the simulation period and when we have no 

connections between nodes. However, we have slightly modified the mechanism of 

attachment in order to allow a set of topologies, ranging from a pure random network to 

a star one8. 

Matrix3: The objective of this function is to create a fitness network. By using this 

function, three actions in the market are executed on a daily basis: 

 Traders randomly select a new possible neighbor, j. As previously 

explained, each period links are rewinding according to the probabilistic 

rule express by Eq. 5. 

 Traders calculate the probability of switching from the old neighbor, k, to 

the new selected, j. 

 Each trader chooses his/her neighbors. 

 

By using Equation 4, we are able to detect the trader with the highest fitness and 

consequently the highest profit. Thus, the agent with most fitness- namely the guru- will 

have the maximum probability to acquire the highest amount of incoming links.  

Also, we have to keep in mind that both Matrix1 and Matrix 3 are dichotomous 

since they perform the same task in different ways. We run Matrix1 in the first steps of 

the simulation and then only Matrix3 is executed. 

 

3.1.5.2. The Trade Function. 

This is the function that represents the real core of the model’s implementation. 

In the first part, we find a set of definitions of local variables, which set up the initial 

condition of both traders and book’s variables. The next step is to write down the loops 

that govern the passage of time. We have to do it carefully though since the time’s loops 

have daily and intra-day operations. 

                                                           
8 A star network is a topology of centralized network where there is a central node which connect 
all nodes. In this study it is a guru that will concentrates the vast majority of incoming links as time 
passes by. 
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In the first days of simulation, we use the Matrix1 function to initialize our 

interaction structure. Consecutively, we execute the Matrix3 to load the fitness network. 

Once the dMarketMatrix is filled, the total amount of incoming and outcoming links can 

be counted to establish the id of the neighbor that each node is going to imitate. This 

information will be helpful to better understand how imitation spreads among traders 

within the network and to detect the agent that will be the guru that specific day. 

When the guru of that day is already identified, the most important parameter of 

our study, the intensity of choice, β9, comes into play. In order to set the value of this 

parameter, we need to count the consecutive days in which a certain agent survives as 

a guru. 

Finally, the last part of the Trade Functions is where traders form expectations; 

submit their orders of buying and selling and where all the operations are registered in 

the check_ book function. 

3.2. Parameters of the model. 

In the artificial market there are a number of traders equal to N = 100. All agents 

start with the same amount of wealth. Precisely, each agent is initially given an amount 

of stock equal to S0 = 100 and an amount of cash equal to C0 = 1000. The initial stock 

price is chosen at p0 = 1000. We also fix T = 300. Also, we conduct T = 2000 periods of 

simulation. There are Nt = 300 trades per period. Simulations are repeated M = 10 times 

with a different random seed. 

 After describing all the variables and parameters, the following section presents 

how these simulations reproduce some stylized facts observed emerging in financial 

markets (see Cont 2001). We begin by showing that the market evolves endogenously 

to periods of decentralized network to periods of centralized network. Then we study 

same statistical properties of the network topology to demonstrate that our network is 

not a random graph and we show how the wealth of agents keeps evolving. Then we 

show the correlation among the guru life, the in-degree and the fitness measure and how 

it is correlated with returns times series and the intensity of choice. To conclude the 

discussion of results, we introduce how the autocorrelation of absolute returns are 

distributed as a power law. 

 

                                                           
9  As we have already explained, the longer is the guru life, the higher β. In other words, the more 

consolidated an agent is while being the most imited trader, the more confident the other trades 

will be in their strategies and thus, the probability of being imitated will also increase 
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3.3. Discussion: the network analysis. 

At this point, the reader may already acknowledge that the network of our model 

is dynamic, what means that its architecture evolves as times passes. Figure 6 shows 

us the step 939 of our research, where traders 38 and 10 are competing to become a 

guru. This is an unstable period in which few gurus co-exist and compete for popularity. 

In the absence of a guru dominating the market, the strategies that noise traders imitate 

are diverse and there exists no coordination among their strategies. 

 

 

 

 

 

 

Figure 7 illustrates that after a certain period of time, concretely in the step 973, 

one agent has achieved to be the guru even though the network still is decentralized. 

The reason is that the parameter β (the intensity of choice) is not really high due to the 

fact that this agent is guru for a brief period of time and that there exist some agents that 

do not trust his/her investment strategies. 

 

 

 

 

 

 

 

The last possible modality of our model is a centralized network, where there exists 

coordination in the decision-making process. Now, the guru has a higher β. For this 

reason, the guru has more confidence on behalf of the agents and the vast majority of 

Figure 7. Model with a guru but not stable. 

Figure 6. Decentralized model. 
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them tend to imitate the strategies of the new guru. At this moment, price bubbles and 

volatility clustering are generated due to the strategic coordination. 

 

 

 

 

 

 

 

 

Once explained how our network evolves, we investigate some important statistical 

properties identifying the network topology (see Figure 9). Specifically, we study the 

degree distribution (left panel), which shows the connectivity degree among traders 

within the network. We also check how the network architecture crucially depends on the 

intensity of choice β, (central panel), and finally, we analyze the average degree network 

centrality (right panel). This last concept indicates us how concentrated or centralized 

the direction of the links are. 

 

The left panel of Figure 9 shows that our network topology is not a random graph 

but that some agents will concentrate the majority of the network links. This fact let us 

classify the imitation network as a scale free10 whose degree distribution follows a power 

law. 

                                                           
10 A scale-free network in a complex type of network where some nodes poses a high amount of links to 
others nodes although most of their degree of connection is quite low. 

Figure 9. The decumulative distribution (DDF) of the in-degree (left panel), the intensity of 
choice βt (central panel) and the average network centrality over simulation (right panel). 

Figure 8. Centralized network and stable time of 
guru. 
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The central panel displays the distribution of the intensity of choice. In our model 

β plays a crucial role in the network architecture because, unlike previous studies, we 

introduce an endogenous evolution mechanism of this. This parameter positively 

depends on the guru’s live, which is in turn function of the guru fitness, of Eq.4. We 

briefly explain how β works: lower values of β make the network distributes randomly 

since there is no agent that has a higher confidence level. When the parameter β 

increases substantially, our market self-organizes into a pseudo-star where the guru 

concentrates almost all links. This is due to the fact that the market agents trust him/her. 

Central panel shows that the guru’s time distribution is heterogeneous. On the one hand, 

there are stable periods where there is a stable guru and the network is centralized. On 

the other hand, there are unstable periods where traders compete in order to become 

the guru and the network is decentralized. 

In the last panel (right panel), we observe the average degree network centrality11. 

In the graph we can clearly observe that the degree of centrality is low in the researching 

period, which are periods where the network is decentralized. Conversely, as time 

passes by, the degree of centrality increases, what means that some agent achieves a 

high level of intensity of choice and concentrates the majority of links. 

 

 

 

 

 

 

In our model, traders initially start with the same amount of stock and cash. 

However, as time goes by, herding generates a fat tail distribution in individuals’ wealth 

and stock (see Figure 10), in accordance with the initial hypothesis of our model that 

market participants are very heterogeneous in size. Now, we explain the mechanism 

driving the evolution of the imitation network and its impact on prices. As already 

stressed, traders start with the same amount of wealth, but thanks to the fitness 

measures (Eq. 4), some investors extend their numbers of followers and as a 

                                                           
11 We are using the Degree centrality but there exist many other such as closeness, betwenness, 
eigenvector and percolation. 

Figure 10. The decumulative distribution (DDF) of the wealth (left side) and the 
decumulative distribution (DDF) of the stocks (right side) 
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consequence, their wealth. We can easily understand the process with the following 

example: Let’s imagine that the guru has a bullish expectation on an asset and he/she 

decides to buy a certain amount at a price equal to 10. If he/she is able to execute a 

market order, all of his/her followers will imitate the strategy and the price of the asset 

will increase. For this reason, the guru obtains benefits since he/she possesses an asset 

which cost 10 and whose value is now, for instance, 14. Furthermore, since it has a 

higher wealth, his/her fitness and the number of followers also increase. With a major 

fitness, the likelihood that he/she remains the guru in the aftermath increases. In the 

same vein, the intensity of choice, β, is also increased, which further strengthens the 

guru fitness and his/her chances to persist over time. With this example, we can check 

how, in contrast to the prevailing economic view where informed agents need to hide 

their private information to obtain benefits (see Behanou and Laroque, 1992; Caldentey 

and Staccheti, 2007; Chakraborty and Yilmaz, 2008), in our market the guru gains in the 

highest profits when they reveal their expectations to the highest number of followers. 

Specifically, the average wealth over time and simulation of guru, followers and non-

followers are 598280 (st.desv 5629), 36637 (st. dev 2543) and 2563 (st. dev 1067) 

respectively. 

3.4. The impact of herding on the returns.  

In order to analyze the competition and replacement dynamics driving “guru life 

cycle”, we run one Monte Carlo simulation of T =10000 periods12. 

Figure 11 shows the transition from unstable periods of decentralized networks in 

which agents compete to become the guru to stable periods in which the net is 

centralized and there is a guru that concentrates the majority of links. The black solid 

line is fragmented and very volatile in the periods that there is no guru. Clearly, these 

                                                           
12 The figure has been divided in two sub-graph in order to be clearer. In order to understand how 
the market works, it is enough with T= 5000. However, it is important to take into account that the 
cycle does not finish in this moment the network keeps evolving. 

 

Figure 11. The index of the current guru (black solid line), the percentage of incoming 
link to current guru (red dotted line) and fitness of current guru (green dashed line). 
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periods will present a low percentage of in-degree (red dotted line low values) and, also, 

with high fitness values of volatility since there is no agent that stands among the others 

(green dashed line unstable). Conversely, the black solid line is continuous when there 

exists a guru in the market. Generally, these moments coincide with a high percentage 

of in-degree (red dotted line high values) and with a much more stable and close fitness 

to one. 

During the periods of the guru’s stability, one or more of his/her followers may 

become richer than the guru himself/herself, as signaled by the fact that the fitness 

(green dashes line) of the guru becomes, at times, smaller than 1. As other agents 

become richer, they present a higher fitness and start to be imitated until they become 

the new guru. The mechanism of the guru replacement is very simple. A possibility of 

replacement may occur when the guru places a limit order, which is a buy/sell order not 

immediately executed. At this moment, one of his/her followers may take advantage of 

the guru’s information in order to place a market order, thus increasing his/her wealth at 

the expense of the guru. In doing so, the guru fitness will decrease and it may also 

determine his/her replacement. Another possibility is when, despite the guru placing a 

market order, the size of this order is less than the size of imitators. In this occasion, the 

guru’s wealth will increase but less than his/her imitator’s, what generates a replacement 

dynamics similar to that described above. 

 

 

  

 

 

 

 

 

 

As can be observed in Figure 12, there is a strong correlation between volatility 

clustering (black solid line) and in-degree (red dotted line). This is due to the creation 

and destruction mechanism as well as the replacement of the guru in order to generate 

stock return volatility. It is not by chance that the highest returns moments coincide with 

the highest levels of in-degree percentages and intensity of choice (green dashed line). 

Figure 12.  Return time series (black solid 
line), the percentage of incoming link to 
current guru (red dotted line) and the 
intensity of choice, (green dashed line). 
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By having a high β, the guru has a higher in-degree and bubbles are produced up to the 

moment he/she is replaced. Moreover, the figure also shows the correlation between the 

life of the guru, the in-degree and the intensity of choice: the longest the life of the guru 

is, the greater the number of his/her imitators, the higher the parameter β. By comparing 

Figure 12 to the previous (Figure 11), we can examine the existing correlation between 

the “guru evolution” and the returns’ time series. Specifically, we observe that the 

moments of the return time series associated to coordination periods are far away from 

those observed in the Normal distribution (distribution will have a leptokurtic and 

asymmetric distribution and display fat-tails), while those associated to non-coordination 

periods better approach the Gaussian distribution. 

 

 

 

 

 

 

 

The last figure of this section (Figure 13) confirms the presence of volatility 

clustering. Figure 13, in fact, shows a positive and slowly decaying autocorrelation of 

absolute returns. Moreover, in line with the empirical evidence (see Cont 2001), the 

autocorrelation function of absolute returns is well fitted by a power law. If we presented 

the distribution of the returns’ autocorrelation, we could observe that it would show a fast 

decaying to zero, presenting thus no autocorrelation. For this reason, if there existed 

autocorrelation, the agents could conduct arbitrary strategies to obtain higher returns. 

 

 

 

 

  

                                 

  

Figure13. Autocorrelation of absolute returns 
and the power law best fit (red line). 
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4. CONCLUDING REMARKS. 
 

In this work, we have presented a stylized agent-based model able to reproduce 

the standard stylized facts emerging in financial market. Through this toy model that 

relies on a number of ad-hoc exogenously imposed rules, we show that the model 

reproduces some of the most important properties emerging in the returns’ time series: 

returns have a leptokurtic and asymmetric distribution and display fat-tails. 

We have demonstrated that in an order driven market populated by zero intelligent 

agents emerge the well-known stylized facts such as fat tails and volatility clustering. By 

introducing an endogenous mechanism of imitation, it allows a guru to emerge 

spontaneously in the system, rise and fall in popularity over time, and possibly be 

replaced by a new guru. Moreover, this artificial market shows that, conversely to real 

markets where the highest benefits are obtained by hiding information regarding their 

investment strategies, our gurus obtain more benefits as more investors follow their 

strategies. This imitation of believes can generate coordination of trading and large 

returns fluctuations when the popularity of the guru slowly changes over time. In fact, it 

is the transition from coordination periods (centralized network with a guru absorbing the 

majority of links) to no-coordination periods (decentralized network with a few agents 

competing to become the guru), emerging thanks to a fitness mechanism based on 

agents wealth, which generates interesting prices dynamics.  

Furthermore, the endogenous communication structure has allowed us to analyze 

important properties of the network. Firstly, we have shown that herding generates fat 

tail distributions and leptokurtosis, since there is a guru in the model with a big probability 

of indegree (leptokurtic) and almost all agents follow him/her (heavy tail). Secondly, we 

have introduced an endogenous modification in the guru’s intensity of choice that let the 

model self-organize themselves into some different network topologies, ranging from 

random graph to scale-free topologies. 

To conclude this study, we have shown some important properties of the market. 

Specifically, herding is able to reproduce bubbles and consequently crashes and stages 

of aggrupation of volatility (volatility clustering). Moreover, the model is able to reproduce 

correlation between volatility clustering and the percentages of in-degree, and between 

the percentage of incoming links and the fitness of the current guru. 

 

  



29 
 

5. REFERENCES. 

Barabasi, A., Albert,R. (1999) “Emergence of scaling in random networks”, Science, 286, 

pp.509-512. 

 

Becker, G. (1962) “Irrational behavior and economic theory”, The Journal of Political 

Economy, 70, pp.1-13. 

 

Benabou, R. and Laroque, G. (1992) ‘Using Privileged Information to Manipulate  

Markets: Insiders, Gurus, and Credibility’, Quarterly Journal of Economics, pp. 

921–958. doi: 10.1086/270156. 

 

Bouchaud J.P. (2008) “Economics Needs a New Scientific Revolution,” Nature, 104,  

pp. 437-455. 

Brock, W. A. and Hommes, C. H. (1998) ‘Heterogeneous beliefs and routes to chaos in  

a simple asset pricing model’, Journal of Economic Dynamics and Control, 22(8–9), 

pp. 1235–1274. doi: 10.1016/S0165-1889(98)00011-6. 

Caldarelli, G., Marsili, M. and Zhang, Y.-C. (1997) ‘A Prototype Model of Stock 

Exchange’, Europhysics Letters, 40(5), p. 4. doi: 10.1209/epl/i1997-00491-5. 

Caldentey, R., and Stacchetti, E. (2007). “Insider trading with stochastic val- uation”,  

SSRN Electronic Journal, 2-44. 

Challet,D., Marsili,A., Zhang,Y. (2000), “Modeling market mechanism with minority 

game”, Physica A, 276,pp. 284-315. 

Chiarella, C., and Iori, G. (2002) “A simulation analysis of the microstructure of double 

auction markets”, Quantitative Finance, 2, pp. 346-353. 

Chiarella, C., Iori, G. and Perelló, J. (2009) ‘The impact of heterogeneous trading rules  

on the limit order book and order flows’, Journal of Economic Dynamics and 

Control, 33(3), pp. 525–537. doi: 10.1016/j.jedc.2008.08.001. 

Cont, R. (2001) ‘Empirical properties of asset returns: stylized facts and statistical 

issues’, Quantitative Finance, 1, pp. 223–236. doi: 10.1088/1469-7688/1/2/304.  



30 
 

Cont, R. and Bouchaud, J.-P. (2000) ‘Herd Behavior and Aggregate Fluctuations in  

Financial Markets’, Macroeconomic Dynamics, 4, pp. 170–196. doi: 

10.1017/S1365100500015029. 

De Long, B., Shleifer, A., Summers, L. and Waldmann, R. (1990) ‘Noise Trader Risk in 

Financial Markets’, Journal of Political Economy, 98(4), pp. 703–738. doi: 

10.1086/261703. 

Duffy, J., and Ünver, M. U. (2006) ‘Asset price bubbles and crashes with near-zero-

intelligence traders’, Economic Theory, 27(3), pp. 537–563. doi: 

10.1007/s00199-004-0570-9.  

Farmer, J.D, and Duncan, F. (2009) 'The Economy Needs Agent- Based Modelling.' 

Nature, 460, pp. 685-686. 

Figlewski, S. (1979) “Subjective information and Market Efficiency in a Betting Model”, 

Journal of Political Economy, 87(1), pp. 75-88. 

Gode, D., and Sunder, S. (1993) “Allocative Efficiency of Markets with Zero-

IntelligenceTraders: Market as a Partial Substitute for Individual Rationality”, 

Journal of Political Economy, 101(1), pp. 119–37. 

Gopikrishnan, P., Plerou, V., Nunes Amaral, L. a, Meyer, M. and Stanley, H. E. (1999) 

‘Scaling of the distribution of fluctuations of financial market indices.’, Physical 

review. E, Statistical physics, plasmas, fluids, and related interdisciplinary 

topics, 60(5), pp. 5305–5316. doi: 10.1103/PhysRevE.60.5305. 

Guillaume, D. M., Dacorogna, M. M., Dav&#x000E9;, R. R., M&#x000FC;ller, U. a., 

Olsen, R. B. and Pictet, O. V. (1997) ‘From the bird’s eye to the microscope: A 

survey of new stylized facts of the intra-daily foreign exchange markets’, Finance 

and Stochastics, 1(2), pp. 95–129. doi: 10.1007/s007800050018. 

Iori, O., Modelling, J. A. and Markets, F. (2012) ‘City Research Online Agent-Based 

Modelling for Financial Markets’, (12). 

Kirman, A. (2010) ‘The economic crisis is a crisis for economic theory’, CESifo 

Economic Studies, 56(4), pp. 498–535. doi: 10.1093/cesifo/ifq017. 



31 
 

Kirman,A., (1993) “Ants, rationality, and recruitment”, Quarterly Journal of Economics, 

pp. 137-156. 

Lux, T., and Marchesi, M. (2000) “Volatility clustering in financial markets”,  

International Journal of Theoretical and Applied Finance, 3(4), pp. 675–702. 

Lux T., and Marchesi, M. (1999) “Scaling and criticality in a stochastic multi-agent 

model of financial market”, Nature vol. 397, pp 498 – 500. 

Mandelbrot, B. (1963) ‘The Variation of Certain Speculative Prices THE VARIATION 

OF CERTAIN SPECULATIVE PRICES*’, The Journal of Business, 36(4), pp. 

394–419. doi: 10.1007/978-1-4757-2763-0_14. 

Pagan, A. (1996) ‘The econometrics of financial markets’, Journal of Empirical Finance, 

3(1), pp. 15–102. doi: 10.1016/0927-5398(95)00020-8. 

Ruggero, G., and Tedeschi, G. (2016) ‘Modeling financial markets in an agent-based 

framework’ in Economics with Heterogeneous Interacting Agents: A Practical 

Guide to Agent-Based Modeling, pp. 2-68. Springer International Publishing. 

Shiller, R. J., Fischer, S. and Friedman, B. (1984) ‘Stock prices and social dynamics’, 

Brookings Papers on Economic Activity, 2(1), pp. 457–498. doi: 

10.2307/2534436. 

Tedeschi, G., Iori, G. and Gallegati, M. (2012) ‘Herding effects in order driven markets: 

The rise and fall of gurus’, Journal of Economic Behavior and Organization, 

81(1), pp. 82–96. doi: 10.1016/j.jebo.2011.09.006. 

Tedeschi, G., Iori, G. and Gallegati, M. (2009) ‘The role of communication and imitation 

in limit order markets’, European Physical Journal B, 71(4), pp. 489–497. doi: 

10.1140/epjb/e2009-00337-6. 

Westerhoff, F. (2009) “A simple agent-based financial market model: direct interactions 

and comparisons of trading profits”, BERG Working Paper Series. 

 

 


