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Abstract

Communications in mobile opportunistic networks, instead of using the Internet
infrastructure, take place upon the establishment of ephemeral contacts among
mobile nodes using direct communication. In this paper, we analytically model
the performance of mobile opportunistic networks for contact-based messaging
applications in city squares or gathering points, a key challenging topic that is
required for the effective design of novel services. We take into account several
social aspects such as: the density of people, the dynamic of people arriving and
leaving a place, the size of the messages and the duration of the contacts. We
base our models on Population Processes, an approach commonly used to repre-
sent the dynamics of biological populations. We study their stable equilibrium
points and obtain analytical expressions for their resolution.

The evaluations performed show that these models can reproduce the dy-
namics of message diffusion applications. We demonstrate that when the density
of people increases, the effectiveness of the diffusion is improved. Regarding the
arrival and departure of people, their impact is more relevant when the density
of people is low. Finally, we prove that for large message sizes the effectiveness
of the epidemic diffusion is reduced, and novel diffusion protocols should be
considered.
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1. Introduction

The authors in [1] define Mobile Social Networking in Proximity (MSNP), as
a wireless peer-to-peer network of opportunistically connected nodes that use
proximity as the social relationship. This condition allows the establishment
of local communication channels that can be used for applications such as in-5

formation sharing, advertisement, disaster and rescue operations, gaming, etc.
Instead of using the established Internet infrastructure, the communication in
mobile opportunistic networks takes place upon the establishment of ephemeral
contacts among mobile nodes using direct communication (i.e. Bluetooth or
WiFi Direct). Moreover, by relying on properly designed security mechanisms,10

mobile opportunistic networks can increase the confidentiality and privacy of
communications, since direct communications, unlike infrastructure based com-
munication, are more robust to the tracking of the user behaviour.

Based on the concept of opportunistic networks, new contact-based mes-
saging applications have recently been developed. Firechat, as an example,15

a messaging application meant for festivals, became popular in 2014 in Iraq
due to the government restrictions on Internet use1, and after that during
the Hong Kong protests2. There are anyway other examples, like Briar (see
https://briarproject.org) which is a secure messaging application, or CoCam
[2] for image sharing in events. Moreover, several supporting frameworks and20

architectures are appearing, such as the Haggle project [3], a framework for
autonomic and opportunistic computing, or AllJoyn, an open source, general
networking framework from the Allseen Alliance (https://allseenalliance.org/).
The experience shows that these messaging applications seem to be operative
in open places with a moderate to high density of people.25

In this paper, we analytically study the performance of these opportunistic
contact-based messaging strategies in city squares or gathering points. Accord-
ing to a recent survey [4] analytical modelling and performance evaluation of
DTNs and Opportunistic Networks is one of the key challenging problems. A
common approach is to combine a network simulation tool with realistic mobil-30

ity traces. Nevertheless, simulation can be very time consuming and restricted
to the limited scenarios of the available mobility traces. Analytical models can
avoid these drawbacks providing a fast and broader performance evaluation.
Two classes of analytical models have been proposed for modelling this network
dynamics: Markovian models [5, 6, 7, 8, 9, 10] and deterministic models based35

on Ordinary Differential Equations (ODEs) [6, 11, 12, 13]. Analytical models
require anyway a precise and concise description of the mobility scenario, that

1Kuchler, Hannah; Kerr, Simon. ”Private Internet: FireChat app grows in popularity in
Iraq”. Financial Times, 2014-06-22

2Bland, Archie. ”FireChat the messaging app that’s powering the Hong Kong protests”.
The Guardian, 2014-09-29.
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usually assume that the inter-contact times distribution between pairs of nodes
are exponentially distributed with a given contact rate [5].

We based our model on Population Processes, a method commonly used to40

model the dynamics of biological population [14]. More specifically to oppor-
tunistic networks, Haas and Small [6] presented a model based on epidemiolog-
ical processes for a network that used animals (whales) as data carriers to store
and transfer messages (an approach similar to DTN). Zhang et al. [11] derived
ODE equations for the study of the dynamics of various forwarding and recov-45

ery DTN schemes, such as epidemic and 2-hop, among others. The authors of
[12] introduced a mathematical approach for messages diffusion in opportunistic
networks using the Epidemic protocol. This approach is based on well known
models for the spreading of human epidemical diseases, e.g. SIR (Susceptible,
Infectious and Recovered) models. One of the main conclusions of their analysis50

(mathematical model and its respective simulation) is that SIR models are quite
accurate for the average behaviour of Epidemical DTN.

In [13] the authors propose a detailed analytical model to analyse the epi-
demic information dissemination in mobile social networks. It is also based on
SIR models including rules that concern user’s behaviour, especially when their55

interests change according to the information type, and it can have a consid-
erable impact on the dissemination process. After large simulations, they have
demonstrated the accuracy of their model.

Nevertheless, these previous models, do not take into account several social
aspects that impact the performance of message dissemination such as: the den-60

sity of people, the dynamic of people arriving and leaving a place, the size of
the messages and the duration of the contacts. We therefore introduce dynamic
models that take into account these social aspects, based on Delay Differen-
tial Equations (DDEs). DDEs are similar to Ordinary Differential Equation
(ODEs), but their evolution involves past values of the state variable. DDEs65

have been used for modelling population dynamics in many disciplines such as
biology, ecology, epidemics [15], and network protocol analysis [16].

For these models we studied their stable equilibrium points and obtained
analytical expressions for their resolution. The evaluations performed showed
that these models can reproduce the dynamics of message diffusion. We show70

that when the density of people increases, the effectiveness of the diffusion is
improved. Regarding the arrival and departure of people, the impact is more
important when the density of people is low. Finally, we prove that for large
message sizes the effectiveness of the epidemic diffusion is reduced, and novel
diffusion protocols should be considered.75

The paper is organised as follows. Section 2 describes the contact-based
messaging dissemination approach that we assume. Section 3 presents the mod-
els and Section 4 the evaluation of a few scenarios using our approach. Finally
Section 5 offers the conclusions.
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2. The considered contact-based messaging approach80

The class of contact-based messaging applications we are considering in this
work is based on establishing a short-range communication directly between
mobile devices, and on storing the messages in these devices to achieve their full
dissemination. It can be considered a wireless peer-to-peer (P2P) network of
nodes that connect opportunistically. No messages are sent or stored in servers,85

rather, all information is stored on the mobile devices in a given area, i.e., it
can be seen as a localised approach instead of a cloud approach.

Message spreading is based on epidemic diffusion, a concept similar to the
spreading of infectious diseases, where an infected node (the one that has a
message) contacts another node to infect it (transmit the message). Epidemic90

routing obtains the minimum delivery delay at the expense of increased usage
of local buffer and increased number of transmissions. There are different vari-
ations of this diffusion scheme (that is, the infection process), that attempt to
reduce resource utilisation e.g., 2-hop forwarding [5], probabilistic forwarding
[17] and spray-and-wait or multiple copy [18, 7].95

The diffusion of messages among users is organised in groups. Users can join
(and leave) a group, and their members receive the messages that are sent to
the group. Thus, the goal is to spread all the messages of the various groups
so that they can be received by the subscribed members. The mechanisms for
group management are, anyway, outside the scope of this paper.100

Message dissemination takes place as follows. Mobile devices have a mes-
saging application that notifies and shows the user the received messages for
the subscribed groups. Each node has a limited buffer where the messages in
transit can be stored. When two nodes establish a pair-wise connection, they
exchange the messages they have in their buffer, and check whether some of the105

newly received messages are suitable for notification to the user. All nodes that
have the messaging application collaborate in storing and forwarding messages.

One important condition that must hold is that the contact between two
nodes should last long enough for transferring the whole message. This condition
holds true depending on the application behaviour when two nodes contact. Two110

approaches can be assumed:

• The devices stop when they need to exchange information. In this case,
the owners of the mobile devices control this exchange by waiting until the
message transmission is completed. This is a commonly used scheme in
several existing short-range messaging protocols such as Apple iOS Airdrop115

and Google Android Copresence.

• The devices do not stop, so the completion of message transmission will
depend on the contact duration. In this case, when the contact duration
is lower than the message transmission time, the transmission fails. The
failure probability will clearly depend on the users mean speed and com-120

munication range. For example, if nodes are expected to be constantly
moving at a mean speed of 0.5m/sec and communication range is 7.5m,
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a rough estimation (it depends on the direction of the devices) of the av-
erage contact duration time would be approximately 7.5 ∗ 2/0.5 = 30sec,
that is not enough time, for example, to transfer a 4MB photo at 1 Mbps.125

In our paper, we assume the first approach, and therefore suppose that user
control the devices stop time.

3. Performance model

In this section we propose an analytical performance model to evaluate the
dissemination of messages considering the data transmission time in a place130

where people can enter and leave. The performance model presented here is
based on population processes or models. A population model is a type of math-
ematical model which is applied in order to study population dynamics, and it
is extensively used to model biological population such as the spread of para-
sites, viruses, and diseases [14]. Specifically, our model is based on biological135

epidemic models [19], where individuals can be infected when a contact occurs
with other infected nodes. In our case, an infected node refers to a node that
has a message, and an infection, when a node that has a message transmits it
to another node. Nodes move freely in a given area with a given contact rate
between pairs λ, and new nodes come to the place with an arrival rate β and140

leave the place with an exit rate of δ. Thus, the number of nodes (population)
in the place (N) depends on the initial number of nodes in the place (N0) and
the rates of arrival and exit. We assume a short-range communication range
(for example, Bluetooth), so network congestion and interferences do not have
a strong impact.145

First, we present a basic epidemic model (Section 3.1), well known in the
literature that we later extend (Section 3.2), with the arrival and exit rates in
order to evaluate in depth its dynamics and stability. The last model (Section
3.3) will take into account the peer-to-peer communication delay.

3.1. Basic epidemic model150

In the basic epidemic model [11], the number of nodes in a place remains
constant, and when a node carrying the message (an infected node) contacts
with another node that does not have the message (called the susceptible node)
it transmits this message immediately. From that moment on, both nodes carry
the message. As we will prove, this model is valid only when the transmission155

time is low.
Following the epidemic model notation, the population is divided into two

classes: the infected nodes (I) and the susceptible nodes (S), and population
remains constant: N = N0 = I + S. Thus, there is only one possible transition
from class S to I that occurs when a susceptible node is infected, i.e., nodes
move from class S to I with rate λSI: (S → I, λSI). The dynamics of this
system can be expressed using a deterministic model based on ODEs (Ordinary
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Differential Equations):
S′(t) = −λS(t)I(t)

I ′(t) = λS(t)I(t)
(1)

These ODEs have an analytical solution assuming one initial node infected
(I(0) = 1) [11]. More specifically, the function that represents the infected
nodes is the logistic function:

I(t) =
N

1 + (N − 1)e−λNt
(2)

Using the previous defined transition rates, we could also derive a Continuous
Time Markov Chain (CTMC). Although Markovian models can provide more
complex metrics (such as complete distributions), the numerical solution of these
models becomes unfeasible when the number of nodes is large (as occurs in the160

scenarios evaluated in this paper). On the contrary, as populations N grows
large, ODEs can be derived as limits of these Markovian models, as stated by
Kurtz’s convergence theorem [20].

3.2. Epidemic model for an open area

In this Section, we extend the previous model to take into account that nodes165

can enter and leave an open area (e.g., a public square, a shopping mall, etc.).
The arrival rate is β, and it is equivalent to the birth rate of the epidemical
models. We assume that a newly arrived node is a susceptible node (it does not
have the message). The exit rate is δ, and both susceptible and infected nodes
can leave the area. This differs from the typical death rate of epidemical models,170

where only the infected nodes can die (that is, leave the place). Finally, the final
exit rate in both classes is proportional to the relative number of susceptible
and infected nodes. Thus, the number of nodes is not constant along time and
can be obtained as N(t) = N0 +(β−δ)t where N(t) = I(t)+S(t) and N(t) > 0.
Summing up, the system has the following transitions:175

• (→ S, β): new nodes enter the place with β rate.

• (S → I, λSI): new nodes get the message when contacts occurs.

• (S →, δS/(I + S)): nodes with no message leave the place.

• (I →, δI/(I + S)): nodes with the message leave the place

and the dynamics of this system can be expressed using a deterministic model
based on ODEs:

S′(t) = −λS(t)I(t) + β − δS(t)/N(t)

I ′(t) = λS(t)I(t)− δI(t)/N(t)

N ′(t) = β − δ
(3)

Figure 1 shows the evolution of the infected nodes (I(t)) and the number of180

nodes (N(t)) as a function of time for different values of the arrival and exit
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Figure 1: Evolution of the infected nodes for different values of β and δ: a) β = δ = 0; b)
β = 1, δ = 0; c) β = δ = 1; d) β = 0, δ = 1

rates. All plots start with the same number of nodes (N0 = 100), one infected
node (I(0) = 1) and contact rate λ = 0.001. Analysing the dynamics of this
system, we see that, when there is no arrival and exit rate (β = δ = 0) is the
basic epidemic model, so the system is stable and all nodes get the message, as185

we can see in figure 1a. When the system has the same arrival and exit rate
(figure 1c with β = δ = 1), we can see that the system reaches an equilibrium
point, but not all the nodes get the message (I(t) < N(t)). If β > δ, then
the number of nodes increases indefinitely as shown in figure 1b. Finally, when
β < δ, all the nodes leave the place, and N(t) falls to 0 as shown in figure 1d.190

The most relevant case is when incoming and outgoing node rates are equal,
that is when β = δ. We therefore focus on studying its dynamics and stability
in depth. When the system reaches an equilibrium point at time ts, this implies
that S(t), I(t), N(t) are constant for t > ts, so their derivatives are 0. From
equations in (3), this implies, that N ′(t) = 0 = β− δ, so β = δ, and the number
of nodes N(t) = N0 remains constant to N0. In this case, there is a renewal of
nodes, with rate β = δ. We can obtain an analytical solution for I(t). If we
consider the I ′(t) equation from (3), and replace N(t) with N0 and S(t) with
N0 − I(t), we have:

I ′(t) = λ(N0 − I(t))I(t)− βI(t)/N0 = −λI2(t) + (λN0 − β/N0)I(t) (4)
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The solution of this differential equation when I(0) = 1 is:

I(t) =
bebt

λ(ebt − 1) + b
b =

λN2
0 − β
N0

(5)

Using the expression (5) we can also obtain the number of infected nodes
when the system reaches the equilibrium. These equilibrium points can be
found assuming the condition I ′(t) = 0. Two candidates of equilibrium points

are obtained, Ie =
λN2

0−β
λN0

and Ie′ = 0 . We point out that the number of
infected nodes must be always positive (Ie ≥ 0), therefore the first point of
equilibrium will have sense only if λN2

0 − β > 0. Since S(t) + I(t) = N0 for all
t ≥ 0, from the one-dimensional analysis of the behaviour on the variable I, we
can directly extend these results to the two-dimensional case. Considering the

limits when t tends to ∞ in (5), we have that I(t) converges to
λN2

0−β
λN0

when

λN2 − β > 0 and it converges to 0 when λN2 − β ≤ 0. As a result, the orbits
(S(t), I(t)) converge to (N0, 0) in the case λN2 − β ≤ 0 and they converge to:

(Se, Ie) =

(
β

λN0
,
λN2

0 − β
λN0

)
(6)

when λN2
0 − β > 0. This condition indicates that, when the whole number of

contacts3 (λN2
0 ) is greater than the arrival/exit rate (β = δ), the system reaches

an equilibrium with Ie nodes having the message. Otherwise, the system tends
to have zero nodes with the message (Ie = 0).

This analytical model allows us to obtain three interesting performance pa-
rameters. The first one is the average time a node stays in the area. Using
Little’s law, L = βW , where the long-term average number of nodes in a stable
system L is equal to to arrival rate multiplied by the average stay (or waiting
time) in the system W . Thus, in our case, the average stay time is:

W = N0/β (7)

The second one is the delivery time Td, that is the time when a given number
of nodes M get the message. Using equation (5), setting I(t) = M and solving
for t, we have:

Td(M) =
1

b
log

(
bM − λM
b− λM

)
b =

λN2
0 − β
N0

(8)

Finally, the third one, is the accumulated number of nodes that leave the area
with a copy of the message up to time t:

Em(t) = βtIe/N0 (9)

3to be precise, the whole number of contacts is λN(N − 1), that is practically λN2
0 when

N is large enough.
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3.3. Model considering transmission time195

In this section, we extend the previous model by considering the transmission
time of the messages. The message communication time can be expressed as
Tc = Ts+Tt, and includes two components: a fixed set-up time Ts for two nodes
to establish a connection; and a transmission time Tt = m/Bw, that depends
on the message size (m) and the available bandwidth (Bw).200

In this model, when an infected node contacts a susceptible node, both nodes
establish a connection and a message is transmitted. During the communication
time Tc, the nodes involved cannot infect other nodes, so a new class of nodes
is introduced: the communicating (C) nodes. This class is subdivided into two
subclasses: subclass R, that includes the communicating nodes that are receiv-205

ing the message, and subclass P , that includes the nodes that are transmitting
(posting) the message. Thus, when a contact occurs, R and P are increased
by one, one coming from the class of infected nodes, and the other one from
the class of susceptible nodes, respectively. When transmission ends, these two
nodes are moved to the infected nodes class. Note that, in this model, the in-210

fected class is defined as the nodes that can infect other nodes (represented by
the letter J).

Additionally, as in the previous model, we have the arrival and exit rates
associated with the S and J classes. Nevertheless, the nodes that are transmit-
ting (R and P classes) are supposed to stay in the place. Thus, the dynamics215

of this system is expressed through the following transitions (see figure 2):

• (→ S, β, 0): new nodes arrive in the place with β rate.

• (S → R, λSI, 0): a node with no message contacts with a node with the
message to start the reception of the message.

• (S →, βS/(S + J), 0): nodes without the message leave the place.220

• (J → P, λSJ, 0): a node with the message contacts with a node with no
message to start transmission.

• (S →, δJ/(S + J), 0): nodes with the message leave the place.

• (R → J, λSJ, Tc): the reception of the message ends after Tc seconds, so
now the node its infected.225

• (P → J, λSJ, Tc): the transmission of the message ends after Tc seconds,
so the node returns to the infected class.

Note that the third value of the transitions represents the delay incurred, that
can be 0 (no delay) or Tc (the transmission delay). Using these transitions, we
can model the dynamics of this system using the following Delay Differential
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Figure 3: Evolution of the infected nodes and communicating nodes, with a transmission time
tc = 5s. a) β = δ = 0; b) β = δ = 1;

Equations (DDEs):

S′(t) = −λS(t)J(t) + β − δS(t)/(S(t) + J(t))

R′(t) = λS(t)J(t)− λS(t− Tc)J(t− Tc)
P ′(t) = λS(t)J(t)− λS(t− Tc)J(t− Tc)
J ′(t) = 2λS(t− Tc)J(t− Tc)− λS(t)J(t)− δJ(t)/(S(t) + J(t))

N ′(t) = β − δ

(10)

with S(t) = 0, J(t) = 0 ∀t < 0. As stated previously, J(t) represents the
nodes which are able to infect other nodes at time t. Since the communicating
nodes that are sending the message (class P ) are also infected at time t, then
the actual number of infected nodes at time t is:

I(t) = J(t) + P (t) (11)

Regarding the dynamics of this system, it is similar to the previous model.
When β = δ the system reaches an equilibrium state and the total number
of nodes N(t) remains constant. Figure 3 shows this evolution. We can see,230

that when no nodes arrive and leave the area, all nodes get infected, and the
nodes that are communicating (i.e., R(t) + P (t)) show an exponential growth
up to t = 80s, and then a fast decrease to zero (when no new nodes can be
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infected). When nodes can arrive and leave the area, the number of infected
and communicating nodes are stable for times greater than 180s. As in the235

previous model, some nodes do not get infected.
When β = δ, we can obtain the values of Se, Je, Pe, Re which are the fixed

(equilibrium) points of the system. The class P (and R) starts communication
with a rate λSeJe and lasts Tc seconds, so the number of nodes sending and
receiving are:

Pe = Re = λSeJeTc (12)

As the number of nodes remains constant, we have that N0 = Pe+Re+Se+Je =
2λSeJeTc + Se + Je. Solving the equation for Je we have:

Je =
N0 − Se

2λSeTc + 1
(13)

Finally, we can obtain the value for Se from the equation of J ′(t) in (10). For
t large enough, we have that S(t) and J(t) are constant, so S(t−Tc) = S(t) = Se,
J(t− Tc) = J(t) = Js and J ′(t) = 0. Then, we have:

0 = λSeJe − δJe/(Se + Je) = λSe(Se + Je)− δ, (14)

and solving out for Je we have:

Je =
δ − λS2

e

λSe
(15)

If we equal the right side of this expression with the expression (13), and
solving for Se, we obtain the following third degree equation:

−2λ2TcS
3
e + (2λδTc − λN0)Se + δ = 0 (16)

that has three roots. If 2δTc −N0 ≤ 0, then F defined as follows:

F (Se) = −2λ2TcS
3
e + (2λδTc − λN0)Se + δ

that is a strictly decreasing function. Moreover since limSe→+∞ F (Se) = −∞
and limSe→−∞ F (Se) = +∞ by Rolle’s theorem, it only has one real root, that
is precisely the solution of Se. In this case, due to the complex expression of
the fixed point, it is not feasible to apply the same techniques as in the previous240

model for evaluating the stability of the fixed points. Nevertheless, the empirical
evaluation of the system shows the equilibrium of (Se, Je, Pe, Re).

The DDEs of expression (10) does not have a simple analytical solution.
Thus, we can solve the DDEs numerically using Euler’s method, with a step
size of h and time ti = hi:

Si+1 = Si + h(−λSiJi + β − δSi/(Si + Ji))

Ri+1 = Ri + h(λSiJi − λSi−Tc
Ji−Tc

)

Pi+1 = Pi + h(λSiJi − λSi−Tc
Ji−Tc

)

Ji+1 = Ji + h(2λSi−Tc
Ji−Tc

− λSiJi − δJi/(Si + Ji))

Ni+1 = Ni + h(β − δ)

(17)
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with Ri = 0, Pi = 0, Ji = 0 ∀i ≤ 0, J1 = 1, N0 the initial number of nodes,
and tc = dTc/he. We can also obtain the delivery time Td iterating over the
previous expression while round(Ji + Pi) < M (that is, while the total number245

of infected nodes is less than the desired M nodes), so Td will be the time hi
when the previous condition is true. We can also obtain the stay time W and
the accumulated nodes with message Em using expressions (7) and (9) from the
stable fixed point.

Studying the effect of the message communication time Tc, we can see that250

I(t) is bounded by two components:

1. Contact waiting delay, that is caused by waiting for new contacts. When
the communication time is near to zero (Tc = 0), all the delay is caused by
waiting for contacts so it is equivalent to the basic epidemic model, and
I(t) can be approximated with expression (5).255

2. Message communication delay, that is caused by the message transmission
time. In the absence of contact delay (or when Tc is very high), the number
of infected nodes doubles after each message transmission with a period
Tc, and can be approximated by the following function:

IC(t) = min(2bt/Tcc, N) (18)

These components are clearly highlighted in figure 4; the parameters are the260

same as in the previous figures, i.e., N0 = 100, λ = 0.001. Figure (4a) shows
the results when no nodes arrive and leave the area. For Tc = 0 the diffusion
of a message follows the expression (2). For Tc = 10 seconds, it still follows
an exponential curve typical of epidemic diffusions. Finally, the curve at the
right corresponds to a high transmission time. We can see clearly the effect265

of the communication time, and how the number of infected nodes doubles
approximately every Tc seconds (Tc = 100s). This effect is very important
because, when the communication time is high, message spreading is delayed
by this time and not by the contact rate. In fact, we can see that the number
of infected nodes doubles after each period, as represented in expression (18).270

Figure 4b shows the results when nodes arrive and leave the place. We can
see that not all nodes get infected. When Tc = 100, initially, the plot follows
the Ic(t) curve, but later it exhibits some oscillation, due to this transmission
time, that finally vanishes.

Finally, regarding the equivalent continuous Markovian model, the problem275

is that the inclusion of deterministic delays, makes them non-Markovian. Thus,
a more general model is often used, such as the Generalised Semi-Markov Pro-
cesses (GSMP) [21] or explicit models such as Delayed Continuous-Time Markov
Chains [22]. The solution of these models are even more complicated that ithe
ones of the non-delayed models. But again, the DDEs model converges to the280

delayed CTMC, when populations grows, as stated in [21].
A partir de aqui yo lo quitaria y en cada modelo pondria los puntos de equi-

librio y las simulaciones, y al final haria una seccion de conclusiones, quitando
la seccion de performance evaluation
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Figure 4: Evaluation of message diffusion with different transmission times a) β = δ = 0 ; b)
β = δ = 1
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Figure 5: Validation of the model. The input of the simulator and the DDE model are
generated randomly. The simulator iteratively is updating the set of nodes and generating
contacts between pairs of nodes, in order to simulate the contacts.

3.4. Model validation285

In this section we detail the procedure we used to validate the models de-
scribed above, a procedure similar to the one described in [11]. The process
is depicted in figure 5. We compared the results obtained with the analytical
models with those obtained by using a custom simulator that implements the
contact-based message diffusion. This simulator is driven by contacts and uses290

the same parameters of the network model (λ, N0, Tc, β, δ). Contacts are
generated with an inter-time distribution following an exponential distribution
with mean 1/λ. New nodes without message are created with a β rate and
nodes are randomly deleted (exit) with rate δS/(S + J) for class S and with
rate δJ/(S+J) for class J . The simulation computes the number of nodes that295

have the message up to a given simulation time Tsim.
The validation process was based on a set of 1000 random tests (see algorithm

in figure 6). Each test adopts different parameter values that are randomly
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function Error = ValidateModel ( )
h = 0 . 0 1 ; % time step for Euler ’ s s o l u t i o n o f DDE model
TESTs = 1000 ;
SIMs = 500 ;
for i = 1 to TESTs

[ Nx, Tc , lambda , beta , de l ta , Tsim ] = GenerateRandomParams ( ) ;
IM[ i ] = DDEModelEuler (N1 , Tc , lambda , beta , de l ta , Tsim , h ) ;
for j = 1 to SIMs

ISD [ j ] = SimDi f fus ion (N1 , T c , lambda , beta , de l ta , Tsim ) ;
end
IS [ i ] = mean( ISD ) ;
Error [ i ] = (IM[ i ]− IS [ i ] ) / IS [ i ) ] ;

end

Figure 6: Validation Process. This function returns a vector with the relative error of each
validation test.

generated from the following defined range of possible values:

M ∼ I(50, 1000) Tc ∼ U(0, 50) Tsim ∼ U(10, 1000)

λ ∼ U(0.001, 0.1) δ ∼ U(0.001, 0.1) β ∼ U(0, 10)
(19)

where U(a, b) stands for the uniform distribution (over interval (a, b)) and I(a, b)
for man uniform integer distribution.

For each test i, the test program generates randomly the parameters to test
and first obtains I(t) from our model (IMi , that is IM[i] in code), using the Eu-
ler’s method (function DDEModelEuler) with h = 0.01. Using the same parame-
ters, the simulation is repeated 500 times (function SimDiffusion), generating
for each simulation contacts with a rate λ up to time Tsim in order to obtain a

mean of the number of infected nodes (ISi , that is IS[i] in code). Note, that
each simulation represents a realisation of the process and it depends clearly
on the distribution of the contacts, so this must be repeated. That is, in each
simulation using the same contact rate λ and arrival/exit rates (β, δ) different
sequences of contacts are generated. Finally, the modelling error is obtained as
follows:

εi =
IMi − ISi

ISi
(20)

After running 1000 tests we obtained the mean error and 95% confidence inter-
vals: ε = 0.71 (0.15-1.53)%. These results validate the models proposed in this300

paper.

4. Perfomance evaluation

The models introduced in section 3 allow us to evaluate the dynamics of the
diffusion of messages in an area and, when the system reaches an equilibrium
point, parameters such as the number of infected nodes, the diffusion time and305

the waiting time. Since the evolution and dynamics of the system were already
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studied in section 3, in this section we focus our evaluation assuming that the
system reaches an equilibrium state, that is, assuming that the arrival and exit
rates are the same. From now on, we refer to both rates jointly as the renewal
rate.310

We consider an area with N0 initial individuals, that can move freely, en-
tering and leaving the place with a renewal rate β = δ and carrying a mobile
device that can establish pair-to-pair connection using Bluetooth (more exactly
a Bluetooth 2.0, Class 2 device). The rate of contacts λ can be approximated
using the expression given in [5]. We consider a communication range of 7.5m315

(an average bluetooth range), an area of about 100m2 and a mean speed of
nodes of 0.5m/s, a combination of values that gives a value of λ = 0.001s−1,
that is, a pairwise contact rate of about 3.6 contacts/h. Regarding to the com-
munication time, we used a mean bandwidth of Bw = 2.1Mb/s and a setup
time Ts = 0.1s.320

The goal of the first experiment is to evaluate the delivery time of a message.
We first assume that all nodes stay inside the area (that is, there is no renewal
rate, so β = δ = 0), so all nodes can receive the message. The number of
nodes ranges from 10 to 2000, corresponding to an average density4 of 0.001
to 0.2 people per square meter (p/m2). We used three different message sizes:325

a short text message (m = 1KB), that has a very short communication time
(Tc = 0.1s), a typical image message (m = 1MB), with a communication time
Tc = 4.3s, and finally a short video (m = 10MB) with Tc = 42s. We can see in
figure 7a, that for very low densities, the delivery time is very high, although this
delivery time decreases exponentially with density of people up to to 0.01p/m2.330

For higher densities, the delivery time decreases very slowly, so the epidemic
diffusion for higher people densities does not produce a significant improvement.
For m = 10MB (a diffusion bounded by the message communication delay), we
can see that the delivery time is higher, and it does not decrease with the
number of nodes; in fact, it slightly increases with the number of nodes, due to335

the increase of the message communication delay component.
We now evaluate the delivery time with renewal rate and no transmission

delay using expression (8). Figure 7b shows the delivery time when the message
is received for some percentage of the nodes (that is, 100 ·M/N0), when the
renewal rate is 5. We can clearly see that the delivery time decreases exponen-340

tially with the density. Figure 7c shows the delivery time to 90% of the nodes for
a renewal rate of 5, and with different message sizes. Comparing these results
with the ones with no renewal rate in figure 7a we observe that the pattern is
very similar: in general with less time (note that this delivery time corresponds
to 90% of nodes), but when people density is low, the delivery time reaches ∞345

(that is, less than 90% of nodes receive the message). In this graph we can see
a interesting effect: for m = 1KB, when density is less than 0.02, the delivery
time is ∞, that is the message is not delivered; however, for large message sizes

4In order to make the experiments independent of the nodes and place area, we chose to
use people density in the graphs
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Figure 7: Delivery time depending on the people density. a) Results of different message sizes
with no renewal rate. b) With a renewal rate of 5 and no transmission delay for different
percentages. c) Results of the delivery time to 90% of nodes with a renewal rate of 5. d)
Delivery time to 90% of the nodes with different renewal rate and no transmission delay

(m = 1MB and m = 10MB) although the delivery time is higher, it can be deliv-
ered. The reason of this behaviour, is that the nodes which are communicating350

cannot leave the system, so, if the transmission time is higher, then the ratio
J(t)/(S(t) + J(t)) is lower, so, more nodes with the message stay in the place.
Finally, in figure 7d, we evaluate the impact of different renewal rates, obtaining
the delivery time when the message is received by the 90% of nodes. We can see
that higher renewal rate implies that the delivery time increases exponentially355

when the number of nodes decreases, reaching ∞ (that is, the message is not
delivered to the 90% of nodes).

Considering the effectiveness of the diffusion, that is, the final percentage of
nodes that receive the message (100 · Ie/N0), we observe that with no renewal
rate, the effectiveness of the diffusion is 100%, although, as shown in figure 7a,360

when the density is very low, the delivery time is very high. Figure 8a shows this
percentage depending on the density of people and for a fixed renewal rate of 5
persons per second with different messages sizes. We can see that for densities
below 0.01p/m2 the percentage of nodes that receive the message is very low,
due to the effect of the renewal rate. We can also see that for a larger message365
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Figure 8: Ratio of nodes with a message. a) Depending on density with a renewal rate
β = δ = 5; b) Depending on the renewal rate for a density of 0.05p/m2.

m=1KB

People per m2
0.05 0.1 0.15 0.2

R
e

n
e

w
a

l P
e

rc
e

n
ta

g
e

0

2

4

6

8

10
m=1MB

People per m2
0.05 0.1 0.15 0.2

0

2

4

6

8

10
m=10MB

People per m2
0.05 0.1 0.15 0.2

0

2

4

6

8

10

Figure 9: Effectiveness of the diffusion depending on people density and renewal ratio for
different message sizes.

size (that is, a large communication time), the percentage is very low, because
it takes more time to transmit a message. When the number of nodes increases
the effect of the fixed renewal rate is reduced, reaching practically 100% of nodes
when density is very high. Figure 8b shows the ratio depending on the renewal
rate for a fixed density of 0.05p/m2 (N0 = 500). We can observe that for short370

messages (m = 1KB) the decrease of the ratio is almost lineal with the renewal
rate, but for larger messages and short renewal rates this ratio decreases quickly.

The results of the previous evaluations reveal that the factors which have
more impact on the effectiveness of the diffusion are people density, renewal rate
and message size. Figure 9 includes three density plots of the percentage of nodes375

that receive the message depending of people density and renewal ratio5. These
plots give a clear vision of the impact of the different factors. For m = 1KB,
we can see that effectiveness is very high (greater than 80%). Nevertheless, for

5In these plots we use the renewal ratio (RR), that is, the percentage of nodes that are
renewed in the place every second (β = δ = RR/100 ·N0)
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larger message sizes, the effectiveness is reduced specifically when the renewal
of nodes is higher.380

We repeated the previous experiments using other network parameters, such
as place size, node speed, etc. From these experiments, we can say that the main
effect of varying λ is the diffusion time and not the pattern of the diffusion, and
the same conclusions can be extracted from these experiments. Specially, the
results shown in figure 9 are equivalent using different places sizes, confirming385

the impact of people density and renewal percentage.

5. Conclusions

In this paper, we analytically modelled the performance of mobile oppor-
tunistic networks for contact-based messaging applications in city squares or
gathering points, a key topic necessary for the effective design of novel services.390

In our study we took into account several social aspects such as: the density
of people, the dynamic of people arriving and leaving a place, the size of the
messages and the duration of the contacts.

We first introduced a dynamical model that takes into account that nodes
can arrive and leave the area. For this model we studied the stability of the395

fixed points and obtained analytical expressions for its resolution. We proved
that when the system reaches the equilibrium, the arrival and exit rates are the
same, so the total number of nodes in the area remains constant, but this renewal
rate implies that not all nodes receive the message. We extended this model
taking into account the communication time for transmitting the message. This400

model describes a system that is also stable when the arrival rate equals the
exit rate. For this model, we also obtained the analytical expressions for its
fixed points and the number of nodes that get the message. The evaluations
performed showed that the models can reproduce the dynamics and stable states
of message diffusion.405

Several important conclusions are derived from the evaluations detailed in
the paper. As expected, when people density increases, the effectiveness of the
diffusion is improved (that is, the delivery time is reduced and the percentage
of nodes that receive the message increases). Regarding the renewal of nodes,
its impact is more important when people density is low. And finally, message410

size has a strong impact on message diffusion. For large message sizes the
effectiveness of the epidemic diffusion is reduced. This is specially important
when the renewal rate is slightly increased.

The applications of these models are very important in the design and de-
ployment of message diffusion systems. For example, if the model predicts a low415

effectiveness of the diffusion in a given are, communication enablers like data
repeaters can be deployed to increase the effectiveness of diffusion.
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