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Abstract Combining several theories this paper presents
a general multiphysics framework applied to the study

of coupled and active materials, considering mechani-

cal, electric, magnetic and thermal fields. The frame-

work is based on thermodynamic equilibrium and non-

equilibrium interactions, both linked by a two-temperature
model.

The multi-coupled governing equations are obtained
from energy, momentum and entropy balances; the total

energy is the sum of thermal, mechanical and electro-

magnetic parts. The momentum balance considers me-

chanical plus electromagnetic balances; for the latter
the Abraham representation using the Maxwell stress

tensor is formulated. This tensor is manipulated to au-

tomatically fulfill the angular momentum balance. The

entropy balance is formulated using the classical Gibbs

equation for equilibrium interactions and non-equilibrium
thermodynamics. For the non-linear finite element for-

mulations, this equation requires the transformation of

thermoelectric coupling and conductivities into tenso-

rial form.

The two-way thermoelastic Biot term introduces damp-

ing: thermomechanical, pyromagnetic and pyroelectric
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converse electromagnetic dynamic interactions. Pondero-
motrix and electromagnetic forces are also considered.

The governing equations are converted into a vari-

ational formulation with the resulting four-field, multi-

coupled formalism implemented and validated with two

custom-made finite elements in the research code FEAP.
Standard first-order isoparametric eight-node elements

with seven degrees of freedom (dof) per node (three dis-

placements, voltage and magnetic scalar potentials plus

two temperatures) are used. Non-linearities and dynam-
ics are solved with Newton-Raphson and Newmark-β

algorithms, respectively.

Results of thermoelectric, thermoelastic, thermomag-

netic, piezoelectric, piezomagnetic, pyroelectric, pyro-

magnetic and galvanomagnetic interactions are presented,
including non-linear dependency on temperature and

some second-order interactions.

Keywords Multiphysics · Thermoelectric, thermoe-
lastic, piezointeraction, pyrointeraction, galvano-

electric, galvano-magnetic materials · Mechanical,

electric, magnetic, thermal fields · Non-linear finite

element · Equilibrium interactions · Non-Equilibrium
interactions · Maxwell tensor · Two-temperature model

1 Introduction

Many modern technological devices, in particular elec-

tronics and sensors/actuators, extensively use multi-
coupled materials characterized by the interaction of

four fields: thermal, mechanical, electric and magnetic.

These materials are increasingly subjected to sophisti-

cated manufacturing processes that include miniatur-
ization for microdevices. In addition, they are used in

applications under very fast phenomena such as ultra-

sound waves or pulsed operation modes. Under these
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Fig. 1 Piezoelectric sensor with electrodes and electrical con-
nection

extreme conditions and given the relatively low-strength

nature of practical active materials, stresses can reach

limit values and produce total or partial failure.

Before exposing the objectives of the present work

and in order to provide an idea of the importance of

these materials, the following paragraphs list some in-
teractions and their applications in modern technolo-

gies.

Piezoelectricity or electro-mechanical interaction,

was discovered by brothers Pierre and Jackes Curie in
1880 (“direct” effect) and by Lipmann in 1881 (“in-

verse” or “converse” effect). Piezoelectric materials are

used as sensors (e.g. for pressure), actuators (high pre-

cision positioning devices), in sonar applications (ultra-

sonics, hydrophones), in energy conversion (piezotrans-
formers, energy harvesters); viz. [78] for more applica-

tions. Figure 1 shows a piezoelectric sensor fabricated

with polarized ceramics. Currently, a new generation of

piezo-elastomers is used in many applications. Piezo-
magnetism is the magnetic counterpart of piezoelec-

tricity. The first experimental observation of piezomag-

netism was made in 1960 by Borovik-Romanov, [21].

Piezomagnetic materials are also applied in energy con-

version and medical applications [82].

Magnetostriction or magneto-mechanical interac-

tion, was first reported by Joule in the early 1840’s, ob-

serving the change in length of iron bars when they were
magnetized. The first important application of these

materials occurred during World War II to build trans-

ducers for sonars. Currently, they are used in active vi-

bration control, control surface deployment and energy

harvesting, viz. [4] for a full revision on applications.
Figure 2 shows an actuator composed of the magne-

tostrictive Terfenol-D inside a solenoid that generates

a magnetic field. Electrostriction is the electric coun-

terpart of magnetostriction, also applied in sonars and
sensors/actuators for small displacements, viz. [39] for a

full review of applications. Note that both electrostric-

tion and magnetostriction are second-order interactions

Fig. 2 Magnetostrictive actuator with surrounding coil and
mechanical pre-tension

related to the first-order ones described for piezoelectric

and piezomagnetic interactions, respectively.

Pyroelectricity denotes the interaction between

heat and electric fields. It is observed in certain materi-

als that generate electric voltage when they are heated
or cooled. According to [40], the first reference to py-

roelectric interaction was reported by Theophrastus in

314 BC when he wrote that “lyngourion”, probably

the mineral tourmaline, had the property of attract-

ing straws and bits of wood. Much later, the naturalist
Linné related this pyroelectric property to electricity;

he called tourmaline the “electric stone”. Nowadays,

a new generation of artificial pyroelectric materials in

the form of thin films has been developed. For instance,
lithium tantalite is used to create small-scale nuclear fu-

sion or “pyroelectric fusion”, viz. [95]. Pyromagnetism

is the magnetic counterpart of pyroelectricity. There

exist many sensors that use the pyromagnetic interac-

tion, for example to detect radiation [144] or to measure
temperature [107].

Thermoelectricity or interaction between heat and

electric fluxes, was observed by Seebeck and Peltier even

before the quantitative Ohm’s law was formulated in
1855. Three different transport effects are present in

thermoelectricity: Seebeck, Peltier and Thomson. In ad-

dition, the Ohm and Fourier laws inherent to electric

and thermal fluxes are also present. Thermoelectric parts
are used as coolers (cooling electronic devices, refriger-

ation, air conditioning), for power generation (energy

harvesters, photovoltaic cells), as energy sensors (detec-

tion of water condensation and fluid flow, infrared thin
film, cryogenic heat flux sensors), viz. [125] for more ap-

plications. A thermoelectric behavior has recently been

observed in the Oriental hornet (Vespa orientalis) cu-

ticular abdomen, [48]. Figure 3 shows several thermo-

electric material devices and the hornet.

Several scientists related with the discovery of the

interactions present in this work are shown in Fig. 4.
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Fig. 3 Clockwise: Peltier coolers composed of thermoele-
ments. Polymeric photovoltaic cell. A photovoltaic-like be-
havior has been observed in Vespa orientalis hornet. Meso
Peltier cooler. Hornet taken from [77], rest from manufactur-
ers

Linné (1707-1778), Swedish botanist, physician and zo-

ologist, discovered the pyroelectric interaction. Fourier
(1768-1830) was a French physicist known for his works

on heat transfer. As described before, Seebeck (1770-

1831) discovered the thermoelectric effect in 1821. Peltier

(1785-1845) was a French physicist who discovered the

effect named after him in 1835. Ohm (1789-1854) was a
German physicist known for his contribution to electric

current fluxes. Joule (1818-1889), an English physicist

author of the namesake effect. Fick (1829-1901), Ger-

man physiologist, started to study mathematics and
physics, but subsequently realized he was more inter-

ested in medicine. Hall (1855-1938) was an American

physicist who conducted thermoelectric research at Har-

vard University. The Curie brothers (1859-1906), French

physicists, discovered the piezoelectric effect, as men-
tioned previously. Nernst (1864-1941), German physi-

cal chemist and physicist, is known for the formulation

of the third law of thermodynamics.

The previous descriptions are just examples of in-

teractions that can occur in a material subjected to up

to four fields. Therefore, it is important to describe the
problem by means of an introduction to multi-coupled

formulations.

1.1 Multi-coupled formulations

Every cause has an effect; in Physics, cause and ef-
fect are described by intensive and extensive variables,

respectively (see Sect. 3.1). The interaction of both

types of variables is expressed through phenomenologi-
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Fig. 6 Conceptual curves of experimental response for a pair
of intensive-extensive variables showing three different regions

cal equations, generally non-linear and written in terms
of certain coefficients denoted as material properties:

observables that can be measured.

Figure 5 shows a conceptualization of the phenomeno-

logical equations, mathematically representing interac-

tions. Traditionally, these interactions have been clas-
sified into two groups:

⊲ Equilibrium interactions, EI

⊲ Non-equilibrium interactions, NEI

Material properties are tensors that relate intensive

and extensive variables, describing linear or non-linear

interactions. These properties are classified into three

groups, [141], [101]:

⊲ First-order

⊲ Second-order
⊲ Domain-wall

The interaction among variables is not straightfor-
ward, therefore the properties often depend on frequency

and on the movement of domain-walls; from a macro-

scopic point of view the interaction is then non-reversible

or dissipative. Then, the effect associated to a given
cause not only depends on the cause itself, but also on

the whole history of states that the material has un-

dergone to reach the current state: important memory

effects exist in the definition of the phenomenological

equations.
In Fig. 6 a schematic representation of the interac-

tion between extensive and intensive variables is shown.

Three regions can be differentiated:

a) Linear and reversible; first-order material properties

suffice to describe the interaction.

b) Non-linear but still reversible; the region can be de-
scribed with second-order material properties.

c) Non-linear and irreversible due to domain-wall prop-

erties, represented by a hysteretic branch.
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Fig. 4 Great scientists who observed principal and coupled interactions among elastic, electric, magnetic and thermal fields.
These and other following pictures of scientists taken from [133]
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Fig. 5 Cause and effect: First- and second-order material properties (higher-order terms –HOT– often neglected)

The following subsections introduce equilibrium in-

teractions (EI), non-equilibrium interactions (NEI) and

their related material properties.

1.1.1 Equilibrium interactions

The EI are formulated in thermodynamically reversible

processes. These processes can be approximated by a

succession of equilibrium states, therefore, EI is studied
by equilibrium thermodynamics.

The present intensive variables in EI are stress, elec-

tric and magnetic fields and finally temperature; the

respective extensive ones are strain, polarization and

magnetization and finally entropy, see Table 5. Follow-
ing the convention of Fig. 5, these variables are repre-

sented by rectangles (intensive) and circles (extensive)

in the Heckmann diagram of field interactions shown in

Fig. 7; the first- and second-order properties are repre-
sented by upward and downward vertex triangles. Only

first-order properties of mechanical, thermal or electri-

cal fields and their interactions are usually represented

in the diagram, viz. [139], [5], [6], [141]; in the present

work the magnetic field is also included, see Sect. 1.1.3
for discussion. Therefore, a pair of conjugate variables

(intensive and extensive) directly relates each of the
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Fig. 7 Modified equilibrium Heckmann diagram for four fields. Intensive variables represented by rectangles, extensive ones
by circles, first-order properties by triangles (notation in Tables 1, 2). For clarity only 12 coupled interactions represented

four fields. According to [141], [101], we count in total

28 interactions for these four fields:

⊲ 4 principal interactions relating conjugate variables.

⊲ 24 coupled interactions relating all intensive and ex-

tensive variables.

The properties’ definitions are listed in Tables 1, 2

for the principal and coupled interactions, respectively.

The four principal and for clarity only 12 (including

the direct and converse) coupled interactions are repre-

sented in Fig. 7.

As mentioned previously, second-order properties rep-

resent reversible but non-linear interactions and in gen-

eral their inclusion allows for an almost exact modelling
of the phenomenological equations. These properties

are weak correction terms of the first-order properties

but in some particular cases may be dominant, for in-

stance under high field strengths in electrostriction or
magnetostriction.

1.1.2 Non-equilibrium interactions

The NEI are studied by non-equilibrium thermodynam-

ics or, in other words, thermodynamics of irreversible

Symbol Conjugate Principal

variables property

1
Stress - Strain Elastic

tensor

2
Electric field - Polarization Electric

susceptibility

3
Magnetic field-Magnetization Magnetic

susceptibility

4
Temperature - Entropy Heat capacity

Table 1 First-order equilibrium principal properties. Trian-
gles in first column refer to Fig. 7

processes. In the framework of this type of thermody-

namics, the intensive (voltage, concentration, temper-

ature gradients) and extensive (electric, thermal, mass
fluxes) variables are denoted as driving forces and fluxes,

respectively. As before, they are represented by rectan-

gles and circles in Fig. 8.

Also, as in Sect. 1.1, material properties are classi-

fied into first-order, second-order and domain-wall, and

the three regions shown in Fig. 6 remain valid. However,
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Symbol Conjugate Coupled

variables property

5
Mechanic - Electric Direct, converse

piezoelectric

6
Mechanic - Magnetic Direct, converse

piezomagnetic

7
Mechanic - Thermal Thermal expansion,

piezocaloric

8
Electric - Magnetic Direct, converse

magnetoelectric

9
Electric - Thermal Direct, converse

pyroelectric

10
Magnetic - Thermal Direct, converse

pyromagnetic

Table 2 First-order, equilibrium coupled properties. Each
row includes two coupled interactions relating the listed fields.
Triangles in first column refer to Fig. 7

now all processes are irreversible (return arrows should

be deleted) since the entropy of a system out of equi-

librium always increases, see Sect. 3.1. In addition the

interpretation of these domain-wall properties requires
extended non-equilibrium thermodynamics (defined in

Sect. 2.1) and, according to [59], still represents a chal-

lenge for the theoretical physicists.

For first-order properties, three pairs of conjugate

variables with a total of 15 interactions are considered:

⊲ Three principal conductivities between fluxes and

gradients

⊲ Six coupled power properties between fluxes and
gradients

⊲ Three interactions between fluxes

⊲ Three interactions between gradients

The last two are not shown in the diagram for clarity.

Tables 3, 4 list the three principal conductivities and

the three power properties, respectively. In the second

item, the number six refers to direct plus converse, a
concept often not used in NEI. The interactions be-

tween fluxes (third item) do not require any additional

material properties since these fluxes will be included

in the balance equations. For example, an electric flux
increases the thermal flux due to the Joule effect with-

out the necessity of using any additional property. The

interactions between gradients (fourth item) are in gen-

eral used only for measurement of first-order properties.

For instance, the Seebeck coefficient (see Sect. 4.3.1) is
typically measured forcing the electric flux to zero and

comparing temperature and voltage gradients.

The presence of magnetic fields or mechanical stresses

modifies classical NEI, requiring changes in the ma-

Symbol Conjugate Conductivity

variables

1
Electric flux - Voltage grad. Electrical

2
Thermal flux - Temp. grad. Thermal

3
Mass flux - Concent. grad. Diffusivity

Table 3 First-order non-equilibrium principal properties
(conductivities). Triangles in first column refer to Fig. 8

Symbol Gradients - Power

Fluxes property

4
Temp. - Voltage Thermoelectricity

5
Temp. - Concentration Thermodiffusivity

6
Voltage - Concentration Electrodiffusivity

Table 4 First-order, non-equilibrium couplings (power prop-
erties) that relate gradients and fluxes. Triangles in first col-
umn refer to Fig. 8

terial properties’ definitions and leading to new and

more complicated interactions, such as piezoresistance,

magnetoresistance, galvanomagnetism and thermomag-
netism.

Figure 8 shows a Heckmann diagram for first-order

NEI analogous to that of Fig. 7 for EI. Again, the

first-order properties are represented by triangles, see
Tables 3, 4 for notation. For clarity, the interactions

caused by mechanical stresses and magnetic fields are

not represented although they will be included in the

formulation through the Maxwell tensor plus galvano–

and thermomagnetic effects (see Sects. 1.1.3, 4.3.2). Sum-
marizing, an active material simultaneously affected by

mechanical, electric, magnetic and thermal fields can

be subjected to 43 interactions requiring 40 first-order

material properties to describe these interactions. Ad-
ditional complications could arise: some of these prop-

erties can depend on the magnitude of some fields and

as mentioned, if hysteretic behaviors are present, the

properties are time dependent with important memory

effects.

1.1.3 Galvanomagnetic and thermomagnetic

interactions

Special cases studied by NEI with a magnetic field transver-

sal to the fluxes are named galvanomagnetic and ther-
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Fig. 8 Modified Heckmann non-equilibrium diagram for three fluxes. Driving forces (intensive variables) represented by
rectangles; fluxes (extensive variables) by circles. Magnetic field, mechanical stress, coupled conductivities not included for
clarity. Notation in Tables 3, 4

momagnetic interactions. They are a consequence of

Lorentz forces that a magnetic field exerts on moving

charges; viz. [80], [35], [26], [127], [101], [141] for de-
scription and Sect. 3.3.4 for formulation of the forces.

These interactions are widely present in transducers

and sensors [135]; engineering and medical applications

(biosensors) [68]; optimization of thermoelectric devices
[101]; chemical processes and in cell-stimulant interac-

tions [68], among others.

In spite of its practical importance, in the theo-

retical thermodynamics literature the magnetic field

strength (or equivalently the magnetic field density or
magnetic induction B) is not usually included in the

multi-coupled formulation since its presence leads to

the treatment of material properties as tensors, instead

of scalars. But in the context of numerical methods
the formulation and operation of these tensors do not

present any problem.

Since the main objective of this article is to study

multi-physics phenomena through numerical methods,

a special formulation is developed in Sect. 4.3.2: phys-
ically the thermal and electric fluxes interact with the

magnetic field due to the thermal and electric energies

that moving charges carry. Therefore, in the presence

of a magnetic field:

⊲ Galvanomagnetic interactions involve voltage gradi-

ents and electric fluxes, Fig. 9 left.

GALVANOMAGNETIC THERMOMAGNETIC

2441

Magnetic

Induction

Fig. 9 Physical magnitudes involved in the galvanomag-
netic and thermomagnetic interactions. Principal and cou-
pling properties (triangles) defined in Tables 3, 4

⊲ Thermomagnetic interactions involve temperature

gradients and thermal fluxes, Fig. 9 right.

These interactions depend on the mechanical anisotropic

level of the media; second-order interactions such as

piezoresistance or magnetoresistance emerge in anisotropic

materials due the dependency of properties on the in-
tensity of B, [141]. In any case, anisotropic mechanical

media are not considered in the present work for NEI,

although the material can be magnetically anisotropic.
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Fig. 10 Four first-order transverse galvanomagnetic (top:
Hall and Ettingshausen) and thermomagnetic (bottom:
Righi-Leduc and Nernst) non-equilibrium interactions.
Causes represented by rectangles, effects by circles

Considering under NEI only isotropic media and ne-
glecting second-order interactions, four first-order trans-

verse interactions due to the presence of B are defined.

Assuming this induction along direction x3 as in Fig. 10,

these effects are

⊲ Hall: electric flux j along x1 (additional cause) in-
duces voltage gradient ∇V along x2 (effect).

⊲ Ettingshausen: j along x1 induces temperature gra-

dient ∇T along x2.

⊲ Righi-Leduc: ∇T along x1 induces ∇T along x2.

⊲ Nernst: ∇T along x1 induces ∇V along x2.

The present work studies all the interactions rep-
resented in both Heckmann diagrams, except those in-

volving concentrations (e.g. the last two in Table 4).

Concentration is not included since active materials

are usually (although not always) solids or polymers.
Therefore, effects such as porous media and chemical

reactions are not considered. The spirit of the article

is in any case to formulate the physics and numerical

implementation so that any effect, known or new, can

be included in the future.

2 Literature review

The literature review has been divided into two parts:

theoretical and Finite Element Method (FEM) formu-

lations.

2.1 Theoretical formulation review

From a thermodynamic point of view, basically there

are two theoretical formalisms (frameworks to study

interactions) for the proposed multi-coupled formula-

tion:

Non-equilibrium thermodynamics used in [25],

[26], [80] considers thermal, electric and magnetic

fields only for non-polarizable/non-magnetizablema-

terials.

The mentioned works were extended in [34], [35] to in-

corporate the mechanical field as well as material polar-

ization and magnetization. Dielectric/magnetic relax-

ations, known as Debye relaxations and interpreted as
irreversibilities due to microscopic polarization/magnetization

interactions, were not fully studied. The dielectric re-

laxation was investigated for isotropic materials in [123]

and for anisotropic ones in [124]. The magnetic relax-

ation was investigated in [122] using the method of in-
ternal variables.

Rational thermodynamics was stated in [33], [142]

and transforms the thermodynamic concepts into a

Continuum Mechanics framework.

Several other authors have used this formalism to ob-

tain a multi-coupled formulation, viz. [45], [44], [102]

for example.

As discussed at the beginning of Sect. 1, miniatur-

ized devices and high-frequency processes are increas-

ingly applied in modern technologies. For these appli-

cations the local equilibrium hypothesis that will be

stated in Sect. 3.1.2 is not valid, requiring newer and
advanced theoretical formalisms; according to [83], the

following methods can be used for the study of these

cases:

Extended non-equilibrium thermodynamics: in-
troduces state variables, see Sect. 3.1 for definition,

and fluxes as independent variables (mixed formu-

lation).

Rational extended thermodynamics: develops

evolution equations for fluxes, although introducing

supplementary Lagrange multipliers.

Internal variable methods: macroscopic repre-
sentations of microscopic internal structures that

are incorporated to the state variables.

Hamiltonian formalisms: generalization of the
Poisson bracket formalism [79], expressing the evo-

lution equations with two (total energy and dissipa-

tion) thermodynamic potentials called generators.
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Using the first method, an extended approach con-

sidering thermal and electric fields without polarization

was developed in [86]. The polarization effects were sub-

sequently investigated in [37] while the mechanical field

was incorporated in [90], [87]. A full revision of extended
non-equilibrium thermodynamics, its applications and

theoretical developments can be found in [97], [98], [99].

Examples of multi-coupled formulations using ra-

tional extended thermodynamics and internal variable
methods are presented in [46], [122], respectively.

2.2 Finite element formulation review

To the best of our knowledge, there has been no com-
prehensive attempt to propose a unified formulation for

the four-field, multi-physics problem of active materials

using the FEM. Most advanced publications study sin-

gle interactions or phenomena; only very recently the
issues of multi-physics and multi-coupling have been

addressed in [137], but with micro-mechanical models.

Their computational cost is very elevated and, for in-

stance, design or optimization of devices would be very

expensive if not impossible.
Separated states of art descriptions for the relevant

interactions are developed in the following sections.

2.2.1 Piezoelectric interaction

There are in the literature two main alternative FEM

formulations for the piezoelectric problem: scalar and

vector. The former uses four dof per node: three dis-
placements and a scalar potential or voltage. A mono-

lithic or fully coupled (coupling of the stiffness matrix)

formulation was developed by [2], the first two authors

of the present work developed a similar one for plane

strain in [114], [110], [128], [129]; an iterative or stagger
formulation was proposed by [50]. Starting from the for-

mulation given in [2], several modifications have been

introduced in the last decades: the assembled matrix

was rescaled in [116] to avoid ill-conditioning while the
remanent strain and polarization were included in [151].

The latter addition could be considered the first step to

model the hysteretic behavior inherent to ferroelectric

materials. According to [70], there are three different

approaches to model hysteresis:

⊲ Thermodynamically consistent models, [72]

⊲ Micromechanical models, [92]
⊲ Models with hysteretic operators, [70]

For the vector formulation the work developed by
[81] uses six dof per node: three displacements and three

components of the vector electric potential. The main

difference between both formulations arises from the

choice of the constitutive equations: the electric dis-

placement is chosen as independent variable for the sec-

ond with the disadvantage of loss of uniqueness. For

this reason some gauging procedures were investigated

in [131], incorporating the Coulomb gauge to the for-
mulation developed in [81] using the penalty method.

To solve the gauge problem, some authors have devel-

oped solutions based on edge vector interpolation func-

tions, which include scalar parameters. The formulation
is complicated by the fact that parameters appear on

element edges, viz. [96]. The main drawback of the vec-

tor formulation is the large null-space in the discretized

curl equation.

2.2.2 Magnetostrictive interaction

As for the piezoelectric interaction, two FEM formu-

lations exist, one based on the scalar (four dof) and

another on vector (six dof) magnetic potentials. Fur-
thermore, fully coupled and staggered formulations are

reported in the literature.

For the scalar formulation, a fully coupled, 2-D and
non-linear FEM formulation was developed in [12]. The

same authors extended the formulation incorporating

the dynamic response in [11] and the eddy currents in

[13]. An alternative 2-D staggered formulation was pro-

posed in [61], assuming non-linearity only for the mag-
netic field. A fully coupled 3-D and dynamic FEM was

formulated in [73]. The hysteretic behavior was mod-

eled using thermodynamically consistent models in [84],

[76], [85], [71].

For the vector formulation, a fully coupled, 3-D,

non-linear and steady-state FEMwas developed in [121],

solving the non-linearities by the Newton-Raphson algo-

rithm and symmetrizing the whole matrix. Similar 2-D
FEM models were reported in [14], [146], [54]. The last

reference inserted experimental magnetostrictive curve

data into the tangent stiffness matrix. An alternative

fully 3-D and non-linear FEM formulation, including
the Maxwell stress tensor, was reported in [113]. This

formulation was extended in [147], [74], including the

material non-linearity, i.e. the dependence of the prop-

erties with the magnetic field.

2.2.3 Thermoelastic interaction

For the thermoelastic interaction description, it is nec-

essary to develop a brief historical introduction about

the theoretical formulations. In principle, the classical
thermoelasticity is not compatible with the physical ob-

servations since intrinsically suffers from two shortcom-

ings:
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i) One way coupling: the mechanical field does not in-

fluence the thermal field although the thermal does

with the mechanical.

ii) The heat equation is simply parabolic: predicts in-

finite speed of propagation for the heat wave.

The first shortcoming was solved in [15] with the the-
ory of coupled thermoelasticity. For this purpose the

entropy was balanced, introducing a dissipative or en-

tropy production term that fully coupled the governing

equations. Numerically, this solution was implemented

in several FEM articles. For example, [27], [132] de-
veloped a 3-D isoparametric formulation and an eight-

node element based on the Reissner-Mindlin plate the-

ory, respectively.

In a simpler manner and using only the one-way un-
coupled thermoelasticity, staggered FEM formulations

have been implemented, e.g. viz. [103]. These formula-

tions use two steps: temperature distributions are ob-

tained solving the uncoupled heat conduction problem

and then solving the elastic problem with thermal stresses
calculated from the strains caused by the temperature

distribution.

The second shortcoming was theoretically addressed

in [28] where the Fourier law is modified by means
of an empirical parameter named relaxation time that

results in a hyperbolic model. In the Continuum Me-

chanics community, this Cattaneo model is denoted as

second sound (SS). Numerically, the influence of the

SS in the thermoelasto-dynamic behavior of continuum
bodies has been studied by several authors using the

FEM. The difficulty of the SS modelling is the time

integration scheme since numerical oscillations appear.

Explicit finite differences were used in [136], enabling an
improved physical interpretation. In [7], the temporal

discretization was solved using discontinuous and con-

tinuous Galerkin methods (mixed method for the time

integration). However, numerical oscillations appeared

and in [8], [9] developed a stabilization method. The
Newmark-β algorithm, with optimized time steps and

algorithm parameters, was used in [150], [152], [140].

2.2.4 Thermoelectric interaction

A steady-state and non-linear 3-D FEM formulation,

considering temperature-dependence properties, was re-

ported in [51], [111], [115] and implemented into the
research FEM code FEAP. Dynamic thermoelectric el-

ements were implemented into the FEM commercial

codes ANSYS and COMSOL in [3], [41], respectively. These

implementations did not consider temperature-dependent
properties, but included a standard interface element

to model heat convection. In addition, the commer-

cial codes permit the study of one-way mechanical re-

sponses, feature that was used by [62], [32], [49]. The

elasto-thermoelectric interaction, considering temperature-

dependence properties, was implemented into COMSOL in

[66], [65].

2.2.5 Other interactions

In the specialized literature, there are works that study

other interactions such as pyroelectric, thermomagnetic

and galvanomagnetic.

For pyroelectric interactions, two 3-D elasto-thermo-

electric FEM formulations are developed in [57], [143].

The first uses standard isoparametric elements, while

the second adds additional internal dof to improve the
numerical results in laminated pyroelectric plates.

Several analytical solutions for thermomagnetic and

galvanomagnetic interactions are available in the liter-
ature, see for example [29], [38]. However, these inter-

actions are very sensitive to geometry and to material

properties, [127], [105], [68], and in addition they induce

strong distortions of the electric and thermal fluxes.

These difficulties imply that the analytical solutions
are only able to study simple geometries and often are

not used in sophisticated applications. For these rea-

sons, several numerical formulations have emerged in

the last two decades. The finite difference method was
applied in [105], [104] and the FEM was used to study

the Hall effect in [23]. The mentioned FEM formula-

tion is very simple and not fully coupled, consisting on

an electric element with anisotropic electric conductiv-

ity and magnetic-dependency of the conductivity tensor
introduced as data.

3 Outline of Continuum Physics

This section presents an outline of Continuum Physics,

introducing the necessary concepts and equations to de-
velop the multi-coupled governing equations composed

of balance plus transport equations and of boundary

conditions. Sect. 3.1 reviews the thermodynamic for-

malisms from Classical Thermodynamics (or Thermo-

statics) to one of the formalisms used in the present
work,Non-Equilibrium Thermodynamics. Sects. 3.2, 3.3

introduce the basic concepts on Continuum Mechan-

ics and Electromagnetism, respectively. Furthermore,

Sect. 3.3 presents the Minkowski-Abraham controversy
related with the election of the electromagnetic momen-

tum balance form, still an open question in the litera-

ture.
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Fig. 11 Gibbs (1839-1903), physicist awarded with the first
American engineering Ph.D. in 1863. Thomson (1824-1907)
baron of Kelvin, an Irish mathematical physicist and engineer
who worked on thermodynamics and electricity for telegraphs

3.1 Thermodynamics

Thermodynamics is a physical science that studies trans-

formations of energy in all its forms. The term was born

in 1854 when Kelvin stated the concise definition

Thermo-dynamics is the subject of the relation of

heat to forces acting between contiguous parts of

bodies, and the relation of heat to electrical agency.

One of the founding articles was a 300-page paper pub-

lished by Gibbs, Fig. 11, in 1882: On the Equilibrium of

Heterogeneous Substances. Before discussing the ther-
modynamic formalism and in order to clarify the for-

mulations developed in this section, several definitions

are introduced.

A thermodynamic system is a portion of matter with
domain Ω and boundary Γ . The union of the system

and its surrounding Ω∞ constitutes the thermodynamic

universe, sketched in Fig. 12. There are three types of

thermodynamic systems

⊲ Open system: exchanges matter and energy with its
surrounding.

⊲ Closed system: exchanges energy but not matter.

⊲ Isolated system: does exchange neither energy nor

matter.

The state variables S are a set of path-independent
variables that describe the “state” in which the ther-

modynamic system is. Two types of state variables can

be defined

⊲ Intensive I: depend on the external conditions im-

posed on the system.
⊲ Extensive E : depend on the amount of matter in the

system.

As mentioned in Sect. 1.1, intensive and extensive vari-

ables represent causes and effects.

A thermodynamic process represents the energetic

evolution of a thermodynamic system from an initial
state to a final one. There are two types of processes

⊲ Reversible: continuum sequence of equilibrium states

(idealized process)

Ω

Ω∞

Γ

Fig. 12 Thermodynamic universe composed of thermody-
namic system: Ω (domain), boundary Γ and surroundings
Ω∞

⊲ Irreversible: any non-reversible process

The discipline of thermodynamics usually encompasses

different formalisms; according to [83], three can be de-

fined

Equilibrium Thermodynamics (ET) [26], stud-

ies macroscopic properties of systems in mechani-

cal, thermal, electric, magnetic and chemical equi-

librium.

This formalism should be denoted as thermostatics since

it refers to time-independent and spatially homogeneous

systems, but the term thermodynamics is generalized
for historical reasons.

Non-Equilibrium Thermodynamics (NET) or

thermodynamics of irreversible processes [35], deals
with processes that depend on time and on spatial

coordinates. It is based on the local equilibrium hy-

pothesis, stated in the following subsections.

Extended Non-Equilibrium Thermodynamics

(ENET) [69], studies systems in which the local

equilibrium hypothesis is not valid, using thermo-

dynamic mixed formulations.

The first two formalisms will be described in the

following subsections and the third is the subject of

another ongoing work.

The first principle or energy conservation law states
that the energy of the universe is constant; mathemat-

ically

dE
T
= dQ+ δQ+ dW + δW (1)

where E
T
is the thermal internal energy (sum of elas-

tic, kinetic and potential) of the system and Q, W the

heat and work supplied by the system, respectively. The

symbol δ denotes dependency on the path: the related
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variables are not state but path-dependent variables.

The other derivative d) represents an exact differen-

tial and is used for state, path-independent, variables.

Therefore, it can be established that dQ, dW represent

equilibrium (reversible) and δQ, δW non-equilibrium
(irreversible) parts. The first law is valid for reversible

or irreversible processes and for both EI and NEI.

The second principle or entropy law introduces the

concept of entropy S and states that the entropy of the

universe never decreases, ∆S ≥ 0.

With this concept, the first law can be rearranged
as

dE
T
= dQ+ dW

︸ ︷︷ ︸

REV

+ δQ+ δW
︸ ︷︷ ︸

IRREV

(2)

The first two terms of the right side are reversible and

described by ET in the next subsection; the second pair

are irreversible and studied, in addition to the first, by

NET in Sect. 3.1.2.

3.1.1 Equilibrium thermodynamics

ET is based on the first and second fundamental laws;
the zero and third laws are not necessary in the present

work. In this formalism it is assumed that no irreversibil-

ities are present, δQ = δW = 0, that is, the intensive

variables must be at equilibrium. Therefore, it can be
established that for reversible processes in which the

entropy is an exact differential, the second law is

dQ = T e dS (3)

where T e is the equilibrium (also called thermodynamic)

temperature. The Gibbs equation for EI is obtained

combining the first law (1) and the expression (3)

T e dS = dE
T
−

3∑

k=1

Ik dEk

= dE
T
−
(
T e : dS +Ee · dP + µ0 He · dM

)

(4)

where the reversible work dW is expressed as the sum

of the products of extensive and intensive variables for

fields other than thermal and µ0 is the vacuum perme-
ability. This field does not contribute to dW but will

do to the entropy dS in the left hand side. Table 5 de-

fines the intensive and extensive variables of the four

considered fields for EI.

In EI, the equations that relate intensive an exten-
sive variables are denoted as “constitutive”. Due to the

absence of irreversibilities, the following exact deriva-

tives can be expressed as exact differentials of the other

Intensive, cause I Extensive, effect E

Stress T e Strain S

Electric field Ee Polarization P

Magnetic field He Magnetization M

Temperature T e Entropy S

Table 5 Intensive and extensive variables considered in the
current work for equilibrium interactions

state variables







dT e

dP

dM

dS







=















∂T e

∂S

∂T e

∂Ee

∂T e

∂He

∂T e

∂T e

∂P

∂S

∂P

∂Ee

∂P

∂He

∂P

∂T e

∂M

∂S

∂M

∂Ee

∂M

∂He

∂M

∂T e

∂S

∂S

∂S

∂Ee

∂S

∂He

∂S

∂T e





















dS

dEe

dHe

dT e







(5)

Each of the partial derivatives inside the matrix repre-

sent principal and coupled material properties (Tables

1, 2) and each is calculated with the other independent

variables (vector in the right hand side) maintained
constant. The expression (5) can be rewritten with the

symbols of Fig. 7, giving the following expression







T e

P

M

S







=

















1 5 6 7

2 8 9

−sym−
3 10

4























S

Ee

He

T e







(6)

Note that intensive (I, rectangle) and extensive (E , cir-
cle) variables are mixed in the previous matrix rela-

tion; the independent variables in the right hand side

are located there for a proper FEM implementation

and for the use of simple compatibility expressions (see
Sect. 4.2.2) to introduce the basic nodal, zero-derivative

unknowns.

3.1.2 Non-Equilibrium thermodynamics

NET transforms the thermodynamic laws into contin-

uum or local forms (balance equations), assuming the
continuum and the local equilibrium hypotheses. In this

sense, NET may be interpreted as a Continuum Physics

formalism: its state variables depend on time and on



Multiphysics and thermodynamic formulations for non-linear finite element 13

Fig. 13 Euler (1707-1783) from Switzerland was the a lead-
ing mathematician of the XVIII century. Lagrangia or La-
grange (1736-1813) born in Italy took his position as Mathe-
matics director of the Prussian Academy of Science in Berlin

spatial coordinates. Before expressing the laws in con-

tinuum forms, the reference system and the two hy-

potheses are defined.

Since irreversibilities are present, (3) is now rewrit-
ten to

δQ+ dQ = T n dS (7)

where T n denotes the non-equilibrium (also called con-

duction) temperature, see Sect. 4.1.4 for the disam-
biguation of both temperatures. The presence of the

path-dependent variable δQ in the heat exchange re-

quires the definition of T n to ensure that entropy is a

state variable.
Two descriptions to study the motion of the system

are often used: Lagrangian and Eulerian (authors in

Fig. 13), [43], [20]. The material or Lagrangian X =

{X1, X2, X3}⊤ description refers to the behavior of a

material point (commonly used in Solid Mechanics); the
spatial or Eulerian x = {x1, x2, x3}⊤ one to spatial

positions, commonly used in Fluid Mechanics. In the

above the symbol (·)⊤ denotes transpose.

The consideration of the two different descriptions
implies the definition of two: position X, x and dis-

placement U , u vectors, and time derivatives. These

derivatives are related by

dP(x, t)

dt
=

∂P(x, t)

∂t
+ v · ∇P(x, t) (8)

where t denotes time, P(x, t) a continuum property in

Eulerian description and v the Eulerian velocity. The

last term on the right side of (8) is called a convec-

tive derivative, since it is closely related to the particle
motion inside the system.

In the remainder of the present work a Lagrangian

description is used. Therefore and according to [106],

x ≡ X , u ≡ U and the convective term is avoided, an

obvious advantage.
The continuum hypothesis [43], assumes that the

matter in the system Ω is continuously distributed and

fills the entire Ω; mathematically

ρm = lim
∆Ω→0

∆m

∆Ω
≥ 0 ; ρq = lim

∆Ω→0

∆q

∆Ω
≥ 0 (9)

Fig. 14 Knudsen (1871-1949), Danish physicist renowned for
his work on kinetic molecular theory. Reiner (1886-1976), civil
engineer born in Czechia who worked at Technion on rheology

where ρm denotes the mass and ρq the electric charges
densities, the latter may be positive or negative. The

total mass and electric charge contained in the incre-

mental volume ∆Ω are ∆m, ∆q. When ∆Ω is greater

than a certain critical ∆Ω∗, the Continuum Mechan-

ics is an appropriated mathematical model since both

densities depend on spatial coordinates and on time and

not on ∆Ω. Note that the validity of this hypothesis is

closely related to the size of ∆Ω∗ and, therefore, to the

critical length that will be defined in (10).
In NET, the local equilibrium hypothesis [83] per-

mits one to rewrite (4) locally for any time and for

any material point, solving the restriction that estab-

lishes the time-independence of the state variables (in
principle valid only in ET). A physical interpretation

of this hypothesis is related to the fact that each point

is in a different equilibrium state. Exchange of phys-

ical quantities among different points (or equilibrium

states) is possible; furthermore, the equilibrium state
of each point changes over time.

The validity of the continuum and local equilib-

rium hypotheses is closely related to the Knudsen and

the Deborah numbers, the last defined by Reiner (see
Fig. 14)

Kn << 1 ; De << 1 (10)

where Kn is the ratio between the microscopic pa-
rameter that represents the mean free path and the

macroscopic length; De is also a ratio but between the

microscopic equilibration or relaxation time and the

macroscopic duration of the interaction, both inside

each point. Although commonly accepted, there are
several important applications for which these two hy-

pothesis are not applicable

⊲ Kn ≥ 1, for micro- and nano-systems, thin films,
superlattices, porous media, etc.

⊲ De ≥ 1, for ultrasonic propagation in dilute gases,

polymers, superconductors, etc.

When the condition in the previous item holds, the

ENET (not an object of the present work, viz. [109],

[108] for applications) has to be considered.
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Assuming from now on the validity of the two hy-

potheses, any thermodynamic variable may be expressed

in continuum form as P , so that

dP = ρm dP (x, t) (11)

The mass balance equation states that the mass inside
the system remains constant over time. According to

[43] the temporal variation of the mass is

ρ̇m = −ρm ∇ · v = 0 (12)

The energy balance equation states that the total

energy density ett in the universe is conserved since
sources and/or sinks cannot be included, see Sect. 4.1.2

for additional discussion. As will be depicted in Fig. 21,

ett is the addition of mechanical, thermal and electro-

magnetic parts. Therefore, the evolution of energy in-
side the system must be equal to the total energy flux

jtt through the boundary, second equality in next equa-

tion. The first expression represents the temporal varia-

tion of the total volumetric energy density; taking into

consideration (12) the second expression is obtained.
Finally the divergence theorem is applied to the third

expression that represents the total energy flux

∂

∂t

∫

Ω

ρm dett dΩ =

∫

Ω

ρm ėtt dΩ

= −

∮

Γ

jtt · n dΓ = −

∫

Ω

∇ · jtt dΩ

(13)

where n denotes the outward normal.

Finally, from the previous equation and [35] the lo-

cal form of energy balance is

ρm ėtt = −∇ · jtt (14)

where the supra-dot indicates exact derivation with re-

spect to time, both for partial and exact differentials

due to the absence of the convective derivative of (8).
The difference between the first law and the energy

balance is that in the former the energy is expressed

as thermal E
T

and in the latter as total ett. For this

reason, the first law can include source/sink terms that

represent reversible exchanges between.
The entropy balance equation is equivalent to the

second thermodynamic law (3) rewritten in the contin-

uum form again through the divergence theorem. Con-

sidering that from (11) in NET ρmds = dS 6= 0, and
following similar steps as before
∫

Ω

ρm ṡ dΩ = −

∫

Ω

∇ · jσ dΩ +

∫

Ω

σ dΩ (15)

where jσ, σ are the entropy flux and entropy produc-
tion, respectively. Finally, the local form of the entropy

balance is given by

ρm ṡ = −∇ · jσ + σ (16)

where the entropy production must be

σ ≥ 0 →

{
σ > 0 → Irreversible process

σ = 0 → Reversible process
(17)

The transport equations (defined as constitutive for
ET, see Sect. 3.1.1) are obtained expressing the entropy

production as

σ ≡
5∑

k=1

jk
F
· F k (18)

where jk
F
are fluxes (extensive variables) and F k driv-

ing forces (intensive variables). Both types are listed

in Table 6 for NEI not considering concentration phe-

nomena, see Sect. 1.1.2 and Fig. 8. NEI variables are

denoted by (·)n to differentiate them from the EI ones.
The electric field can produce two fluxes: jf for con-

ductor media and En for polarizable media. In what

follows and for notational simplicity the supraindex f

(meaning flux from free sources) will be dropped and

j ≡ jf , without subindex is directly the electric flux.

Driving forces, cause F Fluxes, effect j
F

Stress Tn Strain rate Ṡ

Voltage gradient ∇V Electric flux j

Electric field En Polarization rate Ḃ

Magnetic field Hn Magnetization rate Ṁ

Temperature gradient ∇Tn Thermal flux q

Table 6 Intensive (driving forces), extensive (fluxes) vari-
ables for non-equilibrium interactions considered in the cur-
rent work. Concentration phenomena not included

As mentioned in Sect. 1.1, fluxes and forces are lin-

early related with a good approximation by the phe-

nomenological equations

jk
F
=

∑

l

Lkl F l (19)

where Lkl are the first-order material properties, see

Fig. 5. According to [35], these properties have three

restrictions:

i) Due to material symmetry and according to Curie’s
law (viz. [141]), driving forces cannot have more el-

ements of symmetry than the fluxes they produce.
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Fig. 15 Onsager (1903-1976) theoretical physicist awarded
in 1968 with the Chemistry Nobel Prize. Casimir (1909-
2000), Dutch physicist, best known for his research on su-
perconductors

ii) Due to the continuum second law (16), the sign of
the entropy production implies

σ =
∑

k

∑

l

Lkl F k · F l ≥ 0

⇒







Lkk ≥ 0

LkkLll ≥
(Lkl + Llk)2

4

(20)

iii) Due to the time reversal of the microscopic gov-

erning equations, the Onsager-Casimir (authors in

Fig. 15) reciprocal equations state

Lkl = ± Llk (21)

The last expression indicates that the material property

tensors must be either symmetric or antisymmetric.
Throughout the paper, Lkl will represent heat and elec-

tric conductivities, Seebeck thermoelectric power and

Peltier properties.

Note that restriction 1. is not valid in the non-linear

region of Fig. 6, according to [83].

The conditions given in (20) are equivalent to the

ones stated by the axiom of admissibility in the Ra-

tional Thermodynamics formalism, viz. [142]. For this

formalism, the axiom is mathematically represented by
the Clausius-Duhem inequality.

Similarly to (6), the NEI transport equations based
on Fig. 8 and (19) can be established as







j

q







=








1 4

−sym−
2














∇V

∇T n







(22)

Instead of being included in the previous equation, the

interactions due to B will be decomposed into symmet-

ric and antisymmetric parts in Sect. 4.3.2. Also, the in-
teractions due to the mechanical field will be considered

in the EI formalism due to the absence (simplification

S1 in Sect. 4.1.3.) of viscoelastic effects

Ω

f

n
t

Γp

Γu

ū

Fig. 16 System (body in Continuum Mechanics) subjected
to volume and surface forces, with Dirichlet and Neumann
boundary conditions regions

3.2 Classical Continuum Mechanics

In this section the governing equations of Classical Con-

tinuum Mechanics are presented. The present work as-
sumes a small deformation theory based on two assump-

tions, [106]

i) Small displacements ||u|| << ||x||

ii) Higher-order terms neglected, implying that the me-

chanical compatibility equation is given by

∇× (S ×∇) = 0

S =
1

2

[

∇⊗ u+ (∇⊗ u)⊤
]

= ∇su

W =
1

2

[
∇⊗ u− (∇⊗ u)⊤

]
= ∇sku

(23)

where the second order displacement gradient ∇u has
been decomposed into its symmetric ∇su and skew-

symmetric ∇sku parts. From the assumption of small

strain ||S|| << 1 and ||W ||2 << ||S||, where W is the

small rotation tensor.

3.2.1 Linear momentum balance

Consider a continuum system (or body in the Contin-

uum Mechanics framework, Fig. 16) subjected to vol-
ume f and boundary t forces. The volume forces will

in general include all possible types: gravitational, cen-

trifugal, electromagnetic etc. The body is restricted by

Neumann and Dirichlet conditions on boundaries Γp,

Γu, respectively

⊲ Neumann Γp : t̄ = T · n
⊲ Dirichlet Γu : ū = u

where ū, t̄ denote the prescribed displacements and
traction. The traction includes the total (Cauchy-like),

[91], stress tensor. This total stress combines the EI and

NEI parts defined in Tables 5, 6: T = T e + T n.
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The balance is obtained in a way similar to that of

(13) but with Newton’s law, integrating all forces in Ω

and again applying the divergence theorem yields

∫

Ω

ρm ü dΩ =

∫

Ω

f dΩ +

∮

Γ

t dΓ

=

∫

Ω

f dΩ +

∫

Ω

∇ · T dΩ

(24)

Rewriting (24) in local form

ρm ü = ∇ · T + f (25)

Notice that this equation does not have a counterpart

in thermodynamics, theory that does not deal with mo-
mentum or forces.

The total stress T will be non symmetric if electro-

magnetic coupling is present, therefore the conservation

of angular momentum is not automatically satisfied.

One way to solve this difficulty when the formulation

is multicoupled as in the current work, is to force the
sum of T and the coupling tensor to be symmetric, as

will be described in Sect. 4.1.2.

3.2.2 Energy balance

Assuming for now in Continuum Mechanics adiabatic

processes dQ+ δQ ≡ 0 (no exchange of thermal energy

between the system and its surrounding media), from

(1) dE
T
= dW + δW implying that the total energy is

equal to the work of the external forces, both reversible

and irreversible, E
T
= W. Therefore, the mechanical in-

ternal energy (including kinetic energy) is equivalent to

the mechanical power, ρm ė
U
= −Ẇ. From Continuum

Mechanics, W is the sum of kinetic and elastic ≡ T : S

energies; therefore the mechanical energy balance in lo-

cal form is given by

ρm ė
U
= −T : Ṡ (26)

3.3 Classical Electrodynamics

Classical Electrodynamics also called Classical Electro-

magnetism is a physical theory that studies the inter-

actions between electric charges and currents. It was
developed over the course of the 19th century, most

prominently by Maxwell, Fig. 19.

3.3.1 Maxwell equations

Maxwell equations are a set of four empirical and macro-

scopical equations that relate electric and magnetic fields.

Fig. 17 Gauss (1777-1855), German scientist author of the
namesake law. Faraday (1791-1867), English natural philoso-
pher in the terminology of the time

In vacuum,

∇ ·E =
ρfq + ρbq

ǫ0

∇ ·B = 0

∇×E + Ḃ = 0

∇×B − ǫ0µ0 Ė = µ0

(
j + jb

)

(27)

where ǫ0 denote the vacuum permittivity; ρfq , j ≡ jf ,

ρbq, j
b are the free and bound sources (electric charge

density, electric flux), respectively, and 0 is now a 3×1

vector with zero entries. The free sources may exist in-

side the material, while the bound sources are generated
by the interaction of an external field on the system.

The first equation in (27) is the Gauss (Fig. 17) elec-

tric law that relates the electric field E and its sources

ρq = ρfq + ρbq, the electric charge density defined in (9).
As was done for stresses, the total electric field adds the

EI and NEI parts, E = Ee + En. The second of (27)

is the Gauss magnetic equation with a zero right side

since no magnetic monopoles exist: the magnetic field

strength (or magnetic field for short) H = He+Hn is
solenoidal. The third relation in (27) is the Faraday law

that couples electricity with magnetism and the fourth

is Ampère’s law that couples the total magnetic induc-

tion B with its sources j, jb.

The bound sources characterize the response of a
polarizable/magnetizable system (not vacuum, a mate-

rial) by means of two fields already defined in Table 5:

polarization P and magnetization M . Mathematically,

viz. [67], [75] these are given by

ρbq ≡ −∇ ·P ; jb ≡ ∇×M + Ṗ (28)

The polarization and magnetization fields are a con-

sequence of the reorientation of the electric and mag-

netic dipoles. When present, they influence the me-

chanical characteristics of the originally isotropic active
materials to become transversely isotropic or even or-

thotropic, see Fig. 18. In the figure, it is indicated that

the isotropic plane (also called basal) will be defined by
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Fig. 18 Basal plane for transversely isotropic active materi-
als and equilibrium interactions; polarization, magnetization
vectors perpendicular to the plane

x1-x2 and the direction of P , M is the perpendicular
x3.

The electromagnetic constitutive equations are then

defined as

P ≡ χV ·E = D − ǫ0 E

M ≡ χϕ ·H =
B

µ0

−H
(29)

where D is the electric displacement or electric induc-

tion. In vacuum and for non-polarizable/non-magneti-

zable materials, P = M ≡ 0 and the classical expres-

sions D = ǫ0E and B = µ0H are recovered. The phe-
nomenological tensors χV , χϕ are defined as electric

and magnetic susceptibilities.

Introducing (28) into (27) and taking into account

(29), theMaxwell equations for magnetizable/polarizable

media may be rewritten as

∇ ·D = ρfq

∇ ·B = 0

∇×E + Ḃ = 0

∇×H − Ḋ = j

(30)

For quasi-static conditions and according to [64],

[120], [53], a transformation through electric and mag-

netic susceptibilities can change (29) to

D = ǫ ·E ⇒ ǫ = χV + ǫ0 I

B = µ ·H ⇒ µ = µ0 (χϕ + I)
(31)

where I is the identity matrix and ǫ, µ are the ten-

sor permittivity and permeability of the material. Both
tensors depend on many factors: mechanical and ther-

mal states, frequency in dispersive media, field strength

in non-linear media and history in hysteretic materials.

These dependencies influence the development of FEM

tangent matrices as will be seen in Sect. 5. The expres-
sions (31) will be expanded in Sect. 4.2.2 to include

couplings.

TheMaxwell equations (30) are linear; non-linearities

often emerge from the constitutive equations and/or the
electromagnetic-mechanical interactions.

The equation of electric charge balance is obtained

combining Ampère and electric Gauss laws from (30)

and knowing that the gradient of the cross product of

a vector is zero, to give

ρ̇fq = −∇ · j ⇒ ∇ ·
(

j + Ḋ
)

= 0 (32)

3.3.2 Compatibility equations

As mentioned previously and according to classical field

theory, viz. [120] for example, the electric and magnetic

fields may be obtained either from scalar or vectorial
potentials. If in the fourth (30) it is considered Ḋ = 0

(S2 in Sect. 4.1) and j = 0 (S3 in Sect. 4.2), the latter

valid for EI and an approximation for NEI galvanomag-

netic, then

∇ ·B = 0 ⇒ B = ∇×A

∇×H = 0 ⇒ H = −∇ϕ

∇ ·D = ρfq ⇒ D = ∇× V −∇−1ρfq

∇×E = −Ḃ ⇒ E = −∇V − Ȧ

(33)

whereA, ϕ are the magnetic vector and scalar potential

and V , V the electric vector and scalar potential, the
last one commonly called voltage. In this paper ϕ and

V are adequate for the examples considered.

This also renders the compatibility conditions (to

be defined in Sect. 4.2.2) very simple and therefore the

numerical implementation more direct, see Sect. 5. The
presence of the inverse gradient∇−1 warranties that the

fundamental theorem of vector calculus (Helmholtz de-

composition) is verified in the presence of free charges.

For the definition of the compatibility equations, it
is interesting to note that for low frequencies Ḃ ≈ 0

since the derivative is proportional to the frequency,

and therefore also Ȧ ≈ 0, see the last of (33). In any
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Fig. 19 Poynting (1852-1914) British physicist, worked in
the Cavendish Laboratory at Cambridge under Maxwell
(1831-1879), a Scottish physicist author of the second great
unification in physics

case in the current work mechanical dynamics are more
relevant than electromagnetic ones: the latter are asso-

ciated with the speed of light and the former with much

lower speeds related with rigidity and mass.

It is important to emphasize that from the theoret-
ical Physics point of view the vectorial choice is more

correct but from the numerical one the use of vectors

is obviously more expensive and also produces several

problems that, to the best of our knowledge have not

been correctly solved. For instance, the electric field is
completely determined with a prescription of V in a sin-

gle point of the domain, while that of V requires com-

plicated gauge techniques that not always give proper

results.

3.3.3 Poynting theorems

The electromagnetic energy balance is given by the
Poynting theorem (Fig. 19), [64].

Four main representations of the Poynting theorem

exist depending on the choice of the Poynting vector

j
P
(viz. Table 7). This vector points (has the orienta-

tion) in the propagation direction of an electromagnetic

wave and has dimensions of power/area. According to

[75], the choice of the theorem is not relevant for non-

dispersive (in theoretical physics terminology) or non-

dissipative (in mechanics terminology) linear materials.
However, for dispersive/dissipative materials the choice

of the flux vector j
P
may be decisive.

The Poynting theorem may be expressed in a gen-

eral form by

ė
Vϕ = −c

P
∇ · j

P
− ṙ

P
(34)

where c
P
, e

Vϕ, ṙP
denote a scalar factor, the density

of electromagnetic internal energy and a residual term,

respectively. The residual term accounts for the power

density and the dispersive terms, the minus sign indi-
cates that the electromagnetic energy is transformed

into another type of energy. Table 7 shows the expres-

sions of c
P
, ṙ

P
for the four theorem representations. For

Fig. 20 Minkowski (1864-1909), a German mathematician
who worked on geometry of numbers and mathematical
physics. Abraham (1875-1922) a German physicist who was a
professor of rational mechanics at the Politecnico di Milano

conductors or non-polarizable/non-magnetizable mate-

rials the expressions of the residual are all equal and

reduce to ṙ
P
= j · E, which is known as the Joule ef-

fect.

In the Abraham representation, see next subsection,

the residual ṙ
P
depends on temporal derivatives of the

material response (temporal description); inMinkowski’s

representation, it depends on spatial derivatives (spa-
tial description). The other two are mixed representa-

tions and combine temporal and spatial descriptions.

3.3.4 Momentum balance

The total momentum for an electromagnetic field in-

teracting with matter is unique. However, the duality

of the electromagnetic field in matter and in electro-

magnetic parts may be represented by two different

equations due to the corpuscle-wave duality of light.
During the last century physicists and mathematicians

have debated about this duality. The two main theo-

ries were proposed in [94], [1], causing the Minkowski-

Abraham controversy (scientists in Fig. 20). In addi-
tion, several competing theories have emerged in the

last years, viz. [22] for a full review.

The Minkowski and Abraham theories are closely

related to the choice of the Poynting vector for the rep-

resentation of the linear momentum density, GMi , GAb

respectively, shown in Table 7. Note that both densities
are equal in vacuum but not inside matter.

The Minkowski momentum balance is obtained ap-

plying the chain rule to the momentum density GMi

defined in Table 7, introducing the third and fourth of

(30) and using the vectorial equality (∇ × E) × D =
∇·

[
D⊗E− (D ·E) I

]
−E (∇·D)+ (∇⊗D) ·E and

the vector counterpart for the magnetic field, to obtain

Ġ
Mi

= ∇ · TM + fEM (35)
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Representation Flux j
P

Const. c
P

Residual ṙ
P

Momentum G

Abraham [1] E ×H 1 j ·E +E · Ṗ + µ0 H · Ṁ ǫ0µ0 (E ×H)

Electric current [75] E ×B
1

µ0

j ·E +E · Ṗ +E · (∇×M) —

Magnetic current [75] D ×H
1

ǫ0

j ·D

ǫ0
+ µ0 H · Ṁ +

H · (∇× P )

ǫ0
—

Minkowski [94] D ×B
1

ǫ0µ0

j ·D

ǫ0
+

D · (∇×M)

ǫ0
+

H · (∇× P )

ǫ0µ0

D ×B

Table 7 Summary of Poynting theorems, see (35)

with

TM = D ⊗E +B ⊗H −(D ·E +B ·H) I

fEM = (∇⊗D) ·E + (∇⊗B) ·H

− ρfq E − j ×B

(36)

According to [44], TM is called the electro-magnetic

stress tensor while in other books, for instance [35], is

directly the Maxwell stress tensor. Note that the proper

denomination should be Minkowski stress tensor since

Maxwell only developed this tensor for vacuum me-
dia. The second equation defines the Lorentz electro-

magnetic forces. Taking into account (29), the equality

(∇⊗D) ·E = ∇·{[P ·E + ǫ0 E ·E/2] I}−(∇⊗E) ·P
and the counterpart for the magnetic field, (36) be-
comes

TM = D ⊗E +B ⊗H

−

(

ǫ0 E ·E +
B ·B

µ0

)
I

2

fEM = −(∇⊗E) ·P − (∇⊗H) ·M

− ρfq E − j ×B

(37)

The Abraham momentum balance is obtained by in-

troducing the vectorial relation ǫ0µ0(E × H) = D ×
B − ǫ0µ0(E ×M ) − P ×B into (35) and taking into

account the Abraham flux from Table 7 yielding

ĠAb = ∇ · TM + fEM

+ ǫ0µ0

∂(M ×E)

∂t
−

∂(P ×B)

∂t
︸ ︷︷ ︸

−fPM

(38)

The underbraced last two terms on the right side are

called Abraham or ponderomotive forces in [67], taken

here with a negative sign. They are highly non-linear

and can be considered second-order terms of the Lorentz
forces. According to [60], the ponderomotive forces can

be interpreted as the difference between the canonical

(undulatory phase due to the electromagnetic field) and

kinetic (corpuscular phase among particles) momentum
densities.

Recently, [10] has concluded that GMi represents

the canonical momentum andGAb the kinetic one. There-

fore and again according to [60], GMi describes the

wave-like and GAb the particle-like phenomena (inter-
action between electromagnetism and matter). Indeed

GMi is a pseudo-momentum, conserved only in homoge-

neous and isotropic media, [67]; also, it is antisymmet-

ric: the moment of momentum is not conserved. Both-

momenta are equal in the vacuum.

The present article studies the electromagnetic in-

teractions within the matter as in [44]. In addition, the

Abraham representation guarantees the conservation of

energy and linear and angular momenta, viz. [89]. There-

fore, the Abraham energy-momentum representation is
used in the remainder.

4 Multi-coupled governing equations

The aim of this section is to develop the multi-coupled

governing equations used in this article from the expres-

sions described in Sect. 3. As discussed in Sect. 1.1 dis-
tinctions between EI and NEI must be taken into con-

sideration, otherwise, complex interactions such as vis-

cosity or electromagnetic relaxations must be included

in the formulation. Some of these issues are considered

here but others are not necessary for the objectives of
the present article.

The multi-coupled governing equations consist of

balance equations, transport (also called constitutive)

equations and boundary conditions. For a proper under-

standing, this section is structured as: Sect. 4.1 develops
the general balance equations considering the mechani-

cal, electric, magnetic and thermal fields. These balance

equations are obtained using the two thermodynamic

formalisms to develop a comprehensible formulation.
From these multi-coupled balance equations, Sects. 4.2,

4.3 develop the multi-coupled governing equations for

EI and NEI respectively.
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ρm ė
T

ρm ė
U

ė
Vϕ

ρm ėtt

j
P

q

Fig. 21 Total energy contained in a thermodynamic system:
sum of mechanical, electromagnetic and thermal parts. Ex-
ternal fluxes through boundary

At the end of the section and for summary, Fig. 24

shows a flow chart of simplifications and particulariza-

tions used to formulate the governing equations for EI
and NEI.

4.1 Multi-coupled balance equations

The multi-coupled balance equations are composed of

energy and momentum balances. In addition, the en-

tropy balance is considered to obtain the transport equa-

tions using the procedure described in Sect. 3.1.2.

4.1.1 Energy balance

Consider a thermodynamic universe consisting of a sys-

tem and its surrounding as in Fig. 12. The total energy e
of this system is the sum of mechanical e

U
, electromag-

netic e
Vϕ and thermal e

T
energies, the three of them

due to the interaction with the surroundings, Fig. 21.

According to the energy balance (14), the total energy

is unique and can be expressed by the following left
expression

ρm ėtt = ρm
(
ė
U
+ ė

T

)
+ ė

Vϕ ; jtt = q + j
P

(39)

Despite not being multiplied by ρm, the electromag-

netic energy is a proper density since the related fields

E,D,H,B are already densities. The total energy flux

jtt (right expression) is the sum of thermal q and of
electromagnetic j

P
fluxes. A possible mechanical flux

is not included due to (12), viz. [35] for further details.

The multi-coupled energy balance is obtained by

solving for ρm ė
T

in (39). Introducing (26) and the

Abraham representation from inserting the first line of

Table 7 in (34), yields after simplifications

ρm ė
T

︸ ︷︷ ︸

dĖ
T

= −∇ · q
︸ ︷︷ ︸

dQ̇+ δQ̇

+ T e : Ṡ +Ee · Ṗ + µ0 He · Ṁ
︸ ︷︷ ︸

dẆ

+ T n : Ṡ +En · Ṗ + µ0 Hn · Ṁ + j ·E
︸ ︷︷ ︸

δẆ

(40)

From the underbraces, it can be appreciated that this

balance equation is the NEI expression of the first law

(2). For EI, the non-equilibrium terms have to be elim-

inated and the time variation of (4) is recovered.

The balance (40) agrees with the one given in [124]
although it does not satisfy the requirements of the rel-

ativity theory; an exact relativistic formulation is de-

veloped in [35]. Here, it is assumed that the velocity of

the medium with respect to the observer is small com-
pared with the velocity of light. In Sects. 4.2, 4.3, this

balance will be specialized for each interaction.

4.1.2 Linear momentum balance

According to [35], the general conservation of total mo-
mentum takes into account the mechanical and electro-

magnetic momenta without the internal volume forces

f , fEM , fPM , and may be expressed by adding (25)

and (38) to give

ρm ü+ ĠAb = ∇ ·
(
T + TM

)
(41)

Note that (41) does not include body forces and there-

fore is a conservation equation. The reference [31] justi-

fies the validity of dropping these forces (sources/sinks)
since the formulation of the electro-magneto-mechanic

system is complete.

For a FEM implementation, a form similar to that

of the classical linear momentum (25) may be obtained.

Thus, ĠAb is replaced by solving for ∇ · TM in the
Abraham momentum balance (38), inserting the result

into (41) and substituting fEM from (37) to obtain

ρm ü = ∇ · T + fPM + ρfq E + j ×B

+ (∇⊗E) ·P + (∇⊗H) ·M
(42)

If other forces, for instance gravitational ones from
(25), are necessary they can be directly added to (42).

Except for the first term, the other terms on the right

hand side are of electromagnetic nature since temper-

ature does not contribute to linear momentum. The
fourth to sixth terms on the right side are defined as

Lorentz forces in Sect. 3.3.4; the last two terms can be

rewritten using the definition of the Maxwell stress (37)
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plus the tensorial definition in the text immediately be-

fore of the definition, to give

ρm ü = ∇ · (T + TM ) + fPM + ρfq E + j ×B (43)

With this transformation, the application of C1 con-

tinuous finite elements is avoided using instead much

cheaper C0 continuous functions (viz. [153] for details).

The tensor TM is non-symmetric due to the tensorial

product terms, and represents the electromagnetic in-
teraction with matter; in this particular form it is de-

duced from part of the Lorentz forces.

Due to the non-symmetry, the angular momentum

conservation is not directly fulfilled. Then, the objec-
tive is to transform the sum T + TM into a symmetric

tensor, to automatically satisfy this conservation and to

facilitate the FEM implementation, see Sect. 5. There is

a controversy in the literature about the non-symmetry
of T + TM . For instance, [126] concludes that the elec-

tromagnetic body forces cannot be changed into a stress

tensor since this mathematical transformation has no

physical meaning. But [24], [91] affirmed that it is valid,

and using different approaches established that T is
non-symmetric, but the sum T + TM is symmetric. In

the present work, a solution similar to the one given in

[91] is proposed: we split the Cauchy-like stress tensor

into two parts: T = T C − TM

sk, where T C is the classic
and symmetric Cauchy tensor. As any other tensor, TM

can be decomposed into symmetric and antisymmetric

parts, TM = TM

s + TM

sk. From (37) the first part is

TM

s =
1

2

[

D ⊗E +E ⊗D +B ⊗H +H ⊗B

−
(
ǫ0 E ·E + µ0 H ·H

)
I
] (44)

The terms inside the parenthesis are the vacuum con-

tribution to the tensor, diagonal and therefore always

symmetric. With the previous split, the sum T +TM =

T C + TM

s is now symmetric.

4.1.3 Entropy balance

In (2), it is clear that both equilibrium and non-equilibrium

terms are combined. Therefore, the general, multi-coupled

entropy balance will require the use of the two for-

malisms ET, NET.
Starting with the ET formalism and considering (11),

the expression (4) for EI can be expressed as a function

of de and ds. Differentiating (4) with respect to time,

the multi-coupled entropy becomes

ρm ṡ =
ρm ė

T

T e
−

T e : Ṡ +Ee · Ṗ + µ0 He · Ṁ

T e
(45)

For the NET formalism, substituting (7) into (1)

gives dE
T

= T n dS + dW + δW. The first two terms

of the right hand side would give an equation equal to

(45) but exchanging T e by T n in the denominator due

to the difference between (3) and (7)

ρm ṡ =
ρm ė

T

T n
−

T e : Ṡ +Ee · Ṗ + µ0 He · Ṁ

T n
(46)

In this equation, the first quotient comes from dĖ
T
and

the second from dẆ; the contribution of δẆ can be

added substituting ρm ė
T

by its complete (from the
thermodynamics point of view) expression from (40),

giving

ρm ṡ = −∇ ·

(
q

T n

)

+ q · ∇

(
1

T n

)

+
j ·E

T n

+
T − T e

T n
: Ṡ +

E −Ee

T n
· Ṗ

+ µ0

H −He

T n
· Ṁ

(47)

Note that (40) was deduced from a complete multi-

coupled continuum physics balance, that is, it includes
both ET and NET contributions. The following defini-

tions already introduced in Sects. 3.2.1, 3.3.1 have been

used

⊲ NET stress tensor: T n = T − T e

⊲ NET electric field: En = E −Ee

⊲ NET magnetic field: Hn = H −He

The entropy flux jσ and entropy production σ terms
are deduced by comparing (47) and (16) to give

jσ =
q

T n

σ = q · ∇

(
1

T n

)

+
j ·E + T n : Ṡ +En · Ṗ + µ0 Hn · Ṁ

T n

(48)

It can be appreciated that jσ in the current formula-
tion is proportional to the heat flux. The first two terms

on the right side of the bottom equation are related to

thermal conduction and to Joule heating, respectively.

The contribution of the last three irreversibilities to

the entropy production is due to viscous interactions
[35], dielectric relaxations [36] (discovered by Debye,

viz. Fig. 22) and magnetic relaxations [122].

It is interesting to formulate these NEI since in some

applications they are useful, however, for simplicity in
the present work they are not included; therefore

Simplification 1: Transport interactions due
to NET stress, electric and magnetic fields are

not considered.

Due to this simplification, the last three terms in the

fraction of the second equation (48) are dropped. Since



22 J.L. Pérez-Aparicio et al.

Fig. 22 Voigt (1850-1919), German physicist best known
for the Kelvin-Voigt viscoelasticity model. The Dutch physi-
cist Debye (1884-1966) took his position at the Math-Physics
Dept. at Göttingen and discovered the dielectric relaxation

Ṡ, Ṗ , Ṁ are extensive variables present both in EI and
NEI in general they will be non-zero; then, from (47),

T n = En = Hn = 0 and therefore T e ≡ T , Ee ≡ E,

He ≡ H. In the remainder of the paper there will be

no distinction between total and equilibrium intensive

variables except for the temperature.

An important corollary of S1 is that the govern-

ing equations will be uncoupled, permitting us to de-

velop formulations for EI and NEI separately. Thus,

the multi-coupled entropy balance, entropy flux and en-
tropy production from (47) are given by

ρm ṡ = −∇ ·
( q

T n

)

+ q · ∇

(
1

T n

)

+
j ·E

T n
(49)

The irreversibilities are here reduced to those of heat
flux and Joule heating.

An additional simplification is stated for both for-

malisms

Simplification 2: No dynamic free electric

charge densities are present, ρ̇fq = 0.

S2 implies Ḋ ≈ 0 from (32) or from the Gauss law

first of (30): exact for EI and a good approximation for

most NEI applications in which relativistic phenomena

are not present, according to [80]. In fact, a simple cal-
culation shows (viz. [113]) that for frequencies lower

than 105 [Hz] the conduction electric flux densities are

five orders of magnitude higher than those due to Ḋ.

4.1.4 Energy balance modified: equilibrium and

non-equilibrium temperatures

Due to S1, mechanical, polarization and magnetization
irreversibilities disappear from the formulation. Conse-

quently, the energy balance (40) must be modified to

eliminate the non-equilibrium terms so that only the EI

variables T e, Ee, He that reversibly exchange energy

remain.

The simplified multi-coupled energy balance rela-

tion is obtained from (4) and establishes that S must be

an exact differential in S, Ee, He, T e since, due to the

lack of irreversibilities in (1). To this end, the last in the

matrix equations (6) will be transformed in Sect. 4.2.2

to give its local form in the fourth of (55). Introducing

the time derivative of this equation into (46), the result
into (40) and assuming that the conduction tempera-

ture is similar to the reference temperature, T n ≈ T0

(in Kelvin degrees), only for the thermoelastic inter-

action (see for instance [15], [132]), the multi-coupled
energy balance is

ρm c Ṫ e = −∇ · q + j ·E − T0

T0 ≡ T0

(
β : Ṡ + πV · Ė + πϕ · Ḣ

) (50)

where c is the heat capacity and the first-order tensors

πV are the pyroelectric and πϕ the pyromagnetic prop-

erties, all of them to be found experimentally. [To be
exact, in (50) Ė

e
, Ḣ

e
should have been used but as

established by S1 they are equal to the total fields.]

The T0 Biot damping terms include the thermome-

chanical, pyromagnetic and pyroelectric converse elec-
tromagnetic dynamic interactions as shown by the tri-

angles numbered 7, 6, 5 in (6). The term β : Ṡ often is

called two-way thermoelasticity and is due to the heat

generated by the mechanical vibration. It is important

in the design of some MEMS and NEMS devices [132].
Note that the Biot terms are not of the same na-

ture as the transport interactions from (48) that are ne-

glected by S1. The former “interchanges” energy among

the four fields in a reversible manner through balance
equations while the latter “dissipates” in an irreversible

way through constitutive equations.

The first two terms on the right hand side of the first

(50) represent non-equilibrium interactions (heat con-

duction and Joule effect, respectively) and are studied
using the conductive NEI temperature T n. The related

gradient ∇T n is a driving force, as listed in Table 6,

with the heat flux as conjugate. On the other hand, the

damping terms include the equilibrium temperature T e

since they represent reversible interactions or intensive

variables closely related to entropy.

A “two temperature” model is sometimes consid-

ered to study the fully-coupled thermoelastic coupling,

viz. [55], [30] [148], [149], [42]. This model relates both
temperatures using a constraint d > 0 and the addi-

tional PDE

T n − T e = d ∇2T n = ∇ ·Q (51)

The parameter d is adjusted towards experimental data,

and the fictitious heat flux Q ≡ d ∇T n is defined for

the two-temperature model.
Due to the inherent difficulty of a numerical imple-

mentation of the obtained multi-coupled balance equa-

tions: linear momentum (43), entropy (49) and energy
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(50), these balances will be specialized in the following

section for EI and NEI, taking into account one new

simplification.

4.2 Multi-coupled governing equations for equilibrium

interactions

This section presents the multi-coupled governing equa-

tions (balance plus boundary conditions) for EI, ob-

tained introducing a new simplification.

Simplification 3: for EI, no electric fluxes
are present, j = 0.

S3 implies that the media to be studied by EI are po-

larizable and/or magnetizable, see Sect. 1.

4.2.1 Balance equations for EI

The balance equations for EI are: momentum balance
(43) with symmetric stress tensor, Gauss electric and

Gauss magnetic laws (30), two-temperature coupling

(51) and energy balance (50). Applying S3 to the first

and last equations, the complete balance is

ρm ü = ∇ · (T C + TM

s ) + fPM + ρfq E

∇ ·D = ρfq

∇ ·B = 0

T n − T e = ∇ ·Q

ρm c Ṫ e = −∇ · q − T0

(52)

In order to use a matrix formulation, the stresses T C , TM

s

in some instances will be given in Voigt notation; the

three-dimensional mechanical (without couplings) stress-

strain relation in a 6×6 matrix form is expressed as
T C = C : S and in principal directions is given by







T C

11

T C

22

T C

33

T C

12

T C

23

T C

13







=











C11 C12 C13

C12 C11 C13 −0−
C13 C13 C33

C66

−0− C44

C44

















S11

S22

S33

2S12

2S23

2S13







(53)

The shear strains are defined as engineering ones. With
this definition, the thermal expansion second-order ten-

sor β introduced in (50) is calculated as

β = C {α1T , α2T , α3T , 0, 0, 0}⊤

where α
T
are the thermal expansion coefficients, equal

in the directions of the basal plane but different in

the perpendicular direction: α1T = α2T 6= α3T (see

Fig. 18).

4.2.2 Compatibility and constitutive equations for EI

According to [134], eight sets of multi-coupled constitu-
tive equations can be defined, depending on the choice

of the independent state variables. In this work for both

EI, NEI, from (23) and the two remaining Maxwell

equations transformed in (33), the independent vari-
ables are taken as

S = ∇su ; E = −∇V ; H = −∇ϕ (54)

and, thus, permit a displacement-based FEM formula-
tion.

The multi-coupled constitutive equations are ob-

tained from the electromagnetic enthalpy Π , [19]. Con-

sidering

⊲ the Gibbs expression (4)

⊲ that Π can be expressed as an exact differential of

the intensive equilibrium variables (Table 5, (5))

the multicoupled Clausius-Duhem inequality can be ob-

tained; the second item follows from the fact that for

EI there are no dissipations.
For an FEM amenable implementation, a Legendre

transformation to exchange E by P , H by M and T e

by s is applied to (4): to the total thermodynamic en-

ergy e
T
, other energies produced by the exchanged vari-

ables must be subtracted to obtain the enthalpy result

Π = e
T
− Ee · P − µ0H

e · M − T e s. A similar pro-

cedure, although with different terms, is developed in

[134], [141], [47], [88], [16]. In this work, we obtain

Π(S,E,H, T e)

= T R : S − P R ·E − µ0 MR ·H

+
1

2

[

C : S : S − χV ·E ·E − µ0 χϕ ·H ·H

−
ρm c

T0

(T e − T0)
2

]

− eV : S ·E − eϕ : S ·H − ν ·E ·H

− (T e − T0)
(
β : S + πV ·E + πϕ ·H

)

where eV , eϕ, ν are the piezoelectric, piezomagnetic
and magnetoelectric couplings. Following the six-term

expression of the stress tensor given in (53), the ma-

trices eV , eϕ are 6×3 and ν is a diagonal 3×3 matrix.

These are shown in Appendix D. For more information
on these properties and their measurement techniques,

see the piezoelectric [? ] and magnetostrictive [19] stan-

dards and the Appendices.
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In essence, the procedure consist on assuming ma-

terial linearity and a natural state (initial S = E =

H = 0, T e = T0) the enthalpy can be calculated as

the first and second terms of Taylor series in the neigh-

borhood of the natural state. If reversible processes are
considered, all variables are exact differentials as in (5)

and using the thermodynamic Maxwell relations, sec-

ond derivatives of the enthalpy produce the material

property tensor. For example, ∂2Π/∂S∂Ee = −eV .

Polarization P R , magnetization MR and stress T R

residuals are introduced, the latter can arise for in-

stance, frommanufacturing or precompression.P R ,MR

often are present in insulating materials: ferroelectrics

for the first due to reorientation of dipoles and ferro-
magnetics for the second due to magnetic memory. In

this work, they are assumed to be independent on space

or on variations of the corresponding field. The pres-

ence of these residuals in the formulation could permit

future developments, for instance on domain switching
or memory effects.

Deriving the previous equation with respect to the

independent variables and including the thermal flux

from (51)

T C =
∂Π

∂S
= C : S − eV ·E − eϕ ·H

− β (T e − T0) + T R

D = −
∂Π

∂E
+ ǫ0 E = eV : S + ǫ ·E + ν ·H

+ πV (T e − T0) + P R

B = −
∂Π

∂H
+ µ0 H = eϕ : S + ν ·E + µ ·H

+ πϕ(T e − T0) + µ0M
R

s = −
∂Π

∂T e
= β : S + πV ·E + πϕ ·H

+
ρm c

T0

(T e − T0)

Q = d ∇T n

q = −κ ∇T n

(55)

where the equalities from (31) have been used and where

κ is the thermal conductivity.

Due to the two-temperature model, fifth in (55),
the standard Fourier law also has to be included to

calculate T e. This temperature could be inferred from

the entropy, fourth equation, forcing a new nodal vari-

able in the FEM model. Instead T n is calculated from
Fourier and T e from the two-temperature model. We

note that with this formulation the implementation of

mixed finite element models is avoided.

ΓU
u

ΓU
p

ΓTn,T e

u

ΓTn,T e

p

ΓV
u

ΓV
p

Γϕ
u

Γϕ
p

Fig. 23 Essential, natural boundary conditions on bound-
aries Γu, Γp respectively for equilibrium interactions with me-
chanic (·)U , electric (·)V , magnetic (·)ϕ and thermal (·)T

e,Tn

fields

4.2.3 Boundary conditions for EI

For multi-coupled interactions the Dirichlet Γu andNeu-

mann Γp boundaries shown in Fig. 16 are split into

mechanical Γ U
u , Γ U

p , electrical Γ V
u , Γ V

p , magnetical Γϕ
u ,

Γϕ
p and two different thermal Γ Te,Tn

u , Γ Te,Tn

p parts, see

Fig. 23. These boundaries must satisfy

Γ U
u ∪ Γ U

p = Γ ; Γ U
u ∩ Γ U

p = ∅ ;

Γ V
u ∪ Γ V

p = Γ ; Γ V
u ∩ Γ V

p = ∅ ;

Γϕ
u ∪ Γϕ

p = Γ ; Γϕ
u ∩ Γϕ

p = ∅ ;

Γ Te,Tn

u ∪ Γ Te,Tn

p = Γ ; Γ Te,Tn

u ∩ Γ Te,Tn

p = ∅

Table 8 lists the possible boundary conditions: ū,

V̄ , ϕ̄ are prescribed displacements, voltage, scalar mag-

netic potential and T̄ e, T̄ n temperatures for EI, NEI, re-

spectively. Furthermore, tC denotes prescribed Cauchy

tractions, q̄, B̄ prescribed thermal and magnetic fluxes

and D̄ surface charge density, the boundary part of ρfq .

The prescribed magnetic flux has no physical sense

but it is incorporated to define boundary magnetic fields

in numerical computations. Note that there is no flux
related to the equilibrium temperature T e since (51) is

only a numerical constraint without physical meaning.

4.3 Multi-coupled governing equations for

non-equilibrium interactions

Prior to specifying the multi-coupled governing equa-
tions for NEI, a new simplification S4 is introduced.

Simplification 4: with NEI, only non-
polarizable and/or non-magnetizable materi-

als are studied, P = M = 0.



Multiphysics and thermodynamic formulations for non-linear finite element 25

Dirichlet Neumann

u = ū T C · n = tC

V = V̄ D · n = D̄

ϕ = ϕ̄ B · n = B̄

Tn = T̄n q · n = q̄

T e = T̄ e –

Table 8 Summary of Dirichlet (essential) and Neumann
(natural) boundary conditions for equilibrium interactions

This simplification is a good approximation for conduc-

tor or semi-conductor materials studied in this paper.

4.3.1 Balance equations for NEI

Considering the applicable simplifications, the balance

equations for NEI are the linear momentum balance

(43) without ponderomotrive forces (they depend on

P ,M), electric charge balance (32) with S2, the two-
temperature model (51) and energy balance (50). In

the last equation, the pyroelectric and pyromagnetic

πV , πϕ effects associated to equilibrium fields are elim-

inated. The magnetic Gauss law from (30) is also in-
cluded to obtain a scalar potential formulation.

ρm ü = ∇ · (T C + TM

v ) + ρfq E + j ×B

∇ · j = 0

∇ ·B = 0

T n − T e = ∇ ·Q

ρm c Ṫ e = −∇ · q − T0 β : Ṡ + j ·E

(56)

S4 and (29) imply D = ǫ0E, B = µ0H; then for

NEI the Maxwell tensor in vacuum from (37) or (44)

becomes

TM

s ≡ TM

v = ǫ0 E ⊗E + µ0 H ⊗H

−
(

ǫ0 E ·E + µ0 H ·H
) I

2

(57)

Its magnitude is in general very small due to the small

values of ǫ0, µ0 but again its inclusion can be relevant

in some applications. We note that in NEI both stress

tensors are symmetric without need of further approx-

imations.

In this work NEI is applied to isotropic materials;

then the stress-strain relations in indicial form are given

by T C

ij = λ δijSkk+2µSij, where λ, µ are the Lamé pa-
rameters and δij the Kronecker delta. Also, the equal

entries of the thermal expansion tensor β can be di-

rectly calculated from α
T
(3λ+ 2µ).

4.3.2 Transport equations for NEI

According to the NET formalism [69], the transport

equations are obtained by expressing the entropy pro-

duction σ from the second of (48) and subsequently

introducing S1. Considering the form of (18) and (19)

this yields







j

q






=





L11 L12

L21 L22











−
∇V

T n

−
∇T n

(T n)2







(58)

where the four second-order tensors Lkl(B) include the

material properties that satisfy the thermodynamic re-
strictions given in (20). From [80], [105], the two matri-

ces that group both types of tensors are here arranged

and modified to

L = T n

[

ρ−1 T n ρ−1 α

−sym− T n
(
κ+ T n α ρ−1 α

)

]

(59)

Also, the material properties are converted into tensor

entities α, ρ, κ through

α = αs +αsk ≡ α(T n) I +N B×

ρ = ρs + ρsk ≡ ρ(T n) I +R B×

κ = κs + κsk ≡ κ(T n) I −M B×

(60)

where α, ρ are defined as Seebeck and electric resistiv-

ity. Also, N , R, M , are the Nernst, Hall and Righi-

Leduc coefficients, related to the interactions defined in

Sect. 1.1.3.
To operate the cross product in vectorial notation,

the subindex × indicates the reallocation of a 3×1 vec-

tor into a 3×3 antisymmetric matrix with zero diag-

onals; for instance for the magnetic induction in (60)
gives

B× ≡





0 −B3 B2

B3 0 −B1

−B2 B1 0



 (61)

Due to the dependency of Lkl on magnetic induc-

tion, for experimental measurements and to reduce the

related algebra it is convenient to split (59) into sym-

metric and skew-symmetric parts, Lkl = Lkl
s + Lkl

sk.

The first part (transport properties) describe the clas-
sical phenomenological properties in the absence of B

and the second the galvanomagnetic and thermomag-

netic effects.

As indicated in (60) the α, ρ, κ depend on the con-
duction temperature, as will be quantified in Sect. 7; in

what follows the non-equilibrium argument of T n will

be omitted to simplify the relations. The antisymmetry
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of the second parts in (60) comes from the form of B×.

The explicit matrix expressions for the three relations

are

α =






α −NB3 NB2

NB3 α −NB1

−NB2 NB1 α






ρ =






ρ −RB3 RB2

RB3 ρ −RB1

−RB2 RB1 ρ






κ =






κ MB3 −MB2

−MB3 κ MB1

MB2 −MB1 κ






(62)

The above definitions satisfy the reciprocal relation (21)

or equivalently κsk(B) = κsk(−B)⊤ etc., assuring that

the entropy always increases, as expressed in (20).

To be used in the transport equations, the tensor

of electric conductivities are defined as γ−1 = ρ. Due

to the inversion process γ cannot be divided into sym-
metric and skew-symmetric parts, although the partic-

ular case of the absence of magnetic field directly gives

γ = ρ−1
s = I/ρ.

Each term of (59) or equivalently from (60) clearly

represents a physical effect. In the absence of B and
from (58) after dropping the tensorial notation

⊲ At the diagonals, ∇V/ρ, κ ∇T n, the heat and elec-

tric laws stated by Ohm and Fourier.

⊲ At the top off-diagonal, α T n j, the Peltier and

Thomson effects described in Sect. 1.

⊲ At the bottom off-diagonal (along with the second
product in the low diagonal), α ∇T n/ρ, the Seebeck

effect.

and in presence of B as defined in Sect. 1.1.3

⊲ From the skew term on the right side of α in (60)

the Ettingshausen and Nernst effects, coupled and

both controlled by N .

⊲ From the skew term on the right side of ρ in (60),
the Hall effect.

⊲ From the skew term on the right side of κ in (60),

the Righi-Leduc effect.

To sum up, considering the transport equations (58),

the mechanical and magnetic constitutive (55) and the

two-temperature model (51), the transport (third, sixth)

Dirichlet Neumann

u = ū T C · n = tC

V = V̄ j · n = j̄

ϕ = ϕ̄ B · n = B̄

Tn = T̄n q · n = q̄

Table 9 Summary of Dirichlet (essential), Neumann (natu-
ral) boundary conditions for non-equilibrium interactions

and constitutive (the rest) equations for NEI are

T C = C : S − β (T e − T0) + T R

TM
v =

(

ǫ0 E ⊗E + µ0 H ⊗H
)

−
(

ǫ0 E ·E + µ0 H ·H
) I

2

j = −γ · ∇V − γ α · ∇T n

B = µ0 H

Q = d ∇T n

q = −κ · ∇T n + T n α · j

(63)

where the permeability for conductor or semiconductor

materials is assumed to be the vacuum µ0, since magne-

tization interactions are not present. The electric and
thermal transport equations, third and sixth in (63),

are now interpreted from a physical point of view

⊲ For the electric, the first term on the right side rep-

resents electric conduction, the second Seebeck effect

⊲ For the thermal, the first term represents heat con-

duction; the second Peltier effect

4.3.3 Boundary conditions for NEI

The Dirichlet and Neumann boundary conditions are
shown in Table 9. The only magnitude different from

those of Table 8 is j̄, the prescribed electric flux.

5 Finite element formulation

A variational formulation within the FEM is developed

in the present section geared to implement in a com-

puter program the multi-coupled governing equations
for: i) EI, using (52), (55) plus Table 8, ii) NEI, using

(56), (63) plus Table 9 (see Fig. 24). Both finite ele-

ments (FE) are implemented in the research program

FEAP [138] from the University of California at Berkeley;
this program provides several dummy routines (user el-

ements) to implement new modular elements using pro-

gramming languages Fortran or C.
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Equilibrium Non–equilibrium

Multi–coupled governing equations

S2

S1

S3 S4

Balance equations

Transport equations

Boundary conditions

Eq. (56)Eq. (52)

Eq. (55) Eq. (63)

Table 9Table 8

Fig. 24 Flow chart for simplifications and particularizations
of governing equations for equilibrium and non-equilibrium
interactions. S# stands for Simplification number

The standard compatibility equations are listed in
(54). The use of a magnetic vector potential A would

modify the magnetic compatibility to B = ∇×A, see

the first (33). In addition, the fourth Maxwell equa-

tion (30) would be Ampère’s law ∇×H = j + Ḋ. But
the magnetic scalar potential ϕ is a good approximation

for domains without electric fluxes. This situation ap-

plies to EI for which S3, and to NEI for which S4 hold,

as explained in Sects. 4.2, 4.3. However, for a complete

and fully multi-coupled formulation the use of the vec-
tor potential A should be considered.

5.1 Finite element discretization

A standard isoparametric formulation is used in which
the element shape functions N are expressed in terms

of parametric coordinates ξ ≡ (ξ, η, ζ). At any point

of the parametric coordinates in the element domain

the cartesian coordinates and the dependent variables

along with their time derivatives are discretized (ap-
proximated) with standard shape functions as (viz. [153])

x ≈ xh = Na a
x

a ; u ≈ uh = Na a
U
a ;

u̇ ≈ u̇h = Na ȧ
U

a ; ü ≈ üh = Na ä
U

a ;

V ≈ V h = Na aV
a ; V̇ ≈ V̇ h = Na ȧV

a ;

ϕ ≈ ϕh = Na a
ϕ
a ; ϕ̇ ≈ ϕ̇h = Na ȧϕ

a ;

T e ≈ T eh = Na aTe

a ; Ṫ e ≈ Ṫ eh = Na ȧTe

a ;

T n ≈ T nh = Na aTn

a

(64)

where a repeated subscript a implies summation over

nodes numbered 1, . . . , nel of a particular finite element

and the supraindex (·)h denotes FEM approximation.

For the mechanical dof, the three displacements at any

point in the element domain expressed in parametric co-
ordinates are u(ξ) = {u1(ξ), u2(ξ), u3(ξ)}⊤. The vector
a

U
a = {aU

1a, a
U

2a, a
U

3a}
⊤ groups the displacements at a lo-

cal node a with coordinates ξa; Na ≡ Na(ξ) is the value

of the a-node related isoparametric shape function at
the generic location ξ.

The gradients are also discretized with the same

shape functions

∇su ≈ ∇sNa a
U
a = B

s
aa

U
a ; ∇su̇ ≈ ∇sNaȧ

U

a = B
s
a ȧ

U

a ;

∇V ≈ ∇Na aV
a = Baa

V
a ; ∇V̇ ≈ ∇sNaȧ

V
a = Ba ȧV

a ;

∇ϕ ≈ ∇Na a
ϕ
a = Baa

ϕ
a ; ∇ϕ̇ ≈ ∇sNaȧ

ϕ

a = Ba ȧϕ

a ;

∇T e ≈ ∇Na aTe

a = Baa
Te

a ;

∇T n ≈ ∇Na aTn

a = Baa
Tn

a

(65)

where the FEM gradient matrices for mechanical, vec-

torial (electric, thermal or magnetic) and galvano “com-

patibility” are expressed as

B
s
a =











Na,1 0 0

0 Na,2 0
0 0 Na,3

Na,2 Na,1 0

0 Na,3 Na,2

Na,3 0 Na,1











; Ba =







Na,1

Na,2

Na,3







B
×

a =





0 −Na,3 Na,2

Na,3 0 −Na,1

−Na,2 Na,1 0





(66)

In the previous equations Na,j denotes the partial

derivative of Na with respect to the coordinate xj . For

the definition of these matrices, the small displacement

strain tensor definition after (23) and the shear strain
order given in (53) have been used. Similarly to Na,

B
s
a ≡ B

s
a(ξ), Ba ≡ Ba(ξ) are the matrix values of the

a-node related derivatives of the shape function at the

generic location ξ.
Finally, the variations and their gradients are also

discretized as

δu ≈ Na δaU
a ; ∇sδu ≈ ∇sNa δaU

a = B
s
a δaU

a

δV ≈ Na δaV
a ; ∇δV ≈ ∇Na δaV

a = Ba δaV
a

δϕ ≈ Na δaϕ
a ; ∇δϕ ≈ ∇Na δaϕ

a = Ba δaϕ
a

δT e ≈ Na δaTe

a ; ∇δT e ≈ ∇Na δaTe

a = Ba δaTe

a

δT n ≈ Na δaTn

a ; ∇δT n ≈ ∇Na δaTn

a = Ba δaTn

a

(67)
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Fig. 25 Galerkin (1871-1945) a Russian mathematician and
engineer. Zienkiewicz (1921-2009), Polish mathematician and
engineer, one of the pioneers of the finite element method

5.2 Finite element formulation for equilibrium
interactions

Consider the system shown in Fig. 16; in the related

governing equations described above many practical ma-
terial or constitutive non-linearities are contemplated.

The material linearity can be due to that of most consti-

tutive equations and the geometric one to the small dis-

placement assumption. The non-linearities of the model

emerge from the Maxwell stress tensor and from some
material properties that depend on the field intensity.

From the numerical point of view non-linearities are
addressed by the Newton-Raphson algorithm and time

integration by standard Newmark schemes [100], [52].

5.2.1 Weak forms for EI

As described in [153], see Fig. 25, while the original

partial differential equations (also named strong forms)

include second derivatives, the weak forms (or integral
equations) only involve first spatial derivatives of the

dof’s.

According to standard variational methods reported

in the previous reference, the weak forms are obtained

multiplying each balance equation (52) by variations of

the appropriate dof’s δu, δV , δϕ, δT e, δT n and inte-
grating over the domain Ω. The final weak forms (68)

are obtained by applying the divergence theorem to the

gradients of all equations and enforcing the Neumann

boundary conditions from Table 8. This yields

0 =−

∫

Ω

[

(∇sδu) :
(
T C + TM

s

)
+ δu ·

(
ρm ü

− fPM − ρfq E
)]

dΩ +

∮

ΓU
p

δu · tC dΓ

0 =−

∫

Ω

[

(∇δV ) ·D + δV ρfq

]

dΩ

+

∮

ΓV
p

δV D̄ dΓ

0 =−

∫

Ω

(∇δϕ) ·B dΩ +

∮

Γ
ϕ
p

δϕ B̄ dΓ

0 =−

∫

Ω

[

(∇δT e) ·Q+ δT e
(

T n − T e
)]

dΩ

0 =

∫

Ω

[

(∇δT n) · q − δT n
(

T0 + ρm c Ṫ e

)]

dΩ

−

∮

ΓTn
p

δT n q̄ dΓ

(68)

After this equation and following the traditional

FEM, the tensor notation will be dropped in this sec-

tion and substituted by vector notation including the

transpose symbol.

5.2.2 Discretized constitutive equations for EI

At any generic point ξ of a particular finite element,

the stresses, fluxes and fields from (44) and (55) are ap-
proximated using (64) and (65). The constitutive equa-

tion for s [viz. (55)] would not be approximated since

it already has been included in (52) as energy balance.

Similarly, the (54) is discretised as

S(ξ) = B
s
b a

U

b ; E(ξ) = −Bb aV

b ; H(ξ) = −Bb a
ϕ

b

(69)

where the repeated subindices (·)b play the same role

as that of (·)a in (64).

In what follows, both stresses T C , TM

s will be ex-

pressed either in a 6×1 vectorial form or in a 3×3 tensor

form, as required for the context. For clarity, the argu-
ment ξ will be dropped.

5.2.3 Discretized residuals for EI

The Galerkin approach permits us to convert the con-
tinuous formulation given in (68) into an amenable (for

numerical analysis) discrete formulation using the ap-

proximations in (64) to (67).
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Following the standard FEM method [153], the inte-

gral domains are discretized into elements:
∫

Ω
• dΩ ≡

∑

e

∫

Ωe • dΩ, the residuals are computed element by

element and assembled. The resulting residuals are ex-

pressed as

RU

a =−

∫

Ωe

[

B
s⊤
a

(
T C + TM

s

)
+Na

(
ρm Nb ä

U

b

− fPM + ρfq Bb a
V

b

)]

dΩ +

∮

ΓU
p

Na tC dΓ

RV

a =

∫

Ωe

(
B

⊤

a D +Na ρ
f
q

)
dΩ −

∮

ΓV
p

NaD̄ dΓ

Rϕ
a =

∫

Ωe

B
⊤

a B dΩ −

∮

Γ
ϕ
p

Na B̄ dΓ

RTe

a =

∫

Ωe

[

B
⊤

a Q+Na Nb

(
aTn

b − aTe

b

)]

dΩ

RTn

a =

∫

Ωe

[

B
⊤

a q
]

dΩ −

∫

Ωe

Na

(
T0

+ ρm c Nb ȧTe

b

)
dΩ −

∮

ΓTn
p

Na q̄ dΓ

(70)

The sign has been changed in the second to fourth equa-

tions to obtain a better conditioned multicoupled ma-
trix in Sects. 5.2.4, 5.2.5. The previous boundary inte-

grals are non-zero only if the element has one or more

sides with prescribed magnitudes in nodes that lie on

the boundaries Γp.
In the residuals the following forces and fluxes must

also be discretized. From (29), (38), (50)

P (ξ) ≈ D + ǫ0 Bb aV

b

M (ξ) ≈
B

µ0

+Bb a
ϕ

b

fPM (ξ) ≈ Ṗ× B + P× Ḃ

+ ǫ0µ0

(
Ṁ× aV

b +M× ȧV

b

)
Bb

T0(ξ) ≈ T0

(
β⊤B

s
bȧ

U

b − πV ⊤Bbȧ
V

b − πϕ⊤Bbȧ
ϕ

b

)

(71)

where the antisymmetric P×, M× have the same profile

and signs as B× in (61). The time derivatives Ḃ×, Ṁ×

can be directly calculated.

5.2.4 Tangent stiffness matrices for EI

The tangent “stiffness” matrices (using a Continuum

Mechanics terminology) are obtained by linearizing the

residuals (70) with respect to the dof. The non-zero con-
tributions from these residuals are listed in this subsec-

tion, and in general, these submatrices are non-symme-

tric. For each pair of local nodes a, b of the element and

for the dof’s I, J ≡ U , V , ϕ, T e, T n.

KIJ

ab = −
∂RI

a

∂aJ

b

6= KJI

ab = −
∂RJ

a

∂aI

b

The mechanical residual gives the direct and cou-

pling submatrices

KUU

ab =

∫

Ωe

B
s⊤
a

[
∂TC

∂aU

b

+
∂TM

s

∂aU

b

]

dΩ

−

∫

Ωe

Na

∂fPM

∂aU

b

dΩ

KUV

ab =

∫

Ωe

B
s⊤
a

[
∂TC

∂aV

b

+
∂TM

s

∂aV

b

]

dΩ

−

∫

Ωe

Na

[
∂fPM

∂aV

b

− ρfq Bb

]

dΩ

KUϕ
ab =

∫

Ωe

B
s⊤
a

[
∂TC

∂aϕ

b

+
∂TM

s

∂aϕ

b

]

dΩ

−

∫

Ωe

Na

∂fPM

∂aϕ

b

dΩ

KUTe

ab =

∫

Ωe

B
s⊤
a

[
∂T C

∂aTe

b

+
∂TM

s

∂aTe

b

]

dΩ

−

∫

Ωe

Na

∂fPM

∂aTe

b

dΩ

(72)

There is no coupling with the conductive (non equi-
librium) temperature since it is only present in the heat

fluxes and not coupled with the stress, electric or mag-

netic fields.

The electric residual couples with itself and also

with the other fields: this residual only contains the

variable induction D that in turn is coupled with me-

chanical, electric, magnetic and equilibrium thermal dof

KV U

ab =−

∫

Ωe

B
⊤

a

∂D

∂aU

b

dΩ

KV V

ab =−

∫

Ωe

B
⊤

a

∂D

∂aV

b

dΩ

KVϕ
ab =−

∫

Ωe

B
⊤

a

∂D

∂aϕ

b

dΩ

KV Te

ab =−

∫

Ωe

B
⊤

a

∂D

∂aTe

b

dΩ

(73)
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For the same reasons, the magnetic residual gives

K
ϕU

ab =−

∫

Ωe

B
⊤

a

∂B

∂aU

b

dΩ

KϕV

ab =−

∫

Ωe

B
⊤

a

∂B

∂aV

b

dΩ

Kϕϕ
ab =−

∫

Ωe

B
⊤

a

∂B

∂aϕ

b

dΩ

KϕTe

ab =−

∫

Ωe

B
⊤

a

∂B

∂aTe

b

dΩ

(74)

The diagonal submatrices KV V

ab , Kϕϕ
ab will be positive

since the corresponding derivatives of D, B are nega-
tive.

Finally, the two thermal residuals produce the non-
zero direct and coupling submatrices

KTeTe

ab =

∫

Ωe

Na Nb dΩ

KTeTn

ab =−

∫

Ωe

[

B
⊤

a d Bb +Na Nb

]

dΩ

KTnTn

ab =

∫

Ωe

B
⊤

a κ Bb dΩ

(75)

Note that the first stiffness shows the unusual charac-

teristic of not including a material property; this is due
to the nature of (51), as mentioned it is a constraint

rather than a constitutive equation.

5.2.5 Tangent capacity matrices for EI

The tangent “capacity” matrices (with the terminology

of Heat Transfer) are similar to the tangent stiffness

but the derivatives are with respect to the first time

derivative of the dof

CIJ

ab = −
∂RI

a

∂ȧJ

b

6= CJI

ab = −
∂RJ

a

∂ȧI

b

Capacity terms arise from the ponderomotive forces

of the mechanical residual and are expressed by

CUU

ab =−

∫

Ωe

Na

∂fPM

∂ȧU

b

dΩ

CUV

ab =−

∫

Ωe

Na

∂fPM

∂ȧV

b

dΩ

CUϕ
ab =−

∫

Ωe

Na

∂fPM

∂ȧϕ

b

dΩ

CUTe

ab =−

∫

Ωe

Na

∂fPM

∂ȧTe

b

dΩ

(76)

The general non-zero terms of the non equilibrium

temperature residual from the Biot and standard heat

conduction terms give

CTnU

ab =

∫

Ωe

Na

∂T0
∂ȧU

b

dΩ

CTnV

ab =

∫

Ωe

Na

∂T0
∂ȧV

b

dΩ

CTnϕ
ab =

∫

Ωe

Na

∂T0
∂ȧϕ

b

dΩ

CTnTe

ab =

∫

Ωe

Na ρm c Nb dΩ

(77)

5.2.6 Tangent mass matrices for EI

In the tangent “mass” matrices (again with the Con-

tinuum Mechanics terminology) the derivatives are with

respect to the second time variation of the dof.

MIJ

ab = −
∂RI

a

∂äJ

b

6= MJI

ab = −
∂RJ

a

∂äI

b

The only second derivative with respect to time is re-

lated to the mechanical dof, that is

MUU

ab =

∫

Ωe

Na ρmI Nb dΩ (78)

For simplicity and from the several choices for mass

matrices, we use a diagonal-lumped version.

The three types of matrices: stiffness, capacity and

mass, include partial derivatives that are developed and
listed in Appendix A.

5.2.7 Assembled system for EI

The previous matrices and residuals are assembled ele-
ment by element to give a linearized algebraic system,

with the nodal 7×7 matrix form of (79). In this ma-

trix, the parameters c1, c2 and c3 arise from the time

integration formula used. For the Newmark method

c1 = 1 ; c2 =
γ

N

β
N
∆t

; c3 =
1

β
N
(∆t)2

where γ
N
and β

N
are user-chosen parameters, viz. [153].

The multi-coupled assembled matrix for EI is non-
symmetric, consequence of the lack of reciprocity of

some of the couplings. From a numerical point of view,

this asymmetry is a drawback for the efficiency of the

system solving; special asymmetric equation solvers must
be used to guarantee quadratic rates of convergence.

This difficulty is avoided using the FEAP command UTAN,

viz. [138].
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



c1KUU +c2CUU +c3MUU c1KUV +c2CUV c1KUϕ+c2CUϕ c1KUTe +c2CUTe 0

c1 KV U c1 KV V c1 KVϕ c1 KV Te 0

c1 KϕU c1 KϕV c1 Kϕϕ c1 KϕTe 0

0⊤ 0 0 c1 KTeTe c1 KTeTn

c2 CTnU c2 CTnV c2 CTnϕ c2 CTnTe c1 KTnTn
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
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
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
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
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


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



daU

daV

daϕ

daTe

daTn



























































k

=



























































RU

RV

Rϕ

RTe

RTn



























































k

(79)

At each non-linear step the nodal unknowns are up-
dated from the previous ones calculated in (79) with







a
U

aV

aϕ

aTe

aTn







k+1

=







a
U

aV

aϕ

aTe

aTn







k

+







daU

daV

daϕ

daTe

daTn







k

Finally, all integrals from Sects. 5.2.3 to 5.2.6 are

calculated numerically at Gauss points.

5.3 Finite element formulation for non-equilibrium

interactions

Consider again the system shown in Fig. 16; the NEI

of this system are fully defined by the balance (56) and

constitutive (63) equations and corresponding bound-

ary conditions from Table 9.

To be used in the FEM residuals, (63) are discretized

using (64), (65). The discretized compatibility expres-

sions (69) will be used again. All shape functions, mate-

rial properties etc. in the right hand sides of the follow-

ing equations will be evaluated at ξ but the argument
is omitted for simplicity. The nodal values are directly

related with the corresponding node b.

5.3.1 Discretized residuals for NEI

As done for EI in the previous section, the weak forms

are obtained multiplying the balances (56) by the vari-

ations from (67) and integrating over the FE domain.
Applying the divergence theorem to the first term of

all equations, the Neumann boundary conditions from

Table 9 and the FEM approximations from (64), (65)

the residuals are

RU

a = −

∫

Ωe

[

B
s⊤
a

(
T C + TM

v

)

+Na

(
ρfq Bb aV

b + ρm Nb ä
U

b

− j×B
)]

dΩ +

∮

ΓU
p

Na tC dΓ

RV
a =

∫

Ωe

B
⊤

a j dΩ −

∮

ΓV
p

Na j̄ dΓ

Rϕ
a =

∫

Ωe

B
⊤

a B dΩ −

∮

Γ
ϕ
p

Na B̄ dΓ

RTe

a =

∫

Ωe

[

B
⊤

a Q+Na Nb

(
aTn

b − aTe

b

)]

dΩ

RTn

a =

∫

Ωe

[

B
⊤

a q −Na

(
T0 β⊤ B

s
b ȧ

U

b

+ j⊤ Bb aV

b + ρm c Nb ȧTe

b

)]

dΩ

−

∮

ΓTn
p

Na q̄ dΓ

(80)

Again the signs of the second, third and fourth residuals

have been changed. The mechanical residual RU

a is a

3×1 vector entity since includes three mechanical dof’s
or displacements. Consequently, five residuals and seven

dof are present. Both stress tensors must have a 6×1

dimension.

5.3.2 Tangent stiffness matrices for NEI

As explained in Sect. 5.2.4, the tangent “stiffness” ma-

trices are obtained deriving the residuals with respect
to the dof’s. There will be contributions from the five

residuals (80), although several of the derivatives will

be zero. The mechanical residual produces the non-zero
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direct and coupling submatrices

KUU

ab =

∫

Ωe

B
s⊤
a

∂T C

∂aU

b

dΩ

KUV

ab =

∫

Ωe

[

B
s⊤
a

∂TM

v

∂aV

b

+ Na

(

ρfq Bb −
∂j×
∂aV

b

B

)]

dΩ

KUϕ
ab =

∫

Ωe

[

B
s⊤
a

∂TM

v

∂aϕ

b

− Na

(
∂j×
∂aϕ

b

B + j×
∂B

∂aϕ

b

)]

dΩ

KUTe

ab =

∫

Ωe

B
s⊤
a

∂T C

∂aTe

b

dΩ

KUTn

ab = −

∫

Ωe

Na

∂j×
∂aTn

b

B dΩ

(81)

Besides the principal KUU

ab , the mechanical field in-

teracts with the electric and magnetic fields and the

thermal (both equilibrium and non-equilibrium) through
the Lorentz forces (terms with j×B). In addition, me-

chanical and thermal fields are also coupled since the

stress depends on temperature, first of (63). The deriva-

tive of j× with respect to a
U

b (first equation) is zero
since piezomagnetic effects are not included.

The electric and magnetic residuals produce the fol-
lowing non-zero submatrices

KV V

ab = −

∫

Ωe

B
⊤

a

∂j

∂aV

b

dΩ

KVϕ
ab = −

∫

Ωe

B
⊤

a

∂j

∂aϕ

b

dΩ

Kϕϕ
ab = −

∫

Ωe

B
⊤

a

∂B

∂aϕ

b

dΩ

KV Tn

ab = −

∫

Ωe

B
⊤

a

∂j

∂aTn

b

dΩ

(82)

In the previous expression, KVϕ
ab represents the galvano-

magnetic interaction due to the magnetic dependency
of the electric flux developed in (63).

For the magnetic dof, the only non-zero term is the
principal interaction, third in (82). The nullity KϕTn

ab =

0 is due, for conductor materials, to the absence of

pyromagnetic interactions. In addition KϕV

ab = 0: the

electric flux alters the magnetic field according to the
fourth Maxwell law from (30), however, the choice of

a scalar magnetic potential implies that B only de-

pends on ϕ. A similar approximation was also assumed

in [105], [104]. The thermoelectric KV Tn

ab interactions

are observed again.

The derivation of the fourth residual RTe

a directly

gives the first two submatrices from (75); those of the

fifth residual are

KTnV

ab =−

∫

Ωe

B
⊤

a

∂q

∂aV

b

dΩ

+

∫

Ωe

Na

( ∂j

∂aV
c

aV
c + j

)⊤

Bb dΩ

KTnϕ
ab =−

∫

Ωe

B
⊤

a

∂q

∂aϕ

b

dΩ

+

∫

Ωe

Na

∂j⊤

∂aϕ

b

Bc aV
c dΩ

KTnTn

ab =−

∫

Ωe

B
⊤

a

∂q

∂aTn

b

dΩ

+

∫

Ωe

Na

∂j⊤

∂aTn

b

Bc aV
c dΩ

(83)

The thermal and electric fields are coupled by sev-

eral thermoelectric interactions in KTnV

ab that are de-

scribed in detail in Sect. 4. Also, KTnϕ
ab takes into ac-

count the thermomagnetic interactions given by α, κ

in (60).

5.3.3 Tangent capacity matrices for NEI

The “capacity” matrices represent the dissipative in-

teractions, and are obtained deriving the residuals with

respect to the time first-derivative of the dof. The fol-

lowing submatrices are non-zero

CTnU

ab =

∫

Ωe

Na T0 β⊤ B
s
b dΩ

CTnTe

ab =

∫

Ωe

Na ρm c Nb dΩ

(84)

The first expression represents the thermoelastic damp-
ing that was introduced in [15] to study the thermome-

chanical interactions, and arises from the thermal fluxes

that have been originated from the volumetric strain

variations, Biot’s damping term. The heat transient is
represented by the two-temperature matrix CTnTe

ab .

5.3.4 Tangent mass matrices for NEI

The only non-zero “mass” matrices are related with sec-
ond derivatives and represent mechanical inertias. With

the reallocation of the shape functions described for EI,

we obtain the lumped matrix

MUU

ab =

∫

Ωe

Na ρmI Nb dΩ (85)
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(86)

5.3.5 Assembled matrix for NEI

As mentioned in Sect. 5.2.7, the stiffness, capacity and

mass sub matrices are grouped for each node in the 7×7
matrix (86) are implemented in the research code FEAP.

6 Numerical examples for equilibrium

interactions

The basic validations for EI are divided into linear and

non-linear interactions (in the sense of cause-effect re-

sponses, see Fig. 5). The linear interactions are closely
related with the constitutive equation (55) and the non-

linear ones with the Maxwell stress tensor from the

same equations. Although the complete study of EI

often involves the analyses of complicated geometries

(see for instance [112]) in this work and for demonstra-
tion purposes a simple parallelepiped will be used, with

a material that couples elastic electro, magneto, and

thermal fields.

Table 10 lists the validations selected that were al-
ready introduced in Tables 1 and 2. Cases named elec-

tric and magnetic susceptibilities, piezoelectric, piezo-

magnetic, magneto electric, pyroelectric, pyromagnetic

are linear interactions; the other electrostriction and

magnetostriction are non-linear. Other interactions such
as elasticity, heat capacity and thermal expansion are

not completely present since they are basic and already

have been validated in ongoing work from [117], [118]

for NEI.
For all cases, the 2-D geometry shown in Fig. 26 is

considered, with l3 = 1.14× 10−3 [m] and l2 = 3l3. For

simplicity and to avoid rigid body motions, all Dirichlet

boundary conditions are set to zero at the vertical and

horizontal bottom sides. On the top side, the prescribed
Dirichlet electric, magnetic and thermal boundary con-

ditions for each case are given in Table 10. Neumann

conditions are automatically zero in all the boundaries.

Since the voltage, magnetic and temperature scalar
unknowns are potentials, an analytical solution for the

potential distribution can be calculated, viz. [130] in

which the Laplace transformation technique is applied.

Case Symbol Interaction T̄ e V̄ ϕ̄

I
2

Electric suscept. - 10 -

II
3

Magnetic suscept. - - 10

III
8

Magnetoelectric - - 10

IV
9

Pyroelectric 10 - -

V
10

Pyromagnetic 10 - -

VI
5

Piezoelectric - 10 -

VII - Electrostriction - 10 -

VIII
6

Piezomagnetic - - 10

IX - Magnetostriction - - 10

Table 10 Cases and prescribed boundary conditions at the
top face (Fig. 26) for basic validations of equilibrium interac-
tions. Triangles in second column symbolize the interactions
introduced in Fig. 7

Denoting Υ to a generic scalar potential that in this

context can be T e, V , or ϕ

Υ (x2, x3) =
4 Ῡ

π

∞∑

k=1

sin(ℵ x2) sinh(ℵ x3)

(2k − 1) sinh(ℵ l3)
(87)

where ℵ = π(2k − 1)/l2, and Ῡ is the particular scalar
field prescribed at the top face. According to the com-

patibility from Sect. 4.2.2 and the third of the constitu-

tive (55), the three components of the field associated

to each Υ are Ξ = −∇Υ , therefore

Ξ3 = −
∂Υ

∂x3

= −
4 Ῡ

l2

∞∑

k=1

sin(ℵ x2) cosh(ℵ x3)

sinh(ℵ l3)
(88)

Figure 27 shows the potential distribution given by

(87), assuming the prescribed potential to Ῡ = 10. This
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Fig. 26 Two-dimensional domain and boundary conditions
for validations of equilibrium interactions. T = V = ϕ = 0
on all faces except top one, where are prescribed
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Fig. 27 Potential distribution from analytical solution (87).
Potential prescribed to Ῡ = 10 on top side and to zero on the
others

solution satisfies well the natural boundary conditions

with k = 90 terms, except close to the prescribed sur-

faces where small oscillations appear.

6.1 Case I

The electric susceptibility interaction relates electric

field (cause) and polarization (effect) through the medium

permittivity, see the second row of Table 1.

From a numerical point of view and for this vali-
dation, only the voltage dof is required. Therefore, the

constitutive equation of the electric displacement (fourth

in (55)) reduces to D = ǫ ·E and the relationship be-

tween electric field and polarization (29) top (in ab-
sence of residual polarization, as in the following cases)

becomes P = (ǫ − ǫ0I) · E. The polarization along

the x3 direction in Fig. 26 is therefore given by P3 =

(ǫ33 − ǫ0) Ξ3, where Ῡ ≡ V̄ and Ξ3 ≡ E3.

Figure 28 shows the component P3 along the direc-
tion x2 at x3 = l3/2 as shown in Fig. 26; this line is used

for the rest of EI cases. The polarization is negative due

to the sign of the electric field, from larger to smaller
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P
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×
1
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−

5
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2
]
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-12

Fig. 28 Electric susceptibility Case I. Vertical polarization
along x2 at x3 = l3/2 (Fig. 26). Line: analytical, circles: finite
element results

voltages and follows a non-linear distribution according

to (88). The values of ǫ0, ǫ, as will be done for others

in the following cases, are taken from Appendix D. As

in the remaining EI cases, analytical and numerical re-

sults are very similar, except close to the sides–a finer
mesh in these areas would improve the solution.

The electric field E3 (and the proportional polar-
ization P3) increases very quickly along x2 close to the

vertical sides due to the closeness of the equipotential

lines of Fig. 27 in this zone. In the center, these lines are

almost parallel, therefore P3 is constant and maximum.

6.2 Case II

The magnetic susceptibility interaction relates magnetic

induction (cause) and magnetization (effect) through
the permeability of the medium. For this validation,

only the scalar magnetic potential is required. The con-

stitutive equation of the magnetic induction (fifth in

(55)) is reduced to B = µ · H and the relationship
between magnetic induction and magnetization (in ab-

sence of residual magnetization, as for the rest of EI

cases) is from (29)

M =

(
µ

µ0

− I

)

·H

Therefore, the vertical magnetization (Fig. 26) is

given by

M3 =

(
µ33

µ0

− 1

)

Ξ3

where Ῡ ≡ ϕ̄, Ξ3 ≡ H3 for this case. Figure 29 shows

the component M3, and as in the previous case, M3 is

non-linear and negative.
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Fig. 29 Magnetic susceptibility Case II. Vertical magnetiza-
tion along x2 at x3 = l3/2 (Fig. 26). Line: analytical, circles:
finite element results

6.3 Case III

The magnetoelectric interaction (direct or converse) re-

lates magnetic and electric fields through the magne-

toelectric coefficients ν. In the present validation, the

direct interaction is considered, prescribing a magnetic

field (cause) and calculating the electric displacement
(effect). Again from (55) the reduced constitutive re-

lation is D = ν · H, therefore D3 = ν33 Ξ3. In this

equality it is implicit that Ῡ ≡ ϕ̄, Ξ3 ≡ H3. The com-

ponent D3 is again non-linear and negative since D

has the same sign as H before and this magnetic field

is negative.

For this validation, two dof’s–voltage and magnetic

scalar potential–are considered. The Fig. 30 shows the

numerical distributions of scalar magnetic potential (top)

and coupled induced voltage (bottom) for the magne-
toelectric interaction.

As expected, the magnetic potential has the same
distribution as that of Fig. 27. The maximum gradient

(maximum magnetic field) clearly concentrates at the

upper corners, and due to the coupling, a strong volt-

age gradient (Fig. 30 bottom). This voltage distribution

is very similar to the one generated by two point elec-
tric charges applied at two internal points close to the

corners.

6.4 Case IV

In this case, the pyroelectric interaction relates the ther-

mal and electric fields through the pyroelectric coeffi-

cients πV ; again, two interactions (direct and converse)
are possible. Assuming that the initial temperature is

T0 = 0, the constitutive equation for the electric dis-

placement from (55) reduces to D = πV T e.
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Fig. 30 Finite element magnetoelectricity Case III distribu-
tions. Top: magnetic scalar potential (cause); bottom: voltage
generated by the magnetoelectric interaction (effect)
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Fig. 31 Pyroelectricity Case IV. Vertical electric displace-
ment along x2 at x3 = l3/2 (Fig. 26). Line: analytical, circles:
finite element results

For this validation, two dof’s (equilibrium tempera-

ture and voltage) are required and the analytical solu-

tion is
{

D2

D3

}

=

{

πV

2

πV

3

}

Υ (x2, x3)

where Ῡ ≡ T̄ n in (87) for coordinates x2, x3 correspond-

ing to the top face.

Figure 31 shows the electric induction D3 (identical
to D2 since πV

2 = πV

3 ), distribution similar to that of

Fig. 27 for T n along a horizontal line, but scaled by the

pyroelectric coefficient πV

3 and with sign changed. The

positive sign is due to the that of T e and the related
coefficients π.

6.5 Case V

The pyromagnetic interaction relates thermal and mag-

netic fields through pyromagnetic coefficients, with the
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Fig. 32 Pyromagnetism Case V. Vertical magnetic induction
along x2 at x3 = l3/2 (Fig. 26). Line: analytical, circles: finite
element results

two possible interactions: direct and converse. The con-

stitutive equation for the magnetic induction last of

(55) reduces to B = πϕ T e again with T0 = 0.
For this validation, two dof (temperature and mag-

netic scalar potential) are required and the analytical

solution is
{

B2

B3

}

=

{

πϕ
2

πϕ
3

}

Υ (x2, x3)

where Ῡ ≡ T̄ n in the top face as before. Figure 32

shows the component B3, with the same distribution as
in Fig. 31 but exchanging πV

3 by πϕ
3 and consequently

D3 by B3.

6.6 Case VI

The piezoelectric interaction relates electric and elas-

tic fields; depending on the field considered cause, the

piezoelectric interactions can be direct or converse. This

case validates the direct piezoelectric interaction for
which the electric field is the cause and mechanical

stress the effect. Four dof’s are required in this valida-

tion: three mechanic displacements and voltage. There-

fore, the stress constitutive, first of (55), reduces to
T C = −eV ·E. The Cauchy stress field is then given by
{

T C

11

T C

33

}

= −

{

eV

13

eV

33

}

Ξ3

where Ῡ ≡ V̄ , Ξ3 ≡ E3. The applied electric field gen-
erates non-linear stress distributions along directions

out-of-plane x1 and vertical x3, Fig. 33 shows T C

11 (solid

line) and T C

33 (dashed line). The different signs and mag-

nitudes of the two stresses are due to those of eV

13 and
eV

33, see Appendix D. These distributions are the com-

mon ones for piezoelectric materials polarized in the x3

direction.
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Fig. 33 Piezoelectricity Case VI. Out-of-plane Cauchy stress
(solid) and vertical stress (dashed line) along x2 at x3 = l3/2
(Fig. 26). Line: analytical, circles: finite element results

6.7 Case VII

Electrostriction is a non-linear, electro-mechanical in-

teraction modeled by the superposition of two terms

T = T C + TM

s : a linear one given by the constitutive
(without residual stresses) (55) and a non-linear rep-

resented by the symmetric part of the Maxwell stress

tensor (44), giving

T = C : S − eV ·E

+
1

2

[

D ⊗E +E ⊗D − ǫ0(E ·E)I
]

D = eV : S + ǫ ·E

(89)

The simulation of this interaction requires four dof’s:

three displacements and voltage. The objective is to in-
vestigate the contribution of the Maxwell stress tensor

to the total one. Therefore, from both (89), neglecting

the piezoelectric interaction and the Cauchy stress

TM

s33 =
(

ǫ33 −
ǫ0
2

)

(Ξ3)
2 (90)

where Ῡ ≡ V̄ , and Ξ3 ≡ E3. Figure 34 shows the com-

ponent TM

s33. This validation is completely non-linear

due to the quadratic term of the Maxwell tensor in (90).

Three iterations of the Newton-Raphson algorithm are
necessary to converge to the solution. From a physics

point of view, these iterations are corrections of the

Cauchy tensor shown in Fig. 33.

Although in this case the correction is five orders of
magnitude smaller than the main stress, the Maxwell

component depends quadratically on the applied elec-

tric field E3 and on the permittivity ǫ33. In some ap-

plications, TM

s33 can be of the same order or even larger
than the Cauchy stress. Note in Fig. 34 that the slope

of the curve tends to zero at the lateral sides, a typical

characteristic of the estrictive behavior.
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Fig. 34 Electrostriction Case VII. Vertical Maxwell stress
along x2 at x3 = l3/2 (Fig. 26). Line: analytical, circles:
finite element results

6.8 Case VIII

The piezomagnetic interaction relates magnetic and elas-

tic fields, under direct or converse interactions. This

validation is similar to Case VI replacing electric by

magnetic field, or alternatively electric voltage by mag-

netic potential. The solution for the direct interaction
is therefore given by

{

T C

11

T C

33

}

= −

{

eϕ13

eϕ33

}

Ξ3

where Ῡ ≡ ϕ̄, and Ξ3 ≡ H3. Figure 35 shows the non-

linear, out-of-plane Cauchy stress T C

11 (solid line) and

vertical T C

33 (dashed line). Due to the equal sign and
similar magnitude of the piezomagnetic constants, both

stress components are similar. As in Fig. 33, the values

at the vertical sides are small but not zero, due to the

small gradient of H3 at these sides. It can be appreci-

ated that the magnitude of the stresses are not negligi-
ble, considering the low magnetic potential prescribed

and that active materials often are brittle and/or of low

strength.

6.9 Case IX

Magnetostriction is a non-linear, magneto-mechanical

interaction that as described in Case VII superposes
T = T C +TM

s , and is studied reducing the constitutive

equation to

T = C : S − eV ·H

+
1

2

[

B ⊗H +H ⊗B − µ0(H ·H)I
]

B = eϕ : S + µ ·H

(91)
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Fig. 35 Piezomagnetism Case VIII. Out-of-plane Cauchy
stress (solid) and vertical stress (dashed line) along x2 at
x3 = l3/2 (Fig. 26). Line: analytical, circles: finite element
results

From a numerical point of view, the simulation of this

interaction requires four dof’s: three displacements and

magnetic scalar potential.

From both (91), neglecting the piezomagnetic inter-

action and the Cauchy stress, the contribution of the
Maxwell stress tensor to the total stress is given by

TM

s33 =
(

µ33 −
µ0

2

)

(Ξ3)
2

where Ῡ ≡ ϕ̄, and Ξ3 ≡ H3. Figure 36 shows the stress

component. Again, this interaction is non-linear and the
Newton-Raphson algorithm is used for resolution. The

Maxwell stress correction is more significant than in the

electrostrictive Case VI, although still three orders of

magnitude smaller than the Cauchy main contribution.
This fact can be the reason for which the magnetostric-

tive interaction is almost always considered in the study

of practical devices. Other interesting result from this

validation is that the non-linear stress is always nega-

tive, independently of the sign of the applied magnetic
field.

7 Numerical examples for non-equilibrium

interactions

In this section, a set of cases to validate most of the

NEI formulation described in Sect. 1 is presented. For
this purpose, a sample of indium antimonide (InSb), a

metal-metalloid alloy showing a thermoelectric behav-

ior, is considered. The InSb thermoelectric properties

depend on temperature and are taken from [105] but to
facilitate the obtention of validating direct solutions,

constant values at an approximated average tempera-

ture (T̄ n
h + T̄ n

c )/2 are used, see Table 12.
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Fig. 36 Magnetostriction Case IX. Vertical Maxwell stress
along x2 at x3 = l3/2 (Fig. 26). Line: analytical, circles: finite
element results

The data from the reference are fit to a quadratic

polynomial incorporated into the FEM formulation as

α = −3.2× 10−4 + 10−6 T n − 1.27× 10−22 T n2

ρ = 8.27× 10−5 − 1.59× 10−6 T n + 1.20× 10−8 T n2

κ = 13.4− 8.07× 10−2 T n + 3.10× 10−4 T n2

(92)

In the previous polynomials the temperature must be

introduced in Celsius degrees and the valid interpola-
tion range is from -20 to 80◦C. The temperature de-

pendency of the Seebeck coefficient is called Thomson

effect.

The Hall, Righi-Leduc and Nernst coefficients are

also dependent on temperature, viz. [105]. Again for

simplicity the non-linearity of these magnetic properties
in the FEM formulation is not considered,

In Table 11 the cases and corresponding boundary
conditions are listed. Symbols with an overbar represent

the prescribed quantities that define the case and the

subindices refer to the hot and cold faces and to Carte-

sian directions. A p-type semiconductor is considered

with the corresponding positiveness of the Seebeck and
Nernst coefficients.

The geometrical dimensions of the InSb sample are
depicted in Fig. 37: l1 = l3 = 1.14 × 10−3 [m], l2 =

3l1, the last two as in Sect. 6. These dimensions are

typical of commercial devices [93], except for l2 being

multiplied by a factor of 3 to partially avoid boundary
phenomena produced by the magnetic fields.

In total, there are seven cases related to NEI. The
properties of InSb show in Table 12 are taken from

[105], [63]. To isolate each effect, only the relevant cou-

pling properties are set different to zero.

x1

x2

x3

l3

l1

l2

B̄1

T̄h V̄h

T̄c V̄c

b

Fig. 37 Dimensions and reference axes of an InSb sample
clamped at the bottom and used for numerical cases of non-
equilibrium interactions. Symbols with overbar represent pre-
scribed variables

Property Value Property Value

λ 35.34×109 α -2.825×10−4

µ 15.14×109 γ 2.45×104

ν 0.35 κ 10.81

c 200 N -6.4013×10−5

ρm 5775 R -2.4648×10−4

α
T

5.37×10−6 M 5×10−2

Table 12 Mechanical properties of n-indium antimonide
taken from [63], [105], units in Appendix C. Coefficients α, κ,
γ calculated from (92) with average 37.5 ◦C

7.1 Cases I and II

Case I is a first-order Fourier effect, a non-equilibrium

interaction that relates temperature gradient (cause)

and heat flux (effect) through the thermal conductivity

κ first-order property, see Fig. 8 and Table 3. Math-

ematically, the classical heat conduction model is ob-
tained considering α = 0 in the last (63), remaining

only the NEI temperature dof. Figure 38 left shows this

distribution, linear due to the absence of heat sources.

The corresponding constant heat flux can be calcu-
lated analytically with q3 = −κ ∆T n/l3 = −2.37× 105

[J/s·m2], value very similar to the constant one ob-

tained with the FEM everywhere in the sample (not

shown). The negative sign indicates that the flux trav-

els in conductive form from the hot to the cold side.

The transverse Righi-Leduc of Case II is due to the

presence of a magnetic field B̄1 perpendicular to the
heat flux, as in Fig. 10. In this situation, the heat con-

ductivity becomes a tensor entity as in (62) bottom.

Two dof (temperature and magnetic potentials) are present.

The magnetic field slightly alters the linear distribution
produced by Fourier conduction. This alteration is only

visible for very high values ofB. As in other effects with

presence of B̄1, the alteration is antisymmetric due to
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Case Symbol Interaction T̄n
h T̄n

c V̄h V̄c B̄1

I
2

Fourier 50 25 - - -

II
2

+ B Righi-Leduc 50 25 - - 5

III
1

Ohm - - 0 0.1 -

IV
1

+ B Hall - - 0 0.1 5

V
4

Peltier-Seebeck 20 20 0 0.1 -

VI
4

+ B Ettinghausen-Nernst 20 20 0 0.1 5

VII – Lorentz forces 20 20 0 0.1 5

Table 11 Examples (cases) to validate the finite element formulation for non-linear interactions. Prescribed values in Fig. 37
are particularized for each case
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Fig. 38 Fourier (case I) and Righi-Leduc (case II, alterations
not visible) temperature distributions, both due to thermal
conduction and the second to an additional x1 magnetic field

the cross product inherent to the magnetic field and
more evident at the lateral sides x2 constant.

Figure 39 shows the heat fluxes along x3 (direct,

top) and x2 (coupled, bottom). In the first, the Righi-

Leduc is slightly relevant near the corners and in the rest

of the domain the Fourier dominates with the value of
q3 given in the previous paragraph. In an infinite do-

main this alteration would be not noticeable. In the sec-

ond, the induced heat flux along x2 is maximum near

the lateral faces. Not considering edge effects, its value
is similar to the approximated q2 = −M B̄1 ∆T n/l3 =

−5.48 × 103 [J/s·m2]. The maximum Righi-Leduc flux

is about forty times smaller than that of Fourier. How-

ever, it can increase when the magnetic field is higher,

and detrimental temperature concentrations will ap-
pear due to the finiteness of the geometry.

As in the rest of cases where B̄1 is present, the

magnetic field has been prescribed with an equivalent
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Fig. 39 Dominant Fourier vertical and Righi-Leduc longitu-
dinal heat flux for Case II, both due to thermal conduction
and the second to an additional x1 magnetic field

potential ϕ̄ = −l3B̄1/µ0 = −4536 [A] applied on the

frontal x1-constant face with the parallel one prescribed

to zero. To directly prescribe B̄1 (for instance with an
interface element, viz. [112]) would produce the same

fluxes at the center but somewhat different at the cor-

ners, due to the curvature of the magnetic field.
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Fig. 40 Ohm (case III) vertical heat flux and Hall (case IV)
longitudinal voltage distributions, both due to electric con-
duction and the second to an additional x1 magnetic field

7.2 Cases III and IV

The Ohm and Hall effects are qualitatively (but not

quantitatively) equivalent to those of Cases I and II if
temperature and heat flux are substituted by voltage

and electric flux.

Ohm’s law relates voltage gradient and electric flux

through the electric conductivity, as shown in Fig. 8 and

Table 3. From the third (63) and again not considering

thermoelectric coupling, α = 0, the law is obtained.

The analytical flux is j3 = −γ ∆V/l3 = 2.15 × 106

[A/s·m2], very similar to the constant one obtained with

FEM everywhere in the sample (not shown). The Hall

effect is a transverse interaction due to the presence

of a magnetic field perpendicular to the electric flux,
see Sect. 1.1.3. In this situation, the electric resistivity

becomes a tensor equivalent to the second (62). The

boundary conditions given Table 11 are used. Voltage

distributions for these cases are shown in Fig. 40 with

linear (left) or quasi-linear (right) distributions. Note
that the effect of the Hall effect is to disturb the isolines

close to the x2-constant faces.

In the Hall effect Case IV, the variability of V gen-

erates vertical and horizontal electric fluxes

j3 = −
ρ2

|ρ|

∆V

l3
; j2 =

R B̄1

ρ
j3

with j3 = 2.36× 103 [A/m2], positive since the voltage

difference from 0 to 0.1 [V] is against the positive axis;

 j  2

 j  3 
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Fig. 41 Dominant Hall longitudinal (top) and Ohm verti-
cal (bottom) electric fluxes for Case IV. Both due to electric
conduction and the second to an additional x1 magnetic field

this flux is almost two orders of magnitude smaller than

that of Ohm’s. The symbol |ρ| is the determinant of the
tensorial resistivity of Eq. (62) center. If in the equa-

tions the coupling R or the flux B̄1 are zero, Ohm’s law

is recovered, therefore as an approximation the value of

the scalar electric resistivity is directly taken as ρ = 1/γ

from Table 11. The Hall voltage distortion produces a
significant transverse Hall electric flux j2 = −7.1× 104

[A/m2], larger than the –a priori– main vertical flux.

The numerical distributions of these fluxes are shown

in Fig. 41. Although good approximations between an-
alytical and numerical fluxes in the center of the sample

are observed (j3 = 2.4×103, j2 = −7.1×104 at the cen-

tral node), strong concentrations of one order of mag-

nitude appear at the edges. Again these concentrations
are in diagonally opposite edges due to the rotational

nature of the magnetic field.

7.3 Cases V and VI

As mentioned in Sect. 1, the Peltier, Seebeck and Thom-

son effects describe NEI between thermal and electric

fields. Mathematically, the Seebeck effect is represented

by the coupling term on the third equation (63); the
Peltier by the coupling term in the last equation. Thom-

son will not appear in this case due to the use of con-

stant properties.
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Fig. 42 Peltier-Seebeck Case V quadratic temperature distribution (left) and corresponding linear heat flux (right)
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Fig. 43 Ettingshausen-Nernst Case VI temperature distortion from Peltier-Seebeck distribution (left) and magnetically
induced transversal heat flux (right) from Ettingshausen

Whereas the Seebeck effect can be uncoupled by spe-
cific boundary conditions, Peltier’s cannot due to an

additional Joule effect, last term in the last (56), cre-

ated by the induced electric currents. As discussed in

Sect. 1.1 the Joule effect is an irreversible interaction
between fluxes: not described by material constants but

implicitly present in the energy balance equation. Due

to the impossibility of decoupling Peltier effect, Cases

V and VI combine two effects to study Peltier-Seebeck

and their Ettingshausen-Nernst transversal effects, re-
spectively.

For Case V, hot and cold face temperatures are pre-

scribed equal to eliminate direct conduction vertical
thermal flux, see Table 11; an electric flux is directly

created by the vertical variation of V . The distribu-

tions of temperature and voltage are quadratic, the first

symmetric and the second almost due to a small voltage
increase. It is not trivial to analytically calculate the di-

rect or induced fluxes with the transport equations (63)

since a Joule effect is also present in the balance (56)

and ∇T n is locally non zero. Extensive thermoelectric

verifications were done in [115], [112] and will not be
repeated here.

The relevant results of this case are shown in Figs. 42.
In the left, the non-linear temperature distribution is

due to Joule with an increment of 2.27◦C concentrated

in the middle. Had the complete temperature depen-

dency of (92) being considered, the nonlinearities would
have been more pronounced. in the right figure, the lin-

ear vertical flux is shown. The positive values are due

to the plus sign of α, implying that heat is taken from

the cold side (bottom) towards the hot side (top) in a
refrigeration process, overcoming Joule in the middle.

Ettingshausen-Nernst is a secondary effect again cre-

ated by a transverse magnetic field B̄1. In this situa-
tion, the quadratic temperature distribution of Case V

is significantly distorted and increased. The distortion is

asymmetric in the two lateral sides, see Fig. 43 left, ex-

traordinarily increasing Joule’s effect in the left and de-

creasing the initial temperature in the right. The volt-
age distribution is nearly undisturbed and remains ba-

sically linear; the same can be said for the vertical heat

flux, with a variation of 2% in its maximum and mini-

mum (both not shown). The temperature increment is
important since also increments stresses and specially

concentrates them, viz. the ongoing works [117], [118]

for detailed studies on mechanical couplings. A sym-

metric induced horizontal heat flux, Fig. 43 right, ap-

pears; is one third the vertical flux, and the fact that
these fluxes are perpendicular to each other can signif-

icantly increase or decrease the performance of a ther-

moelectric device, viz. [145].

A symmetric and significant induced horizontal elec-

tric flux j2 is created by this effect, see Fig. 44. It
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Fig. 44 Nernst magnetically induced horizontal electric flux
for Case VI

changes sign from the hot to the cold face and again

the rotational nature of the magnetic field increases the

effect in one lateral side.

7.4 Case VII

From a mechanical point of view, the Lorentz forces

defined in (38) are body forces due the circulation of

an electric current in the presence of a magnetic field

perpendicular to it. As mentioned for Joule, this is an

interaction present in the balance equation (56) and not
in the material properties. In this equation these forces

are represented by the last term in the first equation.

They are analogous to the Maxwell stress tensor but

present in conductive media. Also and as discussed pre-
viously, the Lorentz effect causes the galvanomagnetic

and thermomagnetic interactions due to the distortion

of the electromagnetic flux.

Figure 45 shows the horizontal T C

2 Cauchy stress

caused by an electric flow prescribed in the x3 direc-

tion through potential gradient and by a magnetic field
in the x1 direction (see Table 11) with the plane x3 = 0

clamped. The deformation is increased six orders of

magnitude, to visualize the distortion. As can be appre-

ciated, the stress is small but can increase if the mag-

netic field is higher and the dimensions much smaller.
In these situations, it would be important to consider

Lorentz forces in the design of micro-devices.

The deformation is similar to that of a short can-

tilever block under a volumetric horizontal force against

x2, that is, a combination of shear (prevalent) and bend-

ing. The stresses are negative (compression) close to the
edge x2 = 0 and positive (traction) close to x2 = l2 ac-

cording to the sign of the force. As predicted by the the-

ory of elasticity, the stress maximum is located where

the slope of the deformation changes sign. At the built-
in face these stresses are equal at the edges (maximum

restraint) but of opposite signs for mechanical equilib-

rium in the x2 direction.
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Fig. 45 Horizontal Cauchy stress caused by Lorentz forces
Case VII from vertical electric and transversal magnetic
fields. Deformed shape amplified six orders of magnitude

8 Closure

In this article a formulation of multicoupled nonlin-

ear finite elements has been presented. Four fields have

been coupled: mechanical, electrical, magnetic and ther-
mal, the last one both from equilibrium and non-equili-

brium thermodynamics. Therefore, a multiphysics the-

ory has been used, to develop multi-balance equations:

balance of linear and angular mechanical momentum,
balance of linear electromagnetic momentum, balance

of electric charge, balance of energy and entropy.

A revision of the state-of-the-art of numerical stud-

ies (under small displacements and strains) of active

materials is also included. In general, these studies do

not couple more than two fields and are devoted to
rather simple, from the theoretical point of view, prac-

tical applications.

A number of simplifications are introduced in the

formulation, allowing the distinction between equilib-

rium and non-equilibrium interactions. Roughly, the
former is applied for the study of non-conducting ma-

terials and the later for conducting materials.

Equilibrium interactions are conservative: there is

no increment of entropy and the related constitutive

equations can be derived from a potential, the elec-

tromagnetic enthalpy. The temperature, that by def-
inition introduces irreversibilities, is introduced by a

two-temperature model that assumes small increments.

Non-equilibrium interactions are non-conservatives, and

the related constitutive equations (also called transport

equations) are deduced from the entropy production
term of the system.

In both types of interactions non-linearities are present.

In equilibrium, due to the Maxwell tensor and in non-

equilibrium due to the Joule effect and the temperature

dependency of the material properties. These interac-
tions have been implemented with two special finite el-

ements into the research code FEAP. Standard fully in-

tegrated eight-node, seven degrees-of-freedom, isopara-
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metric elements, Newton-Raphson and Newmark-β al-

gorithms have been employed.

After formulating the tangent matrices, residual vec-

tors and their related partial derivatives, a number of
simple validations are presented. The objective of the

article is not the study of real devices, but these cases

permit the validation and assure the correct running of

the elements.

The formulations and finite elements described are

currently applied in ongoing works by the authors to

more complicated applications, including pulse dynam-
ics, further couplings and optimizations.

A Appendix

The EI derivatives in (72) to (74) have to be explicitly calcu-
lated and are listed in the first part of this appendix.

First, the derivatives of the Cauchy stress tensor from
(72) are

∂T C

∂aU

b

= C Bs
b ;

∂T C

∂aV

b

= eV⊤ Bb ;

∂T C

∂aϕ

b

= eϕ⊤ Bb ;
∂T C

∂aTe

b

= −β Nb

The first equation is a 6×3 matrix; the second to fourth are
directly 6×1 vectors.

The derivatives of the symmetric part of the Maxwell
stress tensor from the same stiffnesses are
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The first equation cannot directly follow the matrix multipli-
cation convection, as ∂TM

s /∂aU

b in (72) must be interpreted

as a 6×3 matrix composed of three 6×1 vectors.

∂TM
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[
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]

Therefore, in the right hand side the derivatives of D, B are
also with respect to each mechanical dof with a resultant di-
mension of 3×3, giving one of the components of the previous
expression to be converted into the 6×1 Voigt notation. For
instance, for the second mechanical dof, the result is
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The rest of the Maxwell tensor derivatives are directly 3×3
matrices.

Again for (72), using the third of (71) the derivatives of
the ponderomotive forces are
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where Ḃ×, Ṁ× can directly be calculated from (29). Similar
to the first equation of this Appendix, the first derivative of
fPM is implemented as three 3×1 column-vectors. The other
three derivatives are directly 3×1 vectors. The subindex ×
implies the allocation of a 3×1 vector into a 3×3 antisym-
metric matrix, see Sect. 5 and (66).

The derivatives ofD in theMaxwell stress expressions and
in (73) are from its definitions 3×1 vectors. Due to the form
of the first two equations (71), these derivatives are equal to
those of P present in fPM (third of (71)), except for the one
with respect to aV

b . The same must be done for the derivatives

of Ḋ with respect to the time derivatives of the dof.
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and those of D⊤ or D× (as B⊤,B× in the next equations)
are directly the transpose or the cross form of the results.
Some of these expressions will be used for the derivatives of
the capacity matrices. The remaining derivatives are
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Both expressions are equal if ǫ is not a function of the field
E.
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The derivatives ofB and its time derivative for the stresses,
ponderomotive forces and (74) are
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∂Ḃ

∂ȧTe
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Since it is useful in a hysteresis simulation of ferroelectric
materials, it has been assumed that the properties ǫ, µ may
vary with the corresponding field although not with time. In
order to preserve the physical sense of laboratory tests, and
since the matrices of ǫ, µ are diagonal (see Appendix D), the
derivatives are performed term by term and may be stored in
a 3×1 vector; for instance the material permittivity derivative
results in
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The remaining derivatives are
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The top two expressions are equal if µ is not a function of
the field H.

The partial derivatives from capacities (76) represent heat
dissipation due to electromagnetic dynamics; at the micro-
scopic level, they can be related to friction among dipoles.
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∂ȧϕ

b

B + P×

∂Ḃ

∂ȧϕ

b

+ ǫ0µ0

∂Ṁ×
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Finally, the derivatives of the two-way couplings from (77)
using (50) are
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B Appendix

Related to NEI, the derivatives of the tangent stiffness ten-
sors are obtained using the chain rule. For (81), the Cauchy
tensor derivatives are equal to the first and fourth from EI in

Appendix A. The derivatives of the Maxwell vacuum tensor
are from (63)
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Again Voigt notation may be applied to these derivatives
to obtain a 6×1 vector. The non-zero derivatives of the elec-
tric flux are
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Following the same procedure, the non-zero derivatives of
the thermal flux are
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For both fluxes and from (60) the derivatives of the Peltier
and conductivities’ matrices are, for the symmetric parts
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×

b

∂α

∂aTn

b

=
dαs

daTn

b

= Nb

dα

dTn
I

∂γ

∂aϕ

b

=
∂γ

∂ρ

dρsk

daϕ

b

= µ0 R γ B
×

b γ

∂γ

∂aTn

b

=
∂γ

∂ρ

dρs

daTn

b

= −Nb

dρ

dTn
γ I γ

∂κ

∂aϕ

b

=
dκsk

daϕ

b

= µ0 M B
×

b

∂κ

∂aTn

b

=
dκs

daTn

b

= Nb

dκ

dTn
I

In the previous expressions the equalities

∂γ

∂ρ
O =

∂ρ−1

∂ρ
O = −ρ−1 O ρ−1 = −γ O γ

dαs

daTn

b

=
dα

dTn

dTn

daTn

b

=
dα

dTn
Nb

have been used, where O is any second-order tensor, sym-
metric or not. Similar expressions to the second equation can
be deduced for ρ, κ. The total derivatives dα/dTn, dρ/dTn,
dκ/dTn are directly calculated from their expressions in (92).
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The derivatives of B with respect to a
U

b , aTn

b are zero
since neither piezomagnetic nor pyromagnetic interactions are
considered; in addition, due to the use of magnetic scalar
potential ∂B/∂aV

b ≈ 0. The only non-zero term is

∂B

∂aϕ

b

=
∂Ḃ

∂ȧϕ

b

= −µ0 Bb

C Appendix

Description of symbols used for EI and NEI are given in the
tables. The base units for the SI system have been used, with
the addition of Newton [N], Joule [J], and Volt [V], of special
relevance in mechanical and electrical engineering.

If a symbol represents several magnitudes (as for instance
S), central dots [· · · ] are used for the units if there is not
enough space to list all of them. Only diagonal submatrices
are included, the off-diagonal ones from Appendixes A, B
represent interactions between these fields.

D Appendix

Material properties of a representative material (units in Ap-
pendix C) to be applied to the EI cases are listed in this
Appendix. They have been obtained from several references,
mostly for BaTiO3-CoFeO4 but also for other similar mate-
rials; to the best of our knowledge, no complete characteriza-
tion of any material has been published probably due to the
experimental difficulty and also to the absence of a general
formulation. Mass density, heat capacity, thermal expansion
and thermal conductivity are obtained from [58]. The pyro-
electric properties are from [56], the pyromagnetic from [17]
and the rest from [119].

As mentioned in Sect. 4.2.2 for α
T
, the material properties

reflect the transverse isotropy of Fig. 18. The exception in the
listed data is in πV , πϕ, for which properties are assumed
isotropic due to the lack of data.

C =















116 77 78 0 0 0
116 78 0 0 0

162 0 0 0
−sym− 89 0 0

86 0
86















× 109

eV =





0 0 0 0 0 11.6
0 0 0 11.6 0

−4.4 −4.4 18.6 0 0 0





eϕ =





0 0 0 0 0 5.5
0 0 0 0 5.5 0
5.8 5.8 7 0 0 0



 × 102

ǫ =





11.2 0 0
0 11.2 0
0 0 12.6



 × 10−9

µ =





5 0 0
0 5 0
0 0 10



 × 10−6

ν =





5.37 0 0
0 5.37 0
0 0 2737.5



 × 10−12

πV =
{

58.3, 58.3, 58.3
}

⊤

× 10−5

Sub, supraindex Description

(·)1,2,3 Cartesian directions/FEM const.
(·)∞ Surrounding
(·)

T
Thermal

(·)e Equilibrium
(·)k,l, (·)k,l Free index, iteration
(·)n Non-equilibrium
(·)⊤ Transpose
(·)∗ Critical size
˙(·) First time derivative
(·)tt Total
(·)

F
Driving force related

(·)f Free charge related
|| · || Norm
(·)s, (·)s Symmetric part
(·)sk, (·)sk Skew-symmetric part
(·)p Natural boundary condition
(·)u Essential boundary condition
(̄·) Prescribed variable

(̈·) Second time derivative
(·)

U
, (·)U Mechanical

(·)b Bound charge related
(·)

V
, (·)V Electrical

(·)ϕ, (·)ϕ Magnetic
(·)−1 Inverse
(·)

P
Poynting theorem related

(·)Mi Minkowski formalism related
(·)Ab Abraham formalism related
(·)M Maxwell tensor related
(·)EM Lorentz electro-magnetic
(·)PM Ponderomotive
(·)C Cauchy tensor related
(·)R Residual
(·)v Vacuum
(·)×, (·)× Cross product transformed
(·)h FEM approximation
(·)x Nodal coordinates
(·)a,b Local node number
I, J Dof index
(·)

N
Newmark integration related

| · | Determinant

Abbreviations Description

FEAP FE Analysis Program
EI Equilibrium interaction
NEI Non-equilibrium interaction
FEM Finite element method
SS Second Sound
dof Degree of freedom
ET Equilibrium thermodynamics
NET Non-equilibrium thermodynamics
ENET Extended NET
MEMS Micro-electro-mechanical sensor
NEMS Nano-electro-mechanical sensor
PDE Partial differential equation
FE Finite element
nel # nodes per element
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Smbl SI Description Dim.

B [V·s/m2] Magnetic induction 3×1
x [m] Eulerian coordinate 3×1
∇ [1/m] Gradient operator 3×1
V [V] Elect. scalar pot./voltage
j [A/m2] Electric flux 3×1
T [K] Temperature
Ω [m3] Thermodynamic domain
Γ [m2] Boundary of domain
S [· · · ] State variable
I [· · · ] Intensive variable
E [· · · ] Extensive variable
d Exact differential
E [J] Internal energy
Q [J] System heat
δ Variation
W [J] System mechanical work
S [J/K] ET entropy 6×1
T [N/m2] Mechanical stress 6×1
S [m/m] Mechanical strain 6×1
E [V/m] Electric field 3×1
P [A·s/m2] Polarization 3×1
µ0 [V·s/A·m] Vacuum permeability
H [A/m] Magnetic field 3×1
M [A/m] Magnetization 3×1
X [m] Lagrangian coordinate 3×1
U [m] Lagrangian displacement 3×1
u [m] Eulerian displacement 3×1
∂ Partial differential

P [· · · ] Eulerian continuum prprt.
t [s] Time
v [m/s] Eulerian velocity 3×1
ρ [· · · ] Density (w/ subindex)
∆ Increment
m [Kg] Mass
q [A] Electric charge
Kn Knudsen number
De Deborah number
P [· · · ] Thermodynamic variable
e [J/m3] NET energy density
s [J/K·m3] NET entropy density
n Outward boundary normal 3×1
σ [J/s·K] Entropy production
F [· · · ] Driving forces 3×1
q [J/s·m2] Thermal flux 3×1
Lkl [· · · ] 1st-order material property
W Small rotation strain
f [N/m3] Volume force 3×1
t [N/m2] Boundary pressure 3×1
ǫ0 [A·s/V·m] Vacuum permittivity
χ [· · · ] Material susceptibility 3×3
D [A·s/m2] Electric displc./induction 3×1

πϕ =
{

5, 5, 5
}

⊤

× 10−2

β =
{

1.67, 1.67, 1.96, 0, 0, 0
}

⊤

× 106

κ = 2.61 ; T0 = 293

c = 434 ; d = 5.5 × 10−21

ǫ0 = 8.8542 × 10−12 ; µ0 = 4π × 10−7

ρm = 5.7× 103

Smbl SI Description Dim.

ǫ [A·s/V·m] Material permittivity 3×3
µ [V·s/A·m] Material permeability 3×3
I Identity matrix 3×3
A [V·s/m] Magnetic vector 3×1
ϕ [A] Magnetic scalar potential
V [A·s/m] Electric vector 3×1
c
P

[· · · ] Poynting constant
ṙ [V·A/m3] Scalar Poynting residual
G [N·s/m3] Momentum density
T0 [K] Reference temperature
c [J/kg·K] Heat capacity
T0 [N/s·m2] Two-way thermoelast. terms
β [N/K·m2] Thermal expansion tensor 6×1
π [· · · ] Pyro-V , -ϕ couplings 3×1
d [m2] Two-temp. constraint
∇2 [1/m2] Laplace operator 3×1
Q [J/s·m2] Two-temperature heat flux 3×1
C [N/m2] Elasticity tensor 6×6
α

T
[1/K] Thermal expansion coeff.

Π [J] Electromagnetic enthalpy
e [· · · ] Piezo-V , -ϕ couplings 3×6
ν [s/m] Magnetoelectric coupling 3×3
κ [J·s/m·K] Thermal conductivity
λ [N/m2] First Lamé parameter
µ [N/m2] Shear modulus
δij Kronecker delta
L [· · · ] NEI material properties
α [V/K] Seebeck tensor 3×3
α [V/K] Seebeck coefficient
ρ [m·V/A] Electric resistivity tensor 3×3
ρ [m·V/A] Electric resistivity
κ [J·s/m·K] Thermal conductivity tensor 3×3
γ [J·s/m·K] Electric conductivity tensor 3×3
N [m2/K·s] Nernst coefficient
R [m3/A·s] Hall coefficient
M [m2/V·s] Righi-Leduc coefficient
N Local shape function
ξ [m] Local FE coordinates 3×1
a [m] Nodal elastic dof 3×1
a [· · · ] Other nodal dof
Bs [1/m] Local FE mech. gradient 6×3
B [1/m] Local FE potential gradient 3×1
R,R [· · · ] Residual
K,K [· · · ] Tangent stiffness
C, C [· · · ] Tangent capacity
M [· · · ] Tangent mass 3×3
β, γ [· · · ] Newmark-β parameters
li [m] Dimension in xi direction
Υ [K,V,A] Any of 3 scalar potentials
Ξ [· · · ] Associated field for Υ 3×1
ν Poisson ratio
O [· · · ] Any second-order tensor 3×3
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