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Abstract 

Low cost ceramic membranes are usually prepared from a mixture of natural raw 

materials and some organic porogen agent, as starch. The fact that the porogen must be 

completely eliminated during firing, leaving an interconnected porous structure, impose 

large firing times, increasing the final price. A study about the synthesis of porous 

chamottes as an alternative to organic pore formers was conducted to reduce firing 

costs. Chamottes were obtained from mixtures of a clay and starch. Different starches 

were used and the influence of the composition and processing variables were studied. 

The viability of the porous chamottes was demonstrated. 

  

                                                      
Supported by the Spanish Ministerio de Economía y Competitividad (Plan Nacional de I+D, ref. 

CTQ2012-37450-C02-02). 
*
 magda.lorente@itc.uji.es 

Page 1 of 33

International Journal of Applied Ceramic Technology

International Journal of Applied Ceramic Technology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 2 

1. Introduction 

Ceramic membranes are porous materials with controlled porosity and pore size 

distribution that present several advantages when compared with polymeric membranes, 

such as thermal, mechanical and chemical resistance
1, 2

. Early work on ceramic 

membranes were based on raw materials such as alumina, zirconia, titania and silica but 

the cost of some of these parts was a considerable proportion of the operating cost of 

processes with ceramic membranes 
3
. In consequence, efforts were made to prepare 

membranes or supports for membrane layers with low cost or local raw materials. In 

order to create porosity, gas forming additives or materials that are eliminated during 

firing are introduced into the raw materials mixture 
4, 5

. Among those pore formers there 

are two widely used, that is, carbonates and starch. 

Monash et al.
2
 fabricated a macroporous ceramic support, which presented high 

permeability and strength, using locally available low-cost raw materials (kaolin, 

ballclay, feldspar, pyrophyllite and quartz) and calcium carbonate with polyvinyl 

alcohol as a binder. Emani et al. 
1
 prepared ceramic membranes for juice filtration with 

mixtures of kaolin, quartz and calcium carbonate by uniaxial pressing, following 

previous research from Nandi 
3
 and Vasanth 

6
. Resistant porous membrane supports 

with porosities ranging between 45 % and 52 % were prepared from an Algerian kaolin 

and calcite 
7, 8

 that could be used for different microfiltration and ultrafiltration 

membranes deposition and could replace the more expensive, commercial alumina 

supports. Zhou et al. 
9
 prepared low cost macroporous supports for ceramic membranes 

by reaction sintering from local kaolin and dolomite. The porous supports were 

prepared by extrusion and the final porosity and pore size was determined by the 

amount of dolomite and the sintering temperature. 
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In order to decrease the membrane cost by using regional raw materials Almandoz et al. 

10
 prepared composite ceramic membranes (support and active layer) for application in 

microfiltration processes. The particle size, composition and sintering temperature of 

mixtures of clay, quartz, feldspar, alumina, bentonite, magnesium silicate and calcium 

carbonate were studied. They concluded that porosity depended on sintering 

temperature while pore size was mainly controlled by the particle size of the starting 

raw materials mixture. The use of limestone as pore generating material in mixtures of 

kaolin, feldspars and white clay was evaluated to obtain porous materials for 

environmental applications 
11

. The three compositions tested showed porosity, pore size 

and permeability values that were sufficient to be used in separation processes. 

Starches are widely employed to generate porosity in ceramics as they burn out around 

500ºC 
12–14

, and can help in the consolidation of ceramic bodies obtained by casting 

processes 
15, 16

. Low cost porous support membranes with 38% porosity and acceptable 

water permeability values 
17

 were prepared from a mixture of Tunisian clay, kaolin and 

9 wt% of corn starch. In order to obtain filters to be used in the wastewater treatment for 

Moroccan textile industry, membranes were prepared from clays and phosphates 

coming from Moroccan ores and different contents of starch 
18

. Other pore-formers 
19

 

such as sawdust have been mixed with local raw materials to prepare low cost 

membranes and/or membrane supports 
20, 21

. However, the use of these pore-formers 

that burn-out during the sintering of the ceramic membrane implies long firing cycles to 

prevent breakage and defects, having a negative effect on the processing cost. 

Chamottes have been widely used in the ceramic industry to obtain insulating 
22

 and 

refractory 
23, 24

 materials as they behave as an inert raw material during the firing cycle 

and so improve the processing by controlling the shrinkage and porosity of the final 
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product. In order to obtain low-cost ceramic membranes by minimizing the cost of the 

firing step a study was conducted to determine the possibility of preparing porous 

chamottes to be used in low-cost membrane’s synthesis as an alternative to organic 

poreforming agents. 

2. Experimental Procedure 

The clay UA-50 (Mineraria, Spain) was selected to prepare the chamottes as it had been 

previously used as raw material for low-cost ceramic membranes 
25

. The clay 

composition was approximately 65.6 SiO2, 22.8 Al2O3, 0.6 Na2O, 2.3 K2O, 1.3 TiO2, 

1.1 Fe2O3, 0.3 CaO and 0.5 MgO, with a loss on ignition of 6.5 (wt%). 

The chamottes were obtained from a mixture of 90 wt% clay and 10 wt% starch, using 

three different starches: S1 (potato starch, Roquette Freres S.A., France), S2 (pea fiber 

L50M, Roquette Freres S.A., France) and S3 (soluble potato starch Pregeflo P100, 

Roquette Freres S.A., France). Besides a reference chamotte, without starch, was also 

prepared for comparative purposes. 

The particle size distribution of the starches was obtained by dry laser diffraction 

(Mastersizer 2000, Marvern Instruments Ltd. UK) and the characteristic diameter D10, 

D50, D90, DV and DS were calculated (the parameters D90, D50 and D10 are the cut off 

particle size below which 90 %, 50 % and 10 % of the total particle volume lies and the 

parameters DV and DS are respectively the volume mean diameter and the surface area 

mean diameter). The humidity was obtained from the weight loss after drying at 110 ºC 

in an electrical oven (it was given as kg of water by 100 kg of dry solid) and the ash 

content was determined by calcining every starch at 1000 °C. 

Several methods were used to prepare clay-starch agglomerates: a dry method (D) and 

three wet methods (W1, W2 and W3). The dry method (D) consisted in preparing the 
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mixture in a blade mill (Multitrio, Moulinex International, France) adding the starch 

gradually to avoid the formation of large agglomerates. Next, granulation was carried 

out by spraying water onto the powder mixture before introducing it in a homemade 

granulator. Wet methods consisted in preparing aqueous slurries by dispersion of the 

clay-starch mixture with a high speed disperser. Slurry solids loading was 50 wt%. The 

suspensions were spray dried at 200 °C in a laboratory spray dryer (W1 method) if their 

viscosity was adequate. When the viscosity was too high to be spray dried, the slurries 

were dried in an oven (W2 method) or under infrared lamps (W3 method). In both 

methods, W2 and W3, clay-starch agglomerates were obtained by milling the dry 

mixture in a blade mill and sieving trough a 300 µm mesh. 

Several chamottes were prepared by adding different amounts of starch, using different 

preparation methods and firing the clay-starch agglomerates in an electric kiln to peak 

temperatures from 1050 to 1200°C with a heating rate of 10 °C/min and a soaking time 

of 1 hour (Table ITable ). Loss of ignition (LOI) was determined after firing to assess 

the complete oxidation of the starch. 

Ceramic membranes were prepared with the chamottes and a mixture of clay UA-50 

(Mineraria, Spain), micronized sodium feldspar (courtesy of Pamesa, S.A. Spain) and 

feldspathic sand (AFS-125, Imerys, Spain) in a weight ratio of 40:40:20, respectively 
25

. 

Different weight percentages of chamotte ranging from 15 to 60 wt% were added to the 

clay-feldspars mixture (Table II and Table III), whose composition was approximately 

72.0 SiO2, 17.6 Al2O3, 4.2 Na2O, 1.5 K2O, 0.6 TiO2, 0.5 Fe2O3,0.3 CaO and 0.2 MgO, 

with a loss on ignition of 2.9 (wt%). 

The membrane compositions were moistened to a water content of 0.055 kg water/dry 

solid kg and disk-shaped test specimens of 50 mm diameter and 3-4 mm thickness were 
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formed by uniaxial dry pressing at 300 kg cm
-2

 and dried in an oven at 110ºC. Specimen 

dimensions and bulk density of the green samples, and later of the sintered ones, were 

then determined by the mercury displacement method. 

The green specimens were fired in a fast electric kiln (Pirometrol S.A. Spain) at 

different peak temperatures, ranging from 1050 to 1125 °C (4 specimens of each 

composition were tested at every temperature). The heating rate was 25 ºC/min, with a 

60 min hold at peak temperature. The firing cycle was designed to find a compromise 

between the amount of porosity and mechanical strength in the sintered membranes. 

The pore size distribution of the chamottes and the membranes was measured by 

mercury intrusion porosimetry 
26

 (AutoPore IV 9500, Micromeritics Instruments Co, 

USA). Sample weight was about 2 g and a 130º contact angle was taken. The pore size 

distributions were fitted to log-normal distributions and characteristic pore diameters 

(d16, d50, and d84), were calculated. The values of d16 and d84 were considered 

representatives of the coarse and fine pore fraction in the distribution, respectively. The 

parameter d16 corresponds to the diameter above which 16 % of total pore volume is 

found and d84 value corresponds to the diameter above which 84 % of total pore volume 

is found. Surface area 
27

 (BET method: Tristar 3000 Micromeritics) of the chamottes 

was also determined. 

Apparent porosity, measured as water uptake according to standard UNE-EN ISO 

10545-3 
28

, was also determined and the permeability coefficient for water was obtained 

with a liquid permeameter (LEP101-A, PMI, USA). Additionally, the microstructure of 

the chamottes as well as the membranes was examined by FEG-SEM (Quanta 200F, 

FEI Co, USA). 
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3. Results and discussion 

3.1 Chamotte preparation 

The starches’ characteristics are shown in Figure 1 and Table IV. The three starches 

covered a broad range of particle size, a parameter related with the pore size generated 

in the final product, as previously shown 
25

. 

Agglomerates of 90 wt% clay + 10 wt% starch were fired to different maximum 

temperatures from 1050 to 1200 °C. The weight loss (%) was selected to monitor the 

starch decomposition. Table V shows the results for agglomerates prepared by dry 

method using the three starches S1, S2 and S3. There is no difference in weight loss for 

1100 up to 1200 °C only slight variations that must be due to experimental uncertainty. 

Differences between series can be explained by the different origins of the starches that 

confer them different ash content, as it has been shown in Table IV. 

To determine the effect of the preparation method and the type of starch used, the mean 

weight loss of the agglomerates obtained at 1100, 1150 and 1200 °C of peak 

temperature was determined and plotted for all the prepared series (Figure 2). For 

purposes of comparison, the data for clay agglomerates, without starch, have also been 

included. 

Spray dried agglomerates (W1 method) could only be obtained with slips prepared with 

clay and the mixture 90 % clay + 10 % S2, as the other slips were too viscous to be 

spray dried. Results show that the weight losses are more influenced by the preparation 

method than by the type of starch used. The fact that wet methods give lower weight 

losses could be due to a partial dehydration of the starch during drying. In the case of IR 

drying a partial burning of the starch directly exposed to radiation was visually detected. 

In consequence, the weight loss tends to be slightly lower. 
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Weight losses are representative of starch oxidation during firing but a priori have no 

direct relationship with the porous texture of the chamotte granules. In order to use the 

chamottes as raw material for membranes they must behave in an inert manner during 

the firing of the membranes and the degree of sintering must be low enough to avoid the 

collapse of pores, maintaining a connected open porosity. The sintering process must 

also confer to the chamotte granules a relatively high mechanical strength to avoid 

being crushed during the membrane shaping process. 

The maximum mechanical strength was assumed to correspond to the chamottes 

prepared at 1200 °C. So, to evaluate the pore structure of these samples, the chamotte 

granules obtained at 1200 °C from agglomerates prepared by dry (D) and wet W2 

methods were selected. Pore size distribution (PSD) and surface area were determined. 

The corresponding data are listed in Table VI. Figure 3 plots the pore size distributions 

of the six chamottes. The curves corresponding to chamottes prepared by dry (D) 

method have a higher pore volume in the range 2-20 µm, what is quite convenient to 

obtain an adequate permeability value. Taking into account that the dry method is 

easier, more reproducible and environmentally friendlier than the wet methods, 

chamottes D seem to be a good option. Among these, the higher BET area and lower 

total pore volume obtained by mercury porosimetry of 10S1-D suggest that this 

chamotte must have a big amount of very small pores, that is, pores not accessible to the 

mercury during the porosimetry test. 

According to the PSD data (Table VI), 10S2-D, 10S3-D and 10S1-W2 chamottes have 

the highest total pore volume and could be successfully used to prepare membranes. 

BET area for 10S1-W2 is the highest but, as it has been already mentioned, this is due 

to a high number of small pores. When pores are taken to be cylinders a pore wall area 

Page 8 of 33

International Journal of Applied Ceramic Technology

International Journal of Applied Ceramic Technology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 9 

can be calculated 
29

 based on a pore volume (V) and a pore size (d). An equivalent 

surface area has been calculated by using d84 (representative of small pores) and the 

total pore volume (VT) obtained in mercury porosimetry (SCALC=4VT/d84). On 

representing SCALC values versus SBET a linear trend can be observed (Figure 4) 

confirming that small pores are representative of specific surface area. 

In order to determine the effect of the starch content on the characteristics of the 

chamotte, a second series of agglomerates were prepared from mixtures of 70 wt% clay 

+ 30 wt% starch S1, by the D and W2 method. The agglomerates were fired at 1200 °C 

of maximum temperature. No significant differences were found between the new 

chamotte granules and the previous ones, obtained with 10 wt% starch S1. 

The chamottes consisted of hard porous agglomerates without important differences in 

microstructure (Figure 5). It seems that some granules have the pore network 

completely connected with the surface, but others have a more compact crust that 

partially blocks the connection. It was not possible to measure the proportion of every 

kind of granule in the chamottes. In consequence, the selection of the optimal chamotte 

should be addressed after analyzing its effects on the properties of the membranes. 

3.2 Chamottes as raw material for membranes 

Firing cycles of the membranes were much shorter when chamotte was used instead of 

starch as pore generator. For the same peak temperature, a membrane prepared by 

mixing 15 wt% starch with the remaining raw materials must be treated with a firing 

cycle of 6 hours. On the contrary, when the membrane is prepared by mixing chamotte 

with the remaining raw materials the firing cycle lasts only 2 hours. 
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Ceramic membranes prepared with 15 wt% of all the synthesized chamottes had green 

density values in the range 1.76 to 1.83 g·cm
-3

, lower than the membrane without 

chamotte (1.87 g·cm
-3

). 

Bulk density of the membranes increased with firing temperature (Figure 6) meaning 

that the maximum densification has not been reached. In general, membranes with 

chamottes obtained by the wet method W2 give membranes with lower bulk density but 

there was no clear effect of the type of starch used.  

A direct relationship between bulk densities of the membranes obtained with all the 

chamottes and firing cycles and open porosity, measured as water absorption, was found 

(Figure 7). These outcomes suggest that there is hardly any difference between using 

one or other chamotte, and that the firing cycle is the variable that determines the final 

porosity of the membrane, in the studied range. Nevertheless, the properties that decide 

whether the membranes are appropriate or not for filtration purposes are the 

permeability and the mechanical strength. 

On comparing membranes obtained with the same firing cycle, no important differences 

in permeability were found. Even membranes prepared with chamottes from 

agglomerates with 30 wt% of starch (C1 and A1) had similar permeability values, 

contrary to what might be expected. If a high percentage of starch is used to prepare 

chamottes, an important fraction can remain on the surface of the clay-starch 

agglomerates. This starch will burn during the firing schedule without forming porosity 

in the chamotte granules. 

Permeability values rose with temperature up to a peak value for each membrane’s 

composition, as Figure 8 shows. This variation is due to densification of the membranes 

30
. As firing temperature rose, liquid phase forms and small pores progressively 
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disappeared, leading to a differential shrinkage in the sample that enlarges the biggest 

pores and increases permeability. At higher temperatures, when a significant amount of 

liquid phase forms, the initially interconnected porous system is blocked and 

permeability decreases. According to those findings the best membranes are those 

obtained with a peak temperature of 1075 °C. 

3.3 Effect of the chamotte content on the membrane’s properties 

To study the effect of the chamotte content on the processing and the permeability of 

the resulting membrane, three series of membranes (A, B and C) were prepared with 

different chamottes. The selected chamottes were 10S1-W2, 10S3-W2 and 10S1-D. In 

each series the chamotte percentage ranged from 30 to 60 %wt. Besides, for 

comparative purposes, another series (R) was also prepared (Table III). The green 

density values of these membranes are given in Table VII. For each series, green density 

of the membranes decreased as the chamotte content increased, as a consequence of the 

mixed contributions of the lower apparent density of chamotte and the lower 

compaction during pressing. When the results of test pieces from series A, B and C, 

having the same chamotte content are compared, the pieces made with the 10S1-W2 

chamotte are observed to display considerably lower green densities than those prepared 

with the other two chamottes. 

Figure 9 plots the bulk density of the membranes obtained at 1075 and 1100 °C of 

maximum firing temperature versus green density. As it was expected, there is a direct 

relationship between green density and bulk density of the membranes. Samples fired at 

1075 °C have lower bulk densities than samples fired at 1100 ºC. These results are 

consistent with those obtained for membranes with 15 wt% chamotte (Figure 6) and are 

a consequence of the pore elimination during sintering 
31

. Raising temperature lowers 
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specimen porosity further until maximum densification is reached. As membranes need 

to be porous, firing temperature should be as low as possible provided that mechanical 

strength would be enough to allow operation of the membrane. No problems associated 

with low mechanical strength were observed and consequently 1075 °C was selected as 

firing temperature to obtain the membranes. 

Figure 10 shows that for each series of membranes obtained at 1075 °C, open porosity, 

measured as water absorption, increased as chamotte content augments and that the 

most porous membranes correspond to series A. Water absorption includes pores 

opened to the surface but not necessarily all the pores measured in water absorption are 

interconnected in such a way that allows the water flow through the membrane. So, in 

order to determine the best chamotte to prepare membranes, permeability values have to 

be addressed. 

Figure 11 plots water permeability values of the membranes prepared at 1075 °C to 

visualize the effect of the chamotte content. The permeability of the R1 membrane was 

too low to be measured because this membrane did not contain any pore generator. It 

can be observed that the R2 membrane has the same permeability as the membranes 

prepared with 15 wt % of chamotte, which reveals the importance of including feldspar 

and feldspathic sand in the composition. For all the series, permeability increases with 

chamotte content and for values lower than 45 wt % there are no clear differences 

among the different chamottes, as all the values are quite similar when chamotte content 

is the same. However, for membranes with 60 wt% of chamotte the higher permeability 

corresponds to series A, that is, the membrane prepared with the 10S1-W2 chamotte. 

The results for membranes fired at 1100 °C showed a similar trend but the permeability 

values were slightly lower due to the initial formation of closed porosity that decreases 
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the connectivity of the capillary system. On further increasing the chamotte content the 

resulting composition had processing problems so the upper limit of 60 wt% was 

established. 

Pore size distribution, porosity and permeability define the performance of the 

membrane. Mercury porosimetry results (Table VIII) show that membranes prepared 

with 60 wt% chamotte and fired at 1075 °C have narrow pore size distributions centered 

around 2µm what makes all of them valuable for infiltration purposes 
32, 33

. 

4. Conclusions 

In order to try and avoid burning of organic pore formers during membrane´s 

processing, porous chamottes were prepared starting from clay and starch agglomerates. 

Different types and proportions of starch were used. There were no significant 

differences between chamottes prepared with different starches, but it was observed that 

the processing method to obtain the clay-starch agglomerates had influence on the 

porosity of the resulting chamotte. The chamottes consisted of hard porous 

agglomerates with an interconnected pore network and allow membranes with 

considerably shorter firing cycles to be made than when starch was used as the pore 

former. 

Membranes were prepared by pressing a mixture of white clay, sodium feldspar, 

feldspathic sand and different proportions of chamottes and firing at peak temperatures 

from 1000 to 1200 °C. Permeability values increase with firing temperature up to 1075 

°C and then decreased due to the membrane’s densification that reduces the 

interconnectivity of the pore network. As the membranes had enough mechanical 

strength, 1075 °C was set as optimum firing temperature of the membranes. 
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It was shown that the permeability of the membranes increased with chamotte content 

and for values lower than 45 wt % there were no clear differences among the different 

chamottes. However, with 60 wt% of chamotte the highest permeability corresponded to 

the membrane prepared with the 10S1-W2 chamotte. Membranes with more than 60 

wt% chamotte could not be obtained due to processing problems so the upper limit of 

60 wt% was established. Low cost membranes with narrow pore size distribution 

centered around 2 µm can be successfully obtained with short firing cycles when porous 

chamottes are used instead of traditional pore formers. 
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Figure Captions 

Figure 1. Starches’ particle size distributions. 

Figure 2. Mean weight loss of the agglomerates used to synthesize the chamottes. 

Figure 3. Pore size distribution of chamotte granules prepared with S1, S2 and S3 

starches by dry (D) (a), and wet (W2) (b) method and fired at 1200 °C. 

Figure 4. Equivalent surface area from mercury porosimetry versus BET area values. 

Figure 5. Microstructure of the chamottes obtained by firing at 1200 °C agglomerates 

prepared with starches S1 and S2 by dry (D) and wet W2 method. 

Figure 6. Bulk density of the membranes with 15 wt% chamotte. 

Figure 7. Open porosity, measured as water absorption, versus bulk density of 

membranes with 15 wt% of chamotte. 

Figure 8. Variation of permeability with firing temperature for membranes prepared 

with 15 wt% of 10S1-D (C0), 10S2-D (D0) and 10S3-W2 (B0) chamottes. 

Figure 9. Bulk density of the membranes fired at 1075 and 1100 °C. 

Figure 10. Variation of the open porosity of the membranes fired at 1075 °C with their 

chamotte content. 

Figure 11. Variation of the water permeability of the membranes fired at 1075 °C with 

their chamotte content. 
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Tables 

Table I. List of prepared chamottes. 

Chamotte 

Reference 

Starch 

type 

Starch content 

(%) 

Agglomeration 

method 

Sintering temperature (ºC) 

0S-D 

10S1-D 

10S2-D 

10S3-D 

10S2-W1 

10S1-W2 

10S2-W2 

10S3-W2 

30S1-D 

30S1-W2 

- 

S1 

S2 

S3 

S2 

S1 

S2 

S3 

S1 

S1 

0 

10 

10 

10 

10 

10 

10 

10 

30 

30 

D 

D 

D 

D 

W1 

W2 

W2 

W2 

D 

W2 

1050, 1100, 1150, 1200 

1050, 1100, 1150, 1200 

1050, 1100, 1150, 1200 

1050, 1100, 1150, 1200 

1050, 1100, 1150, 1200 

1050, 1100, 1150, 1200 

1050, 1100, 1150, 1200 

1050, 1100, 1150, 1200 

1200 

1200 

 

Table II. Composition of the series of membranes prepared (Series 0). 

Membrane C0 A0 D0 E0 B0 

Clay (%wt) 

Na Feldspar (%wt) 

Feldespatic sand (%wt) 

Chamotte 10S1-W2 (%wt) 

Chamotte 10S2-W2 (%wt) 

Chamotte 10S3-W2 (%wt) 

Chamotte 10S1-D (%wt) 

Chamotte 10S2-D (%wt) 

34 

34 

17 

- 

- 

- 

15 

- 

34 

34 

17 

15 

- 

- 

- 

- 

34 

34 

17 

- 

- 

- 

- 

15 

34 

34 

17 

- 

15 

- 

- 

- 

34 

34 

17 

- 

- 

15 

- 

- 
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Table III. Composition of the series of membranes prepared (Series R, A, B and C). 

Series R  A   B   C   

Membrane R1 R2 A1 A2 A3 B1 B2 B3 C1 C2 C3 

Clay (%wt) 

Na Feldspar (%wt) 

Feldespatic sand (%wt) 

Chamotte 10S1-W2 (%wt) 

Chamotte 10S3-W2 (%wt) 

Chamotte 10S1-D (%wt) 

40 

40 

20 

- 

- 

- 

40 

- 

- 

60 

- 

- 

28 

28 

14 

30 

- 

- 

22 

22 

11 

45 

- 

- 

16 

16 

8 

60 

- 

- 

28 

28 

14 

- 

30 

- 

22 

22 

11 

- 

45 

- 

16 

16 

8 

- 

60 

- 

28 

28 

14 

- 

- 

30 

22 

22 

11 

- 

- 

45 

16 

16 

8 

- 

- 

60 

 

Table IV. Starches characterization. 

Reference D10(µm) D50(µm) D90(µm) DV(µm) DS(µm) 

Moisture 

(%) 

Ash 

content 

(%) 

S1 

S2 

S3 

26 

16 

20 

46 

75 

63 

76 

184 

136 

49 

90 

72 

41 

35 

33 

22.3 

8.7 

4.5 

0.71 

3.53 

0.46 

 

Table V. Effect of the peak temperature on the weight loss of agglomerates prepared by 

dry method. 

T (°C) Weight loss (%) 

10S1-D 10S2-D 10S3-D 

1050 

1100 

1150 

1200 

17.23 

18.39 

18.30 

18.18 

18.60 

18.94 

19.68 

18.94 

19.28 

19.34 

19.33 

19.37 
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Table VI. Characteristic pore diameters, total pore volume and BET surface area for 

chamottes obtained at1200 °C from agglomerates prepared with 90 wt% clay + 10 wt% 

starch. 

Chamotte SBET (m
2
·g

-1
) d16 (µm) d50(µm) d84(µm) 

Total pore volume VT 

(cm
3
·g

-1
) 

10S1-D 

10S2-D 

10S3-D 

10S1-W2 

10S2-W2 

10S3-W2 

0.43 

0.31 

0.37 

0.59 

0.50 

0.16 

21.75 

23.74 

31.94 

31.83 

22.55 

30.01 

9.10 

12.85 

13.53 

7.66 

8.48 

18.32 

2.88 

6.28 

3.60 

2.25 

2.88 

8.38 

0.641 

0.779 

0.769 

0.714 

0.674 

0.554 

Table VII. Green densities of the four series of membranes prepared. 

Membrane R1 R2 A1 A2 A3 B1 B2 B3 C1 C2 C3 

Green density 

(g·cm
-3

) 

1.87 1.59 1.67 1.55 1.48 1.81 1.75 1.70 1.70 1.62 1.55 

Table VIII. Characteristic pore diameters, total pore volume, water permeability and 

open porosity for membranes with 60 wt% of chamotte (Sintering temperature 1075 

ºC). 

Membrane 

d16 

(µm) 

d50 

(µm) 

d84 

(µm) 

Total pore 

volume 

(cm
3
·g

-1
) 

Water 

permeability 

(L·h
-1

·m
-2

·bar
-1

) 

Open porosity 

(%) 

A3 

B3 

C3 

2.37 

3.01 

1.89 

1.85 

2.25 

1.52 

1.17 

1.21 

0.92 

0.213 

0.140 

0.177 

1390 

1190 

920 

35 

26 

31 
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Figure 1. Starches’ particle size distributions.  

Figure 1  

57x64mm (600 x 600 DPI)  
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Figure 2. Mean weight loss of the agglomerates used to synthesize the chamottes.  
Figure 2  

64x80mm (600 x 600 DPI)  
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Figure 3. Pore size distribution of chamotte granules prepared with S1, S2 and S3 starches by dry (D) (a), 
and wet (W2) (b) method and fired at 1200 °C.  

Figure 3  
57x32mm (600 x 600 DPI)  
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Figure 4. Equivalent surface area from mercury porosimetry versus BET area values.  
Figure 4  

61x74mm (600 x 600 DPI)  
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Figure 5. Microstructure of the chamottes obtained by firing at 1200 °C agglomerates prepared with starches 
S1 and S2 by dry (D) and wet W2 method.  

Figure 5  

170x143mm (300 x 300 DPI)  
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Figure 6. Bulk density of the membranes with 15 wt% chamotte.  
Figure 6  

60x71mm (600 x 600 DPI)  
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Figure 7. Open porosity, measured as water absorption, versus bulk density of membranes with 15 wt% of 
chamotte.  
Figure 7  

61x74mm (600 x 600 DPI)  
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Figure 8. Variation of permeability with firing temperature for membranes prepared with 15 wt% of 10S1-D 
(C0), 10S2-D (D0) and 10S3-W2 (B0) chamottes.  

Figure 8  

60x71mm (600 x 600 DPI)  
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Figure 9. Bulk density of the membranes fired at 1075 and 1100 °C.  
Figure 9  

61x74mm (600 x 600 DPI)  
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Figure 10. Variation of the open porosity of the membranes fired at 1075 °C with their chamotte content.  
Figure 10  
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Figure 11. Variation of the water permeability of the membranes fired at 1075 °C with their chamotte 
content.  
Figure 11  

60x71mm (600 x 600 DPI)  

 

 

Page 33 of 33

International Journal of Applied Ceramic Technology

International Journal of Applied Ceramic Technology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60


