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Abstract. In this paper we describe, under certain assumptions, surjective diameter preserving

mappings when defined between function spaces, not necessarily algebras, thus extending most of

the previous results for these operators. We provide an example which shows that our assumptions

are not redundant.

1. Introduction and Preliminaries

In 1998, Győry and Molnár ([16]) introduced a new kind of linear operators based on the preser-

vation of the diameter of the range of the functions. Since then, several papers have been published

extending the scope of application of diameter preserving mappings (see e.g., [15], [8], [9] [18], [7],

[13], [2], [1], [3], and [4]).

Diameter preserving mappings are indeed isometries if we consider the underlying spaces of func-

tions endowed with the diameter (semi) norm. So, it is apparent that the description of the extreme

points of the closed unit ball of the dual of the spaces endowed with the diameter norm is the key to

study such maps. González and Uspenskij ([15]) and, independently, Cabello ([8]) characterized the

extreme points of the closed unit ball of the dual of C(X) (X compact) endowed with the diameter

norm. However, if we consider linear subspaces of C(X) (function spaces), the situation might be

more intricate. Namely, in [14] (see also [6]), the authors describe such extreme points when the

function spaces satisfy the Unique Decomposition property, although several examples confirm that

a complete characterization seems to be complicated.

In this paper, we first analyse the diametral boundary of a function space, a concept which was

just proposed (without any study) in [3] and which is based on the extreme points cited above.

We check that it is indeed a boundary and show that it is a useful tool for the description of the

diameter preserving surjections in this context. We also provide a characterization of the extreme

points for several types of subspaces, which include extremely regular function spaces, Thanks to

these results, we can describe diameter preserving surjections defined between such function spaces,

thus extending most of the previous results for these maps.

2010 Mathematics Subject Classification. Primary 47B38; Secondary 46J10, 47B33.

Key words and phrases: Diameter-preserving maps, function spaces, Choquet boundary.

Research of J.J. Font was partially supported by the Spanish Ministry of Science and Education (Grant number

MTM2011-23118), and by Bancaixa (Projecte P11B2011-30).

1



We first need to state some preliminary definitions. Let X be a compact (Hausdorff) space and

let C(X) be the algebra of all scalar-valued continuous functions on X endowed with the supremum

norm ‖.‖∞.

A linear subspace A of C(X) is called a function space on X if A separates the points of X and

contains the set of constant functions, denoted by C. A function space A on X is called a function

algebra if it is an algebra. A will denote the closure of A in (C(X), ‖.‖∞).

Given a linear subspace A of C(X), the Choquet boundary, Ch(A), of A is the set of all x ∈ X

for which δx, the evaluation functional at x, is an extreme point of the unit ball of the dual space of

(A, ‖.‖∞). Clearly, Ch(A) = Ch(A). If x, x′ ∈ Ch(A), then we shall write δx,x′ := δx − δx′ .

For any function f ∈ C(X), diam(f) denotes the diameter of the range of f . For two function

spaces A and B, a linear map T : A → B is called diameter preserving if diam(f) =diam(Tf) for

all f ∈ A.

For a function space A on a compact space X, Ad stands for the quotient space A/C endowed with

the diameter norm, ‖π(f)‖d :=diam(f) for all f ∈ A, where π is the quotient map π : A → A/C,

and (A∗d, ‖ · ‖∗d) its dual space. Moreover, we denote the unit ball of the dual space A∗d by BA∗d and

the set of its extreme points by ext(BA∗d). Since Ad is isomorphic to a quotient of A, then A∗d is

isomorphic to a subspace of A∗ = (A, ‖.‖∞)∗. In fact, A∗d = {µ ∈ A∗ : µ(X) = 0}.

Let A be a function space on X and x ∈ X. A representing measure for δx is a positive measure

µ on X such that δx(f) =
∫
X
fdµ for all f ∈ A. We use the same notation, δx, for the evaluation

functional at x and the unit point mass at x.

2. Extreme points

Let us suppose, in this section, that A is a function space on a compact space X. Notice that by

arguments similar to those in the proof of [14, Theorem 1], we can regard ext(BA∗d) as a nonempty

subset of {αδx,x′ : x, x′ ∈ Ch(A), x 6= x′, α ∈ T} and that this inclusion may be proper. As a

consequence, the following set, which was proposed in [3] without any study, can be defined:

Definition 2.1. The diametral boundary of A is defined as follows:

dch(A) := {{x1, x2} : δx1,x2
∈ ext(BA∗d)}.

On the other hand, we can define the following linear subspace of C(X ×X):

A−A := {h ∈ C(X ×X) : h(x, y) = h1(x)− h1(y), h1 ∈ A}

endowed with the supremum norm.

Proposition 2.2. {x1, x2} ∈ dch(A) if and only if (x1, x2) ∈ Ch(A−A).
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Proof. Consider the linear operator L : Ad −→ (A−A) defined as

L(π(f))(x, y) := f(x)− f(y).

Since ‖π(f)‖d = ‖L(f)‖∞, we have that L is a linear onto isometry. As a consequence, the adjoint

map L∗ : (A − A)∗ −→ A∗d sends the extreme points of the closed unit ball of (A − A)∗ onto the

extreme points of the closed unit ball of A∗d. That is, the extreme points of A∗d can be identified

with Ch(A−A). �

It is well known the Choquet boundary of each linear subspace B of continuous functions is a

boundary for B in the sense that every element of B attains its maximum value on it. Hence, from

Proposition 2.2, we can deduce that dch(A) is a boundary for (Ad, ‖ · ‖d) in the sense that, given

f ∈ A, then ‖π(f)‖d = |f(x1)− f(x2)| for some {x1, x2} ∈ dch(A).

Let us now describe the diametral boundary of several function spaces:

• ([15], [8]) Let A = C(X). Then dch(C(X)) = {{x1, x2} : x1, x2 ∈ X}.

• ([14]) If A satifies the Unique Decomposition property, then dch(A) = {{x1, x2} : x1, x2 ∈

Ch(A)}. Indeed, this is a characterization of the Unique Decomposition property ([6]).

• ([12]) If A is a function space on a compact space X which is dense in (C(X), ‖.‖∞), then

dch(A) = {{x1, x2} : x1, x2 ∈ X}.

• ([13]) If A is a (real-valued) extremely regular function space on a compact space X (see

definition before Corollary 3.3), then dch(A) = {{x1, x2} : x1, x2 ∈ X}.

However, the description of the diametral boundary of a function space is not always so clear as

the following example shows. First, we need a technical result which we shall also use in the proof

of our main result:

Lemma 2.3. Let u ∈ C(X) with 0 ≤ u ≤ 1. Let x0 ∈ X and U a neighbourhood of x0 such that

u(x0) = 1 and u(X \ U) = 0. If x0 ∈ Ch(A) for a certain function space A on X, then

sup{Reh(x0) : h ∈ A, Reh ≤ u} = 1.

Proof. Let r := sup{Reh(x0) : h ∈ A, Reh ≤ u}. It is apparent that 0 ≤ r ≤ 1. Now if r 6= 1, then

r = 1 − ε for some 0 < ε ≤ 1. Then u /∈ ReA since u(x0) = 1. Consider the subspace E of CR(X)

spanned by ReA and u. Each element of E can be written as k + λu for a unique k ∈ ReA and

λ ∈ R. Define a linear functional L on E by L(k + λu) := k(x0) + λ(1− ε). Clearly, L is a positive

functional with L(1) = 1 = ‖L‖. So, there exists a positive measure µ ∈M(X) of total mass 1 such

that L(k + λu) =
∫

(k + λu)dµ for all k ∈ ReA and λ ∈ R. Thus

k(x0) + λ(1− ε) =

∫
kdµ+ λ

∫
udµ (k ∈ ReA, λ ∈ R) (∗).
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In particular, k(x0) =
∫
kdµ for all k ∈ ReA and, consequently, f(x0) =

∫
fdµ for all f ∈ A. This

means that µ is a representing measure for δx0
and since x0 ∈ Ch(A), then, by [17, Corollary, P. 52],

µ is the point mass at x0. Therefore, by (*), 1−ε =
∫
udµ = u(x0) and so u(x0) < 1, a contradiction

showing that r = 1. �

Example 2.4. Let us consider the hexagon S in the plane with vertices at the points x1 = (1, 0),

x2 = ( 1
2 ,

1
2 ), x3 = (−12 ,

1
2 ), x4 = (−1, 0) and x5 = (−12 ,

−1
2 ), x6 = ( 1

2 ,
−1
2 ). Let A(S) be the space

of affine continuous functions on the compact convex set S, that is, the linear subspace of C(S)

consisting of the functions of the form f(x, y) = ax+ by + c (a, b, c ∈ C).

We shall first show that Ch(A(S)) = {x1, x2, x3, x4, x5, x6}. It is obvious that Ch(A(S)) ⊇

{x1, x2, x3, x4, x5, x6}. In order to check the opposite inclusion, suppose z0 = (x0,
−1
2 ) is an arbitrary

intermediate point on the edge x5x6 (vertices are x5 and x6). Since −12 < x0 <
1
2 we can choose a

neighborhood U of z0 such that (x0 ± ε, −12 ) /∈ U for some ε > 0 with −12 < x0 ± ε < 1
2 .

Let us check that z0 /∈ Ch(A(S)). Otherwise, take u ∈ C(S) with 0 ≤ u ≤ 1 with u(z0) = 1 and

u(S \ U) = 0. If z0 ∈ Ch(A(S)), then, by Lemma 2.3, sup{Ref(z0) : f ∈ A(S), Ref ≤ u} = 1.

Thus there is a function f ∈ A(S) with Ref(z0) > 3
4 and Ref ≤ u. There are complex scalars

a, b, c such that f(x, y) = ax + by + c for all (x, y) ∈ S. In particular, Ref(x0 ± ε, −12 ) ≤ 0. Then

Re(a(x0 + ε) − b
2 + c) ≤ 0 and Re(a(x0 − ε) − b

2 + c) ≤ 0, consequently Re(2ax0 − b + 2c) ≤ 0,

which is a contradiction with Ref(z0) = Re(ax0 − b
2 + c) > 3

4 . Hence z0 /∈ Ch(A(S)). Analogously,

the intermediate points on the edge x2x3 do not belong to Ch(A(S)). Now let z0 = (x0, y0) be an

intermediate point on the edge x1x6 or x3x4 (resp. x1x2 or x4x5) belonging to Ch(A(S)). Take

a neighborhood U of z0 such that (x0 ± ε, y0 ± ε) ∈ S \ U (resp. (x0 ± ε, y0 ∓ ε) ∈ S \ U) for

some ε > 0 and then, by a similar argument to the above, we obtain a contradiction. Therefore,

Ch(A(S)) = {x1, x2, x3, x4, x5, x6}.

Since δx4,x5 = δx2,x1 = (δx4,x6 + δx1,x6)/2, δx1,x6 = δx3,x4 = (δx1,x5 + δx4,x5)/2, δx2,x3 = δx6,x5 =

(δx2,x4
+ δx5,x4

)/2, δx3,x5
= δx2,x6

= (δx2,x5
+ δx3,x6

)/2, δx1,x5
= δx2,x4

= (δx1,x4
+ δx2,x5

)/2, δx4,x6
=

δx3,x1
= (δx4,x1

+ δx3,x6
)/2, then dch(A(S)) ⊆ {{x1, x4}, {x2, x5}, {x3, x6}}.

Indeed, we claim that ext(BA(S)∗d
) = {αδx1,x4 , αδx2,x5 , αδx3,x6 : α ∈ T}. In order to see this,

suppose that δx1,x4
/∈ ext(BA(S)∗d

). Since A(S)∗d is a finite dimensional space, then BA(S)∗d
=

co(ext(BA(S)∗d
)), and so we have

δx1,x4 = t1β1δx2,x5 + t2β2δx2,x5

such that β1, β2 ∈ T, t1, t2 ∈ [0, 1] and t1 + t2 = 1. Thus for each f(x, y) = ax+ by + c,

2a = a(t1β1 − t2β2) + b(t1β1 + t2β2),
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which easily gives a contradiction. Similarly, δx2,x5 , δx3,x6 ∈ ext(BA(S)∗d
). Therefore,

dch(A(S)) = {{x1, x4}, {x2, x5}, {x3, x6}} 6= {{x, x′} : x, x′ ∈ Ch(A(S))}.

3. Diameter preserving mappings

In the sequel, given a function space A on a compact space X, we set

X̃ := {x ∈ Ch(A) : {x, x′} ∈ dch(A) for somex′ ∈ Ch(A)}.

As mentioned before, we can regard ext(BA∗d) as a nonempty subset of {αδx,x′ : x, x′ ∈ Ch(A), x 6=

x′, α ∈ T}, and consequently X̃ is a nonempty subset of Ch(A).

Theorem 3.1. Let Ai, i = 1, 2, be (complex or real-valued) function spaces on compact spaces Xi

satisfying the following conditions:

(i) the set {δx : x ∈ Xi} is linearly independent in (Ai, ‖.‖∞)∗,

(ii) dch(A1) = {{x, x′} : x, x′ ∈ X̃1}.

Assume that T : A1 → A2 is a surjective diameter preserving map. Then there are a homeo-

morphism ψ : X̃2 → X̃1, a scalar λ ∈ T and a linear functional L : A1 → C such that Tf(y) =

λf(ψ(y)) + L(f) for all f ∈ A1 and y ∈ X̃2.

Proof. Since T is a diameter preserving map then it induces a linear isometry Td : A1d → A2d

under the diameter norm defined by Td(π(f)) = π(Tf) for all f ∈ A1. Hence the adjoint of T ,

T ∗d : A∗2d → A∗1d, is a linear bijective isometry and, so, T ∗d (ext(BA∗2d)) = ext(BA∗1d).

We can now define a map Φ : dch(A1)→ dch(A2) by Φ{x1, x2} := supp(T ∗
−1

d (δx1,x2)) and claim

that Φ is injective. Indeed, if {x1, x2} and {x3, x4} are distinct elements of dch(A1) such that

Φ{x1, x2} = Φ{x3, x4}, then δx1
− δx2

= γ(δx3
− δx4

) for some γ ∈ T. This linear combination

contradicts condition (i). Moreover, Φ is surjective since T ∗d (ext(BA∗2d)) = ext(BA∗1d).

Fix x ∈ X̃1. We shall next show that, for each pair of different points x1, x2 ∈ Ch(A1) distinct

from x and such that {x1, x}, {x, x2} ∈ dch(A1), we have card(Φ{x1, x} ∩ Φ{x2, x}) = 1. It is

apparent, due to the injectivity of Φ, that card(Φ{x1, x} ∩ Φ{x2, x}) 6= 2. Therefore let us suppose

that card(Φ{x1, x}∩Φ{x2, x}) = 0. As, by condition (ii), T ∗
−1

d (δx1,x)−T ∗−1

d (δx,x2
) = T ∗

−1

d (δx1,x2
) ∈

ext(BA∗2d), it follows that there exists a nonzero linear combination in {δy : y ∈ Ch(A2)} since, as

mentioned above, ext(BA∗2d) is included in the set {αδy,y′ : y, y′ ∈ Ch(A2), y 6= y′, α ∈ T}. This

contradicts again condition (i), which yields card(Φ{x1, x} ∩Φ{x2, x}) = 1. Let ϕ(x) be the unique

point in this intersection.

We must now prove that ϕ(x) ∈ Φ{x, x′} for each x′ ∈ X̃1. Contrary to what we claim, assume

that there exists x3 ∈ X̃1 \ {x, x1, x2} such that ϕ(x) does not belong to Φ{x, x3}. Reasoning as in
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the above paragraph and by condition (i), there exist distinct points y1, y2 ∈ Ch(A2) \ {ϕ(x)} with

Φ{x1, x} = {ϕ(x), y1}, Φ{x2, x} = {ϕ(x), y2} and Φ{x3, x} = {y1, y2}. Furthermore,

T ∗
−1

d (δx1
− δx2

) = T ∗
−1

d (δx1,x)− T ∗
−1

d (δx2,x) = βδy1,y2 ,

for some β ∈ T. Then Φ{x1, x2} = {y1, y2}, which contradicts the injectivity of Φ.

Therefore, we may conclude that there exist β ∈ T and an injective map ϕ : X̃1 → Ch(A2) such

that for each x, x′ ∈ X̃1, T ∗
−1

d (δx,x′) = βδϕ(x),ϕ(x′).

It is not difficult to see ϕ(X̃1) = X̃2 since A2 satisfies condition (i). Now let ψ := ϕ−1 : X̃2 → X̃1.

Then, ψ is a bijective map such that for all y, y′ ∈ X̃2, T ∗d (δy,y′) = λδψ(y),ψ(y′), where λ = β̄.

Hence, T ∗d (δy − δy′) = λ(δψ(y) − δψ(y′)) and so for each f ∈ A1 and y, y′ ∈ X̃2, Tf(y) − Tf(y′) =

λ(f(ψ(y)) − f(ψ(y′))). Now, by fixing y′ ∈ X̃2, we can define a linear functional L : A1 → C

as L(f) := −λf(ψ(y′)) + Tf(y′) for all f ∈ A1. Thus, for all f ∈ A1 and y ∈ X̃2, Tf(y) =

λf(ψ(y)) + L(f).

Finally we shall show that ψ is a homeomorphism. To see the continuity of ψ, let (yi)i be a

convergent net in X̃2 to y0 such that (ψ(yi))i converges to x0 in X1. It is enough to show that

x0 = ψ(y0). Contrary to what we claim, let us suppose that there is a neighborhood U of ψ(y0) such

that x0 ∈ X1 \U . Take u ∈ C(X1) with 0 ≤ u ≤ 1 on X1, u(ψ(y0)) = 1 and u = 0 on X1 \U . Since

ψ(y0) ∈ Ch(A1), we know, by Lemma 2.3, that sup{Reh(ψ(y0)) : h ∈ A1, Reh ≤ u} = 1. Hence, it

is not difficult to see that sup{Reh(ψ(y0)) : h ∈ A1, Reh ≤ u} = 1. Then there exists h ∈ A1 with

Reh ≤ u and Reh(ψ(y0)) > 3
4 . We can consider i0 such that, for all i ≥ i0, |Th(yi) − Th(y0)| < 1

4 .

On the other hand, since lim
i
|Th(yi) − Th(y0)| = lim

i
|h(ψ(yi)) − h(ψ(y0))| = |h(x0) − h(ψ(y0))| ≥

3
4−Reh(x0) ≥ 3

4 , then, for a sufficiently large index i, |Th(yi)−Th(y0)| > 1
4 , which is a contradiction.

Thus x0 = ψ(y0) and, consequently, ψ is continuous.

Similarly, we prove that ϕ (ψ−1) is continuous. Suppose, on the contrary, that (xi)i is a convergent

net in X̃1 to x0 such that (ϕ(xi))i converges to y0 in X2 and y0 6= ϕ(x0). As above, we can choose

k ∈ A2 with Rek(y0) ≤ 0 and Rek(ϕ(x0)) > 3
4 . Then taking h′ ∈ A1 such that k = Th′, from

lim
i
|h′(xi)− h′(x0)| = lim

i
|k(ϕ(xi))− k(ϕ(x0))| = |k(y0)− k(ϕ(x0))| ≥ 3

4
− Rek(y0) ≥ 3

4
,

we get a contradiction. Therefore, ψ is a homeomorphism.

�

Remark 3.2. (1) Condition (i) in Theorem 3.1 is true if, for instance, A1 and A2 are function

algebras, although it is not true for general function spaces as Example 2.4 shows. Indeed, it is a

routine matter to verify that δx1
= δx2

− δx3
, which proves that A(S) does not satisfy condition (i).
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Condition (ii) in Theorem 3.1 is true if, for instance, ext(BA∗1d) = {αδx,x′ : x, x′ ∈ Ch(A1), x 6=

x′, α ∈ T}, although it is not true for general function spaces as can be deduced from Example 2.4

too.

(2) The following example, adapted from [7, p. 134], shows that assumptions (i) and (ii) in our

main result (Theorem 3.1) cannot be relaxed:

Let A(K) be the space of affine continuous functions on the compact convex set

K := co{(1, 0), (−1, 0), (0, 1)}.

Similarly, let us also consider A(S), where S is the hexagon which appears in Example 2.4 and,

thus, we already know that A(S) satisfies neither condition (i) nor condition (ii) in Theorem 3.1.

Moreover, notice that S̃ = {x1, x2, x3, x4, x5, x6}. An argument similar to Example 2.4 (even easier)

yields Ch(A(K)) = {(1, 0), (−1, 0), (0, 1)}, dch(A(K)) = {{x, x′} : x, x′ ∈ Ch(A(K)), x 6= x′} and,

consequently, K̃ = Ch(A(K)). Especially, we see that A(K) satisfies both condition (i) and condition

(ii) in the theorem.

Then, according to [7, p. 134], there is a linear diameter preserving bijection between A(K) and

A(S), while it is clear that there is no homeomorphism between between K̃ and S̃. As a consequence

of the above paragraph, it is apparent, taking A1 = A(K) and A2 = A(S), that condition (i) in

Theorem 3.1 is not redundant. Furthermore, condition (ii) cannot be removed either. Indeed, if we

take A1 = A(S) and A2 = A(K), we note that condition (i) for A1 in such theorem is used only to

obtain the injectivity of Φ in the proof, but in this particular case we can check directly that Φ is

injective (because card(dch(A(S))) = card(dch(A(K))) = 3 and T ∗d is a bijective isometry). Hence,

since the result is not valid in this case, we conclude the necessity of condition (ii).

We are now showing that Theorem 3.1 can be applied to several types of function spaces.

It is said (see, e.g., [10]) that a function space A on X is extremely regular if for each x ∈ X,

each neighborhood V of x and each scalar ε with 0 < ε < 1, there exists a function f ∈ A with

‖f‖∞ = f(x) = 1 and |f | < ε on X \ V .

Corollary 3.3. Let A and B be (real-valued) extremely regular function spaces on compact spaces

X and Y , respectively, and T : A → B be a surjective linear diameter preserving map, then there

are a homeomorphism ψ : Y → X, a scalar λ ∈ {±1} and also a linear functional L : A → R such

that for all f ∈ A, y ∈ Y , Tf(y) = λf(ψ(y)) + L(f).
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Proof. Let α1, · · · , αn ∈ R\{0} and different points x1, · · · , xn ∈ X such that α1δx1 +· · ·+αnδxn = 0

on A. Let V be a neighborhood of x1 such that xj /∈ V for all j ∈ {2, · · · , n}. Choose 0 < β <

min(|α1|, 1). Then for ε = β∑n
i=1 |αi| , there exists a function f ∈ A with f(x1) = 1 = ‖f‖∞ and

|f | < ε on X \ V . Consequently,

0 = |α1f(x1) + · · ·+ αnf(xn)| ≥ |α1| − |α2f(x2)| − · · · − |αnf(xn)| > |α1| − β,

and, then, β > |α1|, which is a contradiction. This implies that A (resp. B) satisfies condition (i)

in Theorem 3.1. Furthermore, by [13], ext(BA∗d) = {±δx,x′ : x, x′ ∈ X,x 6= x′} and, thus, A and,

similarly, B satisfy the conditions in Theorem 3.1.

�

Remark 3.4. There are many examples of extremely regular function spaces which are not algebras.

For example, let f be the function defined on N∞ = N∪{∞} as f(n) := 1
n for all n ∈ N and f(∞) = 0.

Assume that A is the R-linear span generated by the set {1, f, δn : n ∈ N}. Then, clearly, A is an

extremely regular function space on N∞ which is not an algebra. Indeed, if A is an extremely regular

function algebra on a compact space X and f is a function in C(X) such that f 6= f2 and f, f2 /∈ A,

then the R-linear span generated by the set {f,A} is an extremely regular function space which is

not an algebra.

Let us recall that a simplicial function space is a point-separating closed linear (real-valued)

subspace of C(X) (X compact) which contains the constants and whose state space is a Choquet

simplex.

Corollary 3.5. Let A (resp. B) be a simplicial function space on a compact space X (resp. Y ).

Assume that T : A→ B is a surjective diameter preserving map. Then there are a homeomorphism

ψ : Ch(B) → Ch(A), a scalar λ ∈ {±1} and a linear functional L : A → R such that for all f ∈ A

and y ∈ Ch(B), Tf(y) = λf(ψ(y)) + L(f).

Proof. Let us first prove that {δx : x ∈ X} is linearly independent in (A, ‖.‖∞)∗. Suppose that there

exist α1, · · · , αn ∈ R and different points x1, · · · , xn ∈ X such that α1δx1 + · · · + αnδxn = 0 on A.

By [11, Theorem 19, I.23], A|{x1,...,xn} = C({x1, ..., xn}), then for each i, i = 1, · · · , n, there is a

function fi ∈ A with fi(xi) = 1 and fi(xj) = 0 for all j ∈ {1, · · · , n} \ {i}. Thus we can conclude

that αi = 0. This means that A (resp. B) satisfies condition (i) in Theorem 3.1.

On the other hand, since A and B are simplicial, we know, from [14] (see also [6]), that dch(A) =

{{x1, x2} : x1, x2 ∈ Ch(A)} and dch(B) = {{y1, y2} : y1, y2 ∈ Ch(B)}.

As a conclusion, by Theorem 3.1, we get the desired result. �
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