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Abstract

The aim of this work is to find empirical evidence, in case it exists, about the

granularity of the Spanish economy. The Granular Hypothesis (Gabaix 2011) has

been tested for Spain between the years 1990 and 2014. For this purpose I have

used a sample made up 31477 firms, for which I have taken three variables for each

company. These are: sales, number of employees and the SIC code.

First, I show that the firm’s size distribution is fat tailed. This fact is essential in

order to show that the idiosyncratic shocks do not cancel out. Therefore, the Law of

Large Numbers does not apply in this case. Second, I calculate the granular residual

in the sense of Gabaix (2011).

The main result obtained is that the top 100 largest firms in Spain account for one

third of the aggregate output variability, in line with the original result or Gabaix for

american firms.
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Idiosyncratic Volatility Shocks and Aggregate Fluctuations:
An Appraisal of the Spanish Case

Omar Blanco Arroyo

1 Introduction

THIS WORK AIMS at replicating the analysis proposed by Gabaix (2011) for the Span-

ish economy. This author shows that aggregate �uctuations can be attributed to

the largest firms. Gabaix interprets that the economy is composed by grains, which are

the firms. Due to firms are heterogeneous, its impact on the economy is also heteroge-

nous. Based on this approach the author constructs what he calls the granular residual,

which is an aggregate measure of the idiosyncratic shocks (see equation 6.1). In his

work he constructs this Granular Residual using the 100 largest firms in United Estates.

In order to test if the Granular Hypothesis is significative he employs the OLS regression.

In particular he regresses the GDP per capita on the granular. The resulting R2 is the

measured used to show if the impact of the largest firms is large enough.

This type of analysis based on the Granular Hypothesis takes as backing the exis-

tence of very large firms that account for a significant fraction of the Gross Domestic

Product (GDP). Therefore, it seems possible that shocks in one of these large firms could

account for aggregate �uctuations. Figure 1 is shown as an illustrative example to quan-

tify the fraction accounted by the largest firms, in the sample, of Spanish GDP. As one

can see, the top 100 firms in the sample account for 32% of Spanish GDP, from 1999 to

2014, and the top 50 firms is 26%.
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IDIOSYNCRATIC VOLATILITY SHOCKS AND AGGREGATE FLUCTUATIONS

Fig. 1: Sum of the sales of the top 50 and 100 firms in SABI, as a fraction of GDP. Source: own
elaboration from SABI database.

The Granular Hypothesis has been employed in several empirical works in order to

study the volatility in the economic activity. Blank et al. (2009), using an early approach

of the granular residual (Gabaix 2009), show that fat-tailed distribution in the German

banking sector affects its own stability. On their behalf, Wagner (2012) test Granular Hy-

pothesis on the manufacturer industry in Germany. They found that the Granular Residual

is able to explain a significant amount of the sales growth in this industry, the R2 is 45%

approximately. Yet other works have focused on studying variations in exports through

the granular approach. This is the case of Di Giovanni & Levchenko (2012) and del Rosal

(2013). The first authors showed that trade openness can increase the explanatory power

of the granular on the aggregate volatility, whereas the second author reaches the conclu-

sion that the granular behaviour can be present in the exports of all UE countries, causing

significant impact on the aggregate output.

The results of this work are, in some sense, in line with the ones introduced by Gabaix

(2011), in so far as regressing the GDP growth on granular residual yields 36%. Further-

more, if the industry is taken into account (industry demeaning), this yields to an increase

of R2 of 56%. But, even though this results can be encouraging, there is a significant

amount of disparities. First, and most important, when I regress Total Factor productivity

on granular, the coefficients are all negative. Besides that, there is a lose of explanatory

power when the industry demeaning is done, decreasing from R2 equal to 30% to 7.5%.
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Second, the last lag has a negative coefficient when I regress GDP growth on granular.

And, finally, there is an enormous difference between R2 and R2 adj., in both granular

residual OLS regression and granular residual industry demeaning OLS regression.

The estructure of this work is as follows. In section 2 a brief review of the literature

related to the analysis of aggregate �uctuations based on idiosyncratic shocks is done. In

section 3, I analyse in detail the data used to perform further analysis and put in context

the time period in which the analysis is applied. Section 4 is dedicated to show that firm’s

size distribution is fat-tailed. Section 5 tries to explain the approach outlined by Gabaix

(2011), both for an economy without linkages and with them. In section 6 I construct

the granular residual and regress the GDP per capita on it with the aim of quantifying its

explanatory power. Finally, Section 7 presents the conclusions I have reached, and I also

expose some lines of future work.

2 Related literature

Idiosyncratic shocks, either sector level or firm level, as a source of aggregate �uctua-

tions were not considered for the aggregate �uctuations. Conventional wisdom argued

that idiosyncratic shocks cancel out, hence their impact on the aggregate cannot be an

explanation. This argument was built taking into account the Law of Large Numbers,

which holds that when the number of independent random variables tends to infinity, the

average of the random variables converge to the average population (Wooldridge 2015).1

This argument, known as “diversification argument" (Acemoglu et al. 2012), is exposed

clearly by Lucas (1977), who argues that:

A new technology, reducing costs of producing an old good or making

possible the production of a new one, will draw resources into the

good which benefits, and away from the production of other goods.

[. . .] in a complex modern economy, there will be a large number of

such shifts in any given period, each small in importance relative to the

total output. There will be much “averaging out" of such effects across

markets.

1Mathematically the Law of Large Numbers for a number of independent random variables,
Y1, Y2, . . . , Yn, would be

plim
(
Y n

)
= µ

where Y n is the average of the variables and µ is the population average.
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Lucas (1977) also mentions that all business cycle are similar, since they are not

restricted to a particular type of countries or a certain period of time. Based on these

statements Long Jr & Plosser (1983) decide to develop one of the first business cy-

cle models based on multiple sectors.2 Specifically, the model consists of six perfectly

competitive sectors that have links to each other through the intermediate input and no

correlation in the aggregate shocks. The authors are able to show how sectors that are

suppliers of many other sectors, i.e. have direct links, if they are hit by a shock this is not

quickly diluted, as they have the incentive to transmit the benefit of shock, and thus these

shocks can become aggregate �uctuations, namely, there comovement in the output of

the sectors.3 However, although they were able to generate comovement in the sectors’

output, and thus make the shocks more lasting, this occurs when there was a low level of

disaggregation. For high levels of disaggregation such shocks succumbed to law of large

numbers.

Durlauf (1993) also exposes a sectoral model with linkages between local companies,

and argues that complementarities between the companies over time can affect the ag-

gregate behaviour. Moreover, Bak et al. (1993) argue that idiosyncratic shocks are not

canceled due to the nonlinearity of interactions. They use a multi-sector and multi-stage

model in the production process in which there are intermediate linkages, but only with

neighboring companies.

Following the line of works that focus on the propagation of shocks to industry level

through the input-output matrix, the work of done by Horvath (1998) showed that in order

to idiosyncratic shocks not disappear in the aggregate, i.e. Law of Large Numbers does

not apply, it is necessary that (1) sectors (key sectors) which serve as input to many

others were few, and (2) there were a lack of substitutability between the intermediate

inputs of the sectors. In this way supply sectors must react to shocks the same way as

the key sector, which provides them intermediate input. Therefore, Horvath argues that

the ratio to which is applied the law of large numbers is not proportional to the number

of sectors but the number key sectors. Subsequently, Horvath (2000), based on the

approach already exposed, shows that the results are generalizable. To this end he

develops a multi-sector general equilibrium model, which is able to explain persistents

business cycles and sectoral comovement.

The alternative view to Horvath (1998, 2000) comes from Dupor (1999), who shows,

2Kydland & Prescott (1982) also try to give explanation to the business cycle through technol-
ogy aggregate shocks, receiving criticism that such technological shocks should be much higher
than observed to produce the effects they exposed (Summers 1986).

3Long Jr & Plosser (1983) define comovement as cross-sectoral correlation.
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from a set conditions, that the way in which sectors are related is not relevant to the

behavior of the aggregate volatility generated by idiosyncratic shocks, since as sectors

are more disaggregated, aggregate volatility converges to zero at the ratio predicted by

the law of large numbers, 1/
√
N .

More recently, taking the input-output matrix as a medium of propagation of shocks,

Acemoglu et al. (2012) claims that depending on the structure of the interconnections that

exist in the network, which is a representation of the input-output matrix, idiosyncratic

shocks can not stay where they were originated, but spread across the economy, thus

affecting the output of other sectors.4 Thereby the ratio at which aggregate volatility

decays depends on the network structure. This approach is empirically demonstrated by

Acemoglu et al. (2015), who, through the study of four different types of shocks, conclude,

inter alia, that the shocks propagated through the network are significant quantitatively,

and more important than the direct effect of shock, up to five times more important.

So far all cited authors place their approach in a closed economy, that is why di Gio-

vanni et al. (2014) studied whether large enterprises imported in cross-border comove-

ment, since “the �ow of international trade is dominated by only a handful of large com-

panies". That is, the authors, with this approach, intended to study whether shocks are

transferred between countries via trade of large enterprises. The result of their study is

that large French companies, which have direct trade linkages, are important in the ag-

gregate comovement. Specifically, the large companies in the sample account for 20% of

aggregate volatility.

Finally, I include the recent work done by Carvalho & Grassi (2015), that based on ex-

isting evidence on the importance of large companies on the aggregate outcome (Gabaix

2011, di Giovanni et al. 2014), decide to develop a framework to assess the linkages

between micro decisions and volatility of macro-level products. The conclusion reached

by the authors is that a large fraction of the aggregate dynamics can be rationalized by

the dynamics of large companies.

3 Data set

The data for this study are taken from Sistemas de Balances Ibéricos (SABI), a database

of Bureau Van Dijk. The period under study is from 1999 to 2014, which is a lapse of

time of 16 years. To analyze the characteristics of the economic cycle in this period

4Acemoglu et al. (2013) also show that the structure of the network, along with the nature of
the idiosyncratic shocks, can have a significant effect on the frequency and depth of recessions.
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I have extracted the cyclical component of real GDP.5 In order to do this I applied the

filter Hodrick-Prescott (Hodrick & Prescott 1997) to real GDP in logarithms. Such filter is

defined as

min
{gt}Tt=−1

{
T∑
t=1

(yt − gt)2 + λ
T∑
t=1

[(gt − gt−1)− (gt−1 − gt−2)]2

}

where y is the GDP in logarithms, g is the GDP growth y λ is the smoothing parame-

ter, which in this case it equals 100 because GDP is annual frequency period. As one

can see in figure 2, in this period, Spain experienced a complete economic cycle. The ex-

pansion phase in the sample ranges from 1999 to 2008. However, the expansion phase

began in 1995 with the entry of Spain in the Monetary Union. Because of low interest

rates and the absence of exchange rate risk, Spain experienced a sharp increase in credit

(Fernandez-Villaverde et al. 2013), which subsequently led to an increase in consumption

and investment.

Fig. 2: Hodrick-Prescott cyclical component of the real GDP. Source: own elaboration.

The expansion phase was followed by a phase of deep recession, which began by

the in�uence of the global financial crisis and continued due to the important problems

of the Spanish economy. In particular because of the bubble in the construction sector,

which has a very important role in the Spanish economy, as shown in Figure 4, and the

accumulated household debt during the boom years. In addition, another problem, which

5Real GDP has been obtained from the Eurostat database.
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is structural, of the Spanish economy is low productivity. As shown in Figure 3, Total

Factor Productivity (TFP) dropped continuously.6 From 2009 to 2014 it has recovered

almost half of the TFP lost during the period of expansion.

Fig. 3: Total Factor Productivity in Spain. Base 100 for the year 2010. Source: Banco de España.

The sample obtained from SABI database is made up 36474 firms. The variables

taken are operating revenue, which for the purpose of this work I consider as sales from

now on, number of employees and the SIC code for each firm.7 However, to carry out

this work there are certain sectors that should not be considered, since variations on

their sales are not the result of variations in the current productivity but come from exoge-

nous shocks. With the goal of not considering these types of companies in the sample

I have carried out a filtering process which eliminated all belonging to sectors related to

hydrocarbons (SIC codes 13, 28 and 29), energy (SIC code 49) and finance (SIC codes

60 and 69). In the case of oil and energy sectors, the changes in their sales are not

consequence of changes in their productivity but they are mainly provoked by changes

in the raw material prices, while in the case of financial companies, sales variations may

be affected by non-real factors. Moreover, due to the limitations of having only two digits

in the sample, I deleted the companies that its name contains the word “trading" or the

6For more information about the behavior of productivity in Spain since the entry into the Mon-
etary Union until 2012 I suggest seeing the work of Hospido & Moreno-Galbis (2015).

7Standard Industrial Classi�cation is a system for classifying industries through a four-digit
code used by government agencies of different countries, including United States and United
Kingdom. In this work I have used two digits.

7
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word “petrol". Finally, all observations with missing values in one of the variables have

not been considered, since in order to calculate the productivity for each firm I will need

both sales and number of employees.

The resulting number of firms after applying all the filtering process is shown in the

table 1. The total number of firms used in the following analysis is 31477 companies, of

which about half come from four sectors, namely: (1) Wholesale Trade - Durable Goods,

(2) Wholesale Trade - Nondurable Goods, (3) General Building Contractors y (4) Food &

Kindred Products. Furthermore, these sectors have the larger number of firms inside de

top 100 during the lapse of time studied. The top 100 companies is the classification of

the largest firms by size, measured this as the amount of sales within a given year.

In order to find out whether the sample is representative of the Spanish economy, I

have drawn the input-output table of 2010 as a network.8 In Figure 4 are depicted the

sectors by volume of inputs and outputs at current prices. Those sectors with the largest

volume are at the center of the network, and on the periphery are those who have less

volume. Additionally, the weighting of the nodes by volume allow to identify those sectors

with the highest relative importance in the Spanish economy.

Both the summary table and the network agree in pointing out that the most impor-

tant sectors in Spain are Wholesale, Construction and Food products. Other important

sectors are Electricity and Real State. Yet these have not been considered in the sample,

because of the reasons above mentioned.

8The year 2010 is the last year in which these tables tables were calculated, since INE cal-
culates them every five years, and 2015 tables are not available yet. More recent input-output
tables, year 2011, can be found at OCDE.stat. Nevertheless, these tables contain less sectors
than the other ones and they are calculated in dollars.
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Table 1: Sector definitions and number of firms in each sector. Firms operating in more than one
sector are classified according to the first SIC code they have. The fourth columns refers to the
firms which have been in the top 100 for at least one period. The fifth column refers to the top 100
firms that have observations in all periods. Source: own elaboration from SABI database.

Division SIC/Sector Total No. Top 100 Top 100
of �rms �rms long-lived

Agriculture, Forestry, & Fishing 01 Agricultural Production - Crops 112 0 0
02 Agricultural Production - Livestock 258 0 0
07 Agricultural Services 61 1 0
08 Forestry 23 0 0
09 Fishing, Hunting, & Trapping 49 0 0

Mining 10 Metal, Mining 17 0 0
12 Coal Mining 23 0 0
14 Nonmetallic Minerals, Except Fuels 159 0 0

Construction 15 General Building Contractors 4076 16 2
16 Heavy Construction, Except Building 390 7 2
17 Special Trade Contractors 943 3 0

Manufacturing 20 Food & Kindred Products 1918 19 2
21 Tobacco Products 14 1 0
22 Textile Mill Products 267 0 0
23 Apparel & Other Textile Products 163 0 0
24 Lumber & Wood Products 225 0 0
25 Furniture & Fixtures 190 0 0
26 Paper & Allied Products 422 4 0
27 Printing & Publishing 472 0 0
30 Rubber & Miscellaneous Plastics Products 475 2 1
31 Leather & Leather Products 55 0 0
32 Stone, Clay, & Glass Products 804 0 0
33 Primary Metal Industries 484 11 1
34 Fabricated Metal Products 932 0 0
35 Industrial Machinery & Equipment 626 0 0
36 Electronic & Other Electric Equipment 486 5 1
37 Transportation Equipment 551 15 5
38 Instruments & Related Products 106 0 0
39 Miscellaneous Manufacturing Industries 101 0 0

Transportation & Public Utilities 40 Railroad Transportation 20 2 0
41 Local & Interurban Passenger Transit 326 1 0
42 Trucking & Warehousing 702 0 0
43 U.S. Postal Service 16 1 0
44 Water Transportation 273 0 0
45 Transportation by Air 87 7 0
47 Transportation Services 414 9 0
48 Communications 251 16 2

Wholesale Trade 50 Wholesale Trade - Durable Goods 5169 35 5
51 Wholesale Trade - Nondurable Goods 3757 24 2

Retail Trade 52 Building Materials & Gardening Supplies 67 1 0
53 General Merchandise Stores 68 1 0
54 Food Stores 296 16 5
55 Automative Dealers & Service Stations 305 1 0
56 Apparel & Accessory Stores 171 6 1
57 Furniture & Homefurnishings Stores 175 1 0
58 Eating & Drinking Places 170 0 0
59 Miscellaneous Retail 321 2 0

Services 70 Hotels & Other Lodging Places 559 0 0
72 Personal Services 74 0 0
73 Business Services 1582 15 0
75 Auto Repair, Services, & Parking 199 0 0
76 Miscellaneous Repair Services 73 0 0
78 Motion Pictures 143 1 0
79 Amusement & Recreation Services 301 1 0
80 Health Services 299 0 0
81 Legal Services 48 0 0
82 Educational Services 113 0 0
83 Social Services 86 1 0
84 Museums, Botanical, Zoological Gardens 18 0 0
86 Membership Organizations 6 0 0
87 Engineering & Management Services 986 6 0

Total No. Firms 31477 231 29

9
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Fig. 4: The production network corresponding to Spain input-output table at basic prices in 2010.
The sample is composed by 64 sector. Larger (green) nodes closer to the centre of the net-
work represent sectors having more weight in the economy. The 1-5 labels give the top 5 in the
ranking. Constructions(1), Food and beverages(2), Electricity(3), Whole sales(4) and Real state
services(5). Although industries in the input-output tables are reported in the NACE code, the
interpretation is not affected.9Source: Instituto Nacional de Estadística (INE). Done using GEPHI.

Having presented the process by which it was obtained the final sample of firms that

will be used in this work, the next step is to present the main statistics that identify the

sample.

9NACE acronym comes from the French term “nomenclature statistique des activités
économiques dans la Communauté européenne". It is the classification system of economic
activities used in the European Union. This code is used for the organization and recording of
data in the framework of Eurostat.
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3.1 Descriptive statistics

In order to introduce some of the characteristics of the sample, I used a box plot of

the data. But because of the high dispersion of the observations, consequence of the

existence of very small and very large companies, I have not shown the entire sample in

a single graph but in six different parts.10 To this end, I have ordered the companies in

descending order by size, both for sales variable as employees, and then I have divided

them.

For the sales variable, shown in Figure 5, the first notable feature in all panels is

that the evolution of the median over the years is very similar to the evolution of the

economic cycle, shown in Figure 2. One can also observe that most of the sales volume

is concentrated on the right side of the distribution, this means that a relatively small part

of the companies has a turnover much greater than most companies that make up the

distribution.

Focusing on the first panel, the top 100 companies with the largest sales volume, the

evolution of the largest firm in the sample stands out throughout the recession phase of

the Spanish economy. This company is Mercadona SA, which since 2007 has the largest

sales volume of the sample. This company, unlike others, has not suffered, at least in

terms of sales, the impact of the recession. In particular, Mercadona has risen from

0.43% sales as a fraction of GDP in 2007 to 1.77% in 2014. This represents an increase

of approximately 142%. In the hypothetical case that Mercadona suffered a shock it is

hard to say that it would not have a significant impact on the Spanish economy. This

case provides a first insight into the impact of large companies on the evolution of the

economy.

Regarding the number of employees, shown in Figure 6, the figures are not far from

those presented to the sales variables. There remains a right asymmetry in the distri-

bution for all panels, so most of the number of employees presented in the distribution

belongs to a small number of companies that are considerably larger. Furthermore, within

the top 100 Largest Employers Mercadona SA has again highlighted by growth in times

of crisis.

From Figures 5 and 6, we can say that there is a first evidence of the existence of

granularity in the Spanish economy. What on the other hand is not a novel finding, since

it is obvious that there are wide disparities between firms. However, which is not so

obvious is whether this granularity is significant for the Spanish case.

10The criterion for dividing the sample is discretionary.

11
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Fig. 5: Descriptive statistics for the variable Sales. Top left panel shows the firms ranked between
1 and 100 with more sales and top right panel shows firms between 100 and 500. At the middle,
the left panel shows firms between 500 and 1000, and right panel between 1000 and 5000.
Bottom right panel are firms between 5000 and 10000, and bottom left panel shows firms between
10000 and the end of the sample. Source: own elaboration from SABI database.
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Fig. 6: Descriptive statistics for the variable Employees. The panels have been built following the
same criteria than the ones showed in the figure 5. Source: own elaboration from SABI database.
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3.2 Empirical distributions

To carry out the graphical representation of the distribution of company size, measured by

sales volume, I have resorted to the kernel density estimation, a nonparametric method

of estimating the probability density function. The kernel density estimator is defined as

f̂h(x) = (nh)−1
n∑
i=1

K

(
x− xi
h

)

where K(·) is a kernel function and h is a smoothing parameter which must be greater

than zero. For the representation of the distribution I have chosen a bandwidth equal to

0.5, following the analysis of Segarra & Teruel (2012). The resulting estimated density is

presented in Figure 7 along with normal density.11 As one can see, for both 2007 and

2014, the tails are wider at the estimated density than the normal one.12

Fig. 7: Firm size distribution of lnSales in 2007 in the left panel, and lnSales in 2014 in the right
panel. The curves are obtained using a normal kernel density smoother with a bandwidth of 0.5.
Source: own elaboration.

With the aim to extend the analysis to all periods of the sample I made the normality

11In this case, I consider a log-normal distribution for sales variable, i.e lnS ∼ N (µ, σ2).
12The analysis could be made for any of the years under study, but I think that these years may

be especially important, as they represent one the last year the growth cycle and another the last
year of the sample, which seems to have a glimmer of recovery after the recession.
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test based on the Jarque-Bera (JB) statistic. This test checks whether the skewness and

kurtosis of the sample coincide with the normal distribution. The statistical JB is defined

as

JB =
n

6

(
S2 +

(K − 3)2

4

)

where n is the sample size, S is the skewness coefficient y K kurtosis coefficient.13 The

results are presented in Table 2, in which one can see how in the majority of the years

under study there is a positive skewness and kurtosis are greater than three, which is the

value of a normal distribution. The value of kurtosis is greater than three, this indicates

that the distribution is leptokurtic, i.e. the distribution is fat-tailed. Finally, the test of nor-

mality is done. For this test, I specified the null hypothesis as existence of lognormality

distribution. As it is shown in Table 2, there is significance, i.e. we can reject the null

hypothesis of lognomality. In all the years under study a 1% significance level.

This find is in line with some studies, such as Ganugi et al. (2005) and Reichstein &

Jensen (2005), who have have concluded that they can reject the lognormal hypothesis

in firm’s size distributions, measuring the size as the amount of sales.

Table 2: Skewness and kurtosis of ln(sales) by year. * Significant at 1%. Sources: own elabora-
tion from SABI database.

Year N Skewness Kurtosis JB statistic
1999 16602 1.039 5.242 6461.8*
2000 18291 1.007 5.214 6829.2*
2001 19509 1.069 5.490 8754*
2002 20585 1.077 5.559 9596.8*
2003 21214 1.075 5.572 9938.7*
2004 21756 1.103 5.707 11051*
2005 22080 1.141 5.790 11953*
2006 22467 1.129 5.820 12217*
2007 21750 1.123 5.813 11747*
2008 20679 1.139 5.805 11254*
2009 20696 1.139 5.722 10865*
2010 20292 1.114 5.667 10211*
2011 19429 1.029 5.438 8242.4*
2012 18589 0.998 5.275 7093.9*
2013 17423 0.961 5.165 6086.3*
2014 11960 0.987 5.364 4727.7*

13Pearson’s skewness coefficient used is defined as S = {
1
n

∑n
i=1(xi−x)3}/{

[ 1
n

∑n
i=1(xi−x)2]

3/2
}.

And Pearson’s kurtosis coefficient used is defined as K = {
1
n

∑n
i=1(xi−x)4}/{

[ 1
n

∑n
i=1(xi−x)2]

2
}
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4 Power law

Axtell (2001) found evidence that the distribution of company size, measured in sales,

can be adjusted by Zipf’s law (Zipf 1949), which is within the category of power law

distributions.

Therefore, based in the existing literature and evidence presented so far, I have de-

cided to analyze the existence of a power law distribution to explain the firm’s size distri-

bution. This is important to quantify the level of heterogeneity in the size of firms, which

is crucial for the granular effect.

4.1 Empirical speci�cation

According to Gabaix (2008), a X variable describes a power law if its Complemetary

Cumulative Distribution Function (CCDF), or P(X ≥ x),14 satisfies, at least in the upper

tail, the following expression:

P(X ≥ x) ' kx−ζ (4.1)

where ζ ≥ 1. This distribution is also known as Pareto distribution, since Pareto (1896)

found that the upper tail of the distribution of a number of people with an income S greater

than a large amount x is proportional to 1/xζ , for ζ > 0, i.e.

P(S ≥ x) =
k

xζ
(4.2)

where k is a constant. A special case of Pareto’s distribution is when the exponent is

close to one. This case is known as Zipf’s law. With ζ ' 1 the firm’s size is inversely

proportional to the firm’s rank (Segarra & Teruel 2012). This means that if we order from

largest to smallest size a sample made up N observations for a variable x, x1 ≥ . . . ≥ xN ,

the size of this variable is equal to 1/rank times the size of the greatest firm. Therefore,

a Zipf’s distribution can be expressed as:15

rank = N · P(X ≥ x) = N
k

xζ
(4.3)

14Following Clauset (2011), a CCDF is defined as 1 − P(X < x), where P(X < x) is the
Cumulative Distribution Function (CDF), which it is defined as the density function that falls within
a certain value x.

15The same approach is exposed by Stanley et al. (1995) in order to explain Zipf’s plot.
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Taking logarithms on both sides of the equation 4.3, the following expression is straight-

forward:

ln rank = K − ζ ln x (4.4)

where K is a constant. Figure 8 shows in the left panel the CCDF, and the right panel

the CCDF in logarithmic terms. As one can see, the CCDF has a characteristic shape, in

“L". This indicates that a very small number of companies account for a large volume of

sales, and a very large number of companies account for a very small volume of sales.

Figure 8 shows the result of applying the Zipf’s law, or “rank-size rule" as it is also

known. In the left pane is depicted empirical the CCDF, where “L" shape can be seen,

which is characteristic of the "rank-size rule".

Fig. 8: Rank-Sales plot in the left panel and the same plot but in log-log scale, also known as
Zipf’s plot, in the right panel. Year 2007. Source: own elaboration.

In the equation 4.4., the exponent could be estimated using Ordinary Least Squares

(OLS). However, Gabaix & Ioannides (2004) found that the exponent ζ estimated by OLS

is biased. So I modify the equation 4.4 using the proposal made by Gabaix & Ibragimov

(2011), which makes it possible to estimate by OLS, and results not only an unbiased but

optimum coefficient. Such modification is as follows:

ln

(
rank − 1

2

)
= K − ζ ln(x) + ε (4.5)
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for which the authors propose a standard error associated to ζ̂ equal to ζ̂(2/n)1/2. Never-

theless, Clauset et al. (2009) claims that there are problems in using OLS to estimate the

exponent of a power law distribution. In their work, these authors suggest that there are

problems in using OLS in order to estimate the probability density function p(x) ∼ cx−α,

from the logarithmic transformation ln p(x) = c − α ln x. Such probability density can

be estimated by constructing a histogram of the data, and the resulting function can be

adjusted by OLS. Specifically, these authors maintain that there are the following prob-

lems:16

1. Errors of OLS regression (ε in the equation 4.5) are difficult to estimate because

they are based on assumptions that do not apply in this case.

2. An adjustment of a power-law function may represent a large fraction of the vari-

ance, and hence high R2 cannot be taken as a evidence in favor of power law.

3. Settings obtained by regression methods usually do not meet basic requirements

on probability distributions, such as normality.

Thus, Clauset et al. (2009), as well as Newman (2005) previously, suggest finding the

estimator using Maximum Likelihood Estimation (MLE), both are based on the original

work of Hill et al. (1975). In the case of continuous data, one begins with a probability

density as specified in the following equation:

p(x) dx = P (x ≤ X < x+ dx) = C x−α dx (4.6)

where X is the observed value, C es a constant, and 2 < α < 3. This equation needs a

minimum in order to be able to specify whether it has a power law behaviour, since the

density diverges when x→ 0, then the power law does not hold for all x ≥ 0. Introducing

that α ≥ 1 they reach the following equation:

p(x) =
α− 1

xmin

(
x

xmin

)−α
(4.7)

And it is from this which is calculated α̂ using MLE, which is presented in this equation

α̂ = 1 + n

[
n∑
i=1

ln
xi
xmin

]−1

(4.8)

16For more detail on the drawbacks see the Appendix A of Clauset et al. (2009).
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for this estimator, the authors propose a standard error associated equal to (α̂− 1)/
√
n.

Having exposed theoretically two alternatives to estimate the existence of power law,

in the next section proceeds to present the results obtained.

4.2 Evidence of power law

The results obtained by applying the method proposed by Gabaix & Ibragimov (2011) are

shown in Table 3. This exponents have been estimated for different sample sizes (N ). The

results show that as N increases the value of the exponent is smaller. Even for the total

sample the exponent is less than 1 for all years. This does not imply the absence of power

law, what happens is that this usually requires a minimum from which such behavior in

the distribution can be seen (power law behaviour works usually asymptotically). This

was mentioned earlier, when I discussed the criticisms made by Clauset et al. (2009) to

using OLS for estimating the behavior of the power law distribution.

The problem that arises here is that when trying to estimate ζ using OLS there is no

optimal procedure to establish the lower bound from which there may be a power law

behaviour. A guide may be graphical representation, such as Zipf’s plot, as discussed

above in Figure 8, right panel. In this case one can see how from a certain volume of

sales there is a truncation point in the distribution. From this point you could set the

cutting to calculate regression.

However, despite the above mentioned results indicate the existence of power law,

since all coefficients are statistically significant at 1%, and are above 1 for limits below

one hundred thousand observations.

The alternative process proposed by Clauset et al. (2009) is more sophisticated than

the previous one, and it provides a greater degree of accuracy. Following the work of

these authors it has been calculated an optimal minimum (xmin) from which one can

observe a power law behaviour in the distribution.17 That threshold means, for each year,

a significant reduction in the number of companies used. The year with which employs

the greater number of observations is 1999, with 31%, while 2011 is the year with less

observations employed, 11%. As it is shown, α̂ is closer to a value of two, and it is

between two and three, which is the usual range for the power law.

17The results shown in Table 4 were calculated using the package developed for RStudio by
Gillespie (2014), who follows the specifications of Clauset et al. (2009). The R code used is
shown in Appendix A.2, code 2.
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Furthermore, to ensure that the distribution is power law and not lognormal, a com-

parison was made between the two distributions. The hypotheses proposed for contrast

are as follows:

H0: power-law distribution

H1: lognormal distribution

The p-value presented in the Table 4 shows that the null hypothesis cannot be rejected

for any of the time periods considered. Hence we can say that there is a power law

behavior in the distributions of each year, with a low probability of error. As an example,

Figure 9 shows how power law distribution is adjusted by the process discussed above.

One can see how the adjustment is made from the optimum minimum, this is why in most

cases it is said that there is a power law behaviour in the upper tail of the distribution.

Table 4: Results from Maximum Likelihood Estimation (MLE) method. N indicates the total num-
ber of observations, n refers to the number of firms above the threshold, α̂ is the scaling parameter
estimated by MLE, and Se(α̂) is the standard error associated to the estimated scaling parameter.
The threshold is in E+07. Sources: own elaboration from SABI database.

Year N n Threshold α̂ Se(α̂) p-value
1999 16602 5249 1,49 2,102 0,0152 0,32
2000 18291 5579 1,69 2,111 0,0149 0,13
2001 19509 5136 2,03 2,130 0,0158 0,55
2002 20585 5175 2,18 2,141 0,0159 0,21
2003 21214 5048 2,42 2,158 0,0163 0,87
2004 21756 4289 3,03 2,166 0,0178 0,87
2005 22080 4495 3,13 2,166 0,0174 0,92
2006 22467 5070 3,09 2,161 0,0163 0,86
2007 21750 5539 3,05 2,158 0,0156 0,89
2008 20679 5536 2,79 2,108 0,0149 0,80
2009 20696 2625 4,77 2,122 0,0219 0,92
2010 20292 2777 4,65 2,121 0,0213 0,99
2011 19429 2141 5,96 2,141 0,0247 0,86
2012 18589 2793 4,47 2,122 0,0212 0,36
2013 17423 2474 4,81 2,112 0,0224 0,30
2014 11960 3242 2,72 2,076 0,0189 0,41
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Fig. 9: Power law and its fit for the year 2007. Sales in million. Source: own elaboration.

Once submitted the result obtained by applying each of the processes, now I intend

to do both comparable. As we have seen, the OLS regression given by Gabaix & Ibragi-

mov (2011) is expressed in Pareto’s law terms, following CCDF. Meanwhile, Clauset et al.

(2009) establishes its approach from PDF. Adamic (2000) shows how coefficients esti-

mated using OLS can be expressed in the same terms that the approach using PDF. The

relationship, from a regression such as ln rank = K − ζ ln x, is α = 1 + 1
ζ . As one can

see in equation 4.5, the approach of this work is the inverse, hence the relationship ought

to be the inverse, resulting in:

α = 1 + ζ (4.9)

The resulting coefficients from applying this transformation to the OLS regression,

with a sample size equal to the MLE method used, are presented in Figure 10. Where

one can see how the estimated exponents of every year are lower than those resulting

from applying MLE. However, they remain above two.
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Fig. 10: Scaling parameter comparison between OLS (α̂OLS) and MLE (α̂MLE) methods. Source:
own elaboration.

Presented the evidence for the existence of power law in the sample, in the following

section I analyze the impact of this on the behavior of idiosyncratic shocks in the Spanish

economy.

To sum up, showing that exist power law behavior in the firm’s size distribution is es-

sential, because it allows us to know that idiosyncratic shocks can resist in the aggregate,

since they decay at a lower rate than the one stated by the Central Limit Theorem. This

breaks the diversification argument, i.e. idiosyncratic shocks do not average out.

5 Idiosyncratic shocks with power law �rms

5.1 The model and its calibration

The model used by Gabaix (2011) to expose its approach has the main characteristic

that production is exogenous, like an endowment, which means that a company does not

require input from any other to manufacture its products, implying that there is no kind of

linkage between the N companies that make up the economy (this is Lucas’ Economy

Islands model). Therefore, if there is no link between companies, GDP (Y ) is equal to the

total amount of sales (S), in mathematical terms:

Yt =
N∑
i=1

Si,t (5.1)
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Then GDP growth will, as shown in equation 5.2, the sum of sales growth of each

company multiplied by the relative weight of each company in the economy.

∆Yt+1

Yt
=

N∑
i=1

∆Si,t+1

Si,t
·
Si,t
Yt

(5.2)

where ∆Yt+1 = Yt+1 − Yt.

Gabaix defines sales growth of a representative firm as follows:

∆Si,t+1

Si,t
= σiεi,t+1 (5.3)

where σi is the volatility of the firm i and εi,t+1 is an error, which is not correlated

(E [εi,t, εj,t] = 0), with mean equal to cero and variance equal to one. By replacing equa-

tion 5.3 into 5.2 one reach:

∆Yt+1

Yt
=

N∑
i=1

σi
Si,t
Yt

εi,t+1 (5.4)

The volatility of GDP growth is defined as:

σGDP =

√
E
(

∆Yt+1

Yt

)2

from the equation 5.4, I can derive the following:

σ2
GDP =

N∑
i=1

σ2
i

(
Si,t
Yt

)2

This equation indicates that the variance of GDP is the product of the sum of the vari-

ance of the idiosyncratic shocks weighted by their weight in the economy. If you continue

solving the equation the result is:

σGDP =

√√√√ N∑
i=1

σ2
i

(
Si,t
Yt

)2

(5.5)

Finally, if all companies have the same standard deviation, σi ≡ σ, equation 5.5 shall
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become:

σGDP = σ

√√√√ N∑
i=1

(
Si,t
Yt

)2

(5.6)

where the second term of the product is the square root of the Herfindahl index of the

economy. Expressed in the same terms as Gabaix, it would be:

σGDP = σ h (5.7)

where h is the square root of the Herfindahl index.

5.2 Testing the diversi�cation argument

At this point, it is necessary to check whether the diversification argument is true, i.e. if

all companies have the same weight in the economy. This fact implies that:

Si,t
Yt

=
1

N

therefore the equation 5.6 becomes:

σGDP =
σ√
N

(5.8)

To check if this is the case of the Spanish economy I have obtained the number of

Spanish companies, which is 3.168.878,18 and I have calculated the average standard

deviation of shocks in the productivity of companies in the sample for the period 1999-

2014, which is about 33.13%, the shock is measured as the volatility ∆ ln(salesi,t). Ac-

cording to equation 5.7 Spanish GDP �uctuations are around the 0.019%, which is not

consistent with the observed �uctuations, which would be around 4.36% between 1999

and 2014.

According to Gabaix (2011), when firm’s distribution is a power-law distribution, as

is the case of the sample that is being used, the diversification argument can only be

18Data for year 2015, extracted from Directorio Central de Empresas, calculated by INE. This
number considers all companies regardless of whether they have a salaried employees or not,
and its legal form. I have also calculated σGDP using the average number of companies, for the
years between 1999 and 2015, which is 3.045.477, and the results do not vary significantly.
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satisfied if ζ ≥ 2. And as one has been seen in Table 3, which follows the Gabaix’s

method, none of the coefficients is equal to or greater than two. Therefore, the result

stated in the previous paragraph is not met because the power-law distribution (with ζ <

2) makes idiosyncratic shocks do not vanish at a rate 1/
√
N .

And then, how fast decay idiosyncratic shocks? With ζ ' 1 Gabaix (2011) argues that

GDP volatility follows

σGDP ∼
aζ

lnN
σ

where aζ is a random variable, whose distribution does not depend on N or σ. Then

idiosyncratic shocks decay at a rate equal to lnN instead of
√
N , so even with a very

large number of companies the idiosyncratic shocks can survive.

5.3 Approximation to the granular effects

To establish whether the effects of granularity are large enough to maintain the idiosyn-

cratic shocks, Gabaix (2011), based on Hulten (1978) theorem, now uses the assumption

that the economy is composed of companies that have linkages between them. These

links are established because some companies buy to others intermediate input for use

them in their own production.

Firstly, Hulten showed that aggregate TFP is:

∆TFPt+1

TFPt
=

N∑
i=1

Si,t
Yt

∆πi,t+1

πi,t
(5.9)

where πi,t+1 is the productivity for firm i in the moment t + 1. Hence the TFP growth

volatility, assuming that all companies have the same standard deviation in productivity,

is:

σTFP = σπ

√√√√ N∑
i=1

(
Si,t
Yt

)2

(5.10)

where σπ =

√
E
(

∆TFPt+1

TFPt

)2
and σπ is the volatility in the productivity of each company.

Equation 5.10 shows that the volatility of TFP is the result of idiosyncratic shocks in pro-

ductivity weighted by the relative weight of the company in the economy. Expressed in
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the same terms as Gabaix, it would be:

σGDP = σπ h (5.11)

where h is the square root of the Herfindahl index.

Based on the equation 5.9, some authors have estimated that GDP growth is propor-

tional to productivity growth multiplied by a factor of use (µ), this is shown in Equation

5.12.

∆Yt+1

Yt
= µ

∆TFPt+1

TFPt
(5.12)

If the above procedure is applied to calculate the standard deviation, the equation

would prove to be:

σGDP = µ σπ

√√√√ N∑
i=1

(
Si,t
Yt

)2

(5.13)

which implies that σGDP = µ σTFP .

In order to show whether the effects of granular can be important, I have taken the

factor of use proposed by Gabaix (2011), µ = 2.6, and I have calculated the square root

of the Herfindahl index for companies in the sample during the years between 1999 and

2014, resulting in 4.81%. Also, the average volatility of the productivity of companies

in the sample is around 37%, calculated as ∆ ln(salesi,t/employeesi,t). The result of

µ · σTFP is approximately 4.62 %, which approximates to the observed σGDP , which is

4.36%.

This section has shown how under a firm’s size distribution characterized as a power

law, the diversification argument does not apply, namely, that in an economy with a large

number of companies shocks do not average out. In addition, I have provided evidence

that the Spanish economy may have a significant component of granularity.

6 Granular Residual

Having shown evidence of the existence of granularity, now I intend to quantify how much

of the variations of Spanish GDP is explained by productivity shocks in top 100 Spanish

companies. To do this, I have calculated the Granular Residual in the same terms as
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Gabaix (2011).

6.1 De�nitions and methodology

Based on equation 5.9 Gabaix defines its granular residual as:

Γt =
K∑
i=1

Si,t−1

Yt−1
(gi,t − gt) (6.1)

where K will be the top 100 companies in Spain. The shock is defined as the difference

between gi,t and gt, being gt = Q−1
∑Q

i=1 gi,t and Q = K.19 Finally, gi,t is the productivity

growth rate, which is defined as the difference between ln (Si,t/Ei,t) and ln (Si,t−1/Ei,t−1).

Where Si,t It represents the amount of sales of the company i en el period of time t, and

Ei,t is the number of employees in the company i en el period of time t. Then, gi,t − gt is

the estimation of the idiosyncratic shock of firm i. And Γt is a sort of weighted sum of this

idiosyncratic shocks.

The process for calculating the granular is based on obtaining the amount of sales

and number of employees for the top 100 companies for the year t − 1, and this has to

be subtracted from the companies that were in the top 100 in the year t. Following this

procedure, some observations have been lost in some years, since there are companies

in the top 100 that do not repeat position from one year to another. Despite this, the

number of missing observations is not significant for any of the years under study. In

addition, to avoid possible distortions arising from excessively high productivity shocks I

have made the winsorizing done by Gabaix (2011). This involves replacing the shocks

higher than 20%, whether they are positive or negative. In mathematical terms it would

be exposed as T (ε̂it) = ε̂it if |ε̂it| ≤ 20%, and T (ε̂it) = sign(ε̂it) ·20% if |ε̂it| ≥ 20%, where

ε̂it = gi,t − gt.

In addition, to control shocks by industry I have also calculated the granular residual

with industry demeaning, which instead of deducting the average productivity shock of the

entire sample, as presented in equation 6.1, only takes into account the industry average

productivity shocks. Gabaix shows that this method is a better estimation procedure for

idiosyncratic shocks. This is re�ected in Equation 6.2 through gIit, where Ii refers to the

company i belonging to the industry I. In this work I consider the industry as the sector

19In this case the number of companies used to calculate the average (Q) is the same as the
number of companies that are in the top (K). But this does not have to be like this. I have done
so to adjust the analysis to the one done by Gabaix.
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associated with the SIC code which the company i belongs to.

Γt =
K∑
i=1

Si,t−1

Yt−1

(
gi,t − gIit

)
(6.2)

The mean industry shock has been calculated as the average of shocks that compa-

nies belonging to a determined sector and inside the top 100 have had. This procedure

has been done to avoid distortions, because if all firms belonging to the same sector (in

the whole sample) were considered, then there would be distorted results.

6.2 Empirical Granular Residual

In order to quantify the granular residual explanatory power I have regressed GDP per

capita growth on the granular residual and its lags.20 Moreover, I have regressed TFP

growth time serie on the granular residual and its lags.21

∆GDPt+1

GDPt
= β0 + β1Γt + β2Γt−1 + β2Γt−2 + εt+1 (6.3)

where β0 is a constant and ε the error term.22

∆TFPt+1

TFPt
= γ0 + γ1Γt + γ2Γt−1 + γ2Γt−2 + εt+1 (6.4)

where γ0 is a constant and ε the error term.

The results presented in Table 5 show how the explanatory power of granular residual

on GDP growth is 36% taking into account the two lags, and 10% with a single lag. How-

ever, considering the adjusted coefficient of determination, which penalizes the inclusion

of additional variables, the explanatory power is considerably reduced. As regard to TFP

growth regressed on the granular residual, R2 is equal to 30%, regardless of whether the

regression includes one or two lags. This leads to the conclusion that the inclusion of the

second lag is unnecessary, since it does not improve the explanatory power. Moreover,

in this regression is important to point out the negative coefficients.

20GDP growth time serie has been obtained from Eurostat database.
21TFP time serie has been obtained from Banco de España web page.
22The number of lags that I have chosen is the same as Gabaix uses. He does not specify at

any time the criteria by which he chooses this amount of lags. In this case, the results do not
change if one includes more lags. Regression does not increase the explanatory power, and the
coefficients do not increase their significance.
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Table 5: Granular Residual Coefficients OLS Regression. Standard errors are given in parenthe-
ses. Significancy levels are indicated as: *Significant at 10%,**Significant at 5%,***Significant at
1%. Sources: own elaboration from SABI database.

GDP Growtht TFP Growtht
(Intercept) 0.0270* 0.0147 0.0006 0.0017

(0,0146) (0,01242) (0,0015) (0,0021)
Γt 1.0567 2.2675** -0.2464* -0.3204

(1.1780) (0.7413) (0.1137) (0.1776)
Γt−1 -1.4912* 0.1546 -0.1820* -0.1678*

(0.8100) (0.6402) (0.0872) (0.0879)
Γt−2 -1.6782* -0.1111

(0.8653) (0.1148)
N 14 13 14 13
R2 0.1060 0.3636 0.3002 0.3000

R2 adj -0.0565 0.1514 0.1730 0.0662

If industry demeaning is applied, results improve in terms of explanatory power, this

can be seen in Table 6. Regressing GDP growth on granular residual one can obtain that

R2 adjusted is greater than in Table 5. Particularly, twice times with the inclusion of one

lag and a 20% greater with two lags. Nevertheless, regressing TFP growth on granular

residual the explanatory power drops, it is reduced by half in the case of one lag and

7.5% for two lags.

Table 6: Granular Residual with industry demeaning coefficients OLS regression. Standard errors
are given in parentheses. Sources: own elaboration from SABI database.

GDP Growtht TFP Growtht
(Intercept) 0.0232* 0.0126 -0.0009 -0.0011

(0.1153) (0.0092) (0.0015) (0.0019)
Γt 2.6277 4.7397*** -0.1572 -0.0725

(1.9663) (1.0964) (0.1647) (0.2274)
Γt−1 -3.3398*** -1.0461 -0.1413 -0.2333

(1.013) (0.0884) (0.3083) (0.2288)
Γt−2 -2.6055*** 0.1021

(0.5819) (0.2055)
N 14 13 14 13
R2 0.2069 0.5633 0.1227 0.075

R2 adj 0.0627 0.4178 -0.0368 -0.2333

One possible explanation for the results of the TFP, so different to those presented

by Gabaix (2011), is that the structural characteristics of the Spanish economy are quite

peculiar. As shown in Section 3, during the period of expansion of the Spanish economy,

the TFP decreased while the GDP increased. Indeed, the correlation coefficient between

the GDP cycle, Figure 2, and TFP growth, Figure 3, is the -43%. This event is explained

by the housing bubble during the expansion phase of the cycle that affected the main
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sector of the Spanish economy, construction sector. Besides this, the five most important

sectors of the economy, shown in Figure 4, are characterized by low productivity.

6.3 Robustness

To conclude this section, I intend to establish a comparison between granular residual ex-

planatory power, oil shocks explanatory power and spread explanatory power. This latter

calculated as the difference between 3 month Letras del Tesoro and 10 years Bond.23

Table 7: Granular Residual with industry demeaning, oil shock and spread between short and
long term debt coefficients OLS regression. Endogenous variable: GDP Growtht. Standard
errors are given in parentheses. Sources: own elaboration from SABI database.

1 2 3 4 5 6

(Intercept) 0.0232* 0.0126 0.0312* 0.0307* 0.0552*** 0.05208***
(0.1153) (0.0092) (0.0152) (0.0152) (0.0157) (0.0147)

Γt 2.6277 4.7393***
(1.9663) (-1.964)

Γt−1 -3.3398*** -1.0461
(1.013) (0.0884)

Γt−2 -2.6055***
(0.5819)

Oilt 7.5127e-05 0.0001**
(7.5221e-05) (4.6755e-05)

Oilt−1 3.2128e-05 3.0502e-05
(6.3580e-05) (7.8359e-05)

Oilt−2 6.8006e-05
(5.8565e-05)

Spreadt -0.0233*** -0.0233***
(0.0055) (0.0047)

Spreadt−1 0.0101 0.0139*
(0.0073) (0.0069)

Spreadt−2 -0.0039
(0.0047)

N 14 13 14 13 14 13
R2 0.2069 0.5633 0.1001 0.2285 0.5816 0.5830

R2 adj 0.0627 0.4178 -0.0628 -0.0287 0.5055 0.4441

I used the way suggested by Hamilton (2003) to measure oil shocks. This form is

based on, from the quarterly series, find the amount that the current oil price exceeds the

maximum price reached last year. Then the sum of shocks within each year is done in

order to find the annual shock.

As shown in Table 7, the granular residual in the Spanish case has a greater explana-

tory power than oil shocks, and it almost has the same explanatory power than the spread

23Data on short and long term debt come from OCDE database. While data used for calculating
oil shocks come from Federal Reserve St. Louis. Furthermore, as prices are in dollars I have
switched them to euros, exchange rate has also been obtained from Federal Reserve St. Louis.
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between short and long term debt. Therefore we can say, based on a fairly large sample

of firms, that there is sufficient evidence to indicate that the Spanish economy is granular.

Finally, note that this analysis could not be performed by gathering all the variables

and their lags in the same equation due to the insufficient number of available years. So

in principle we do not know how much additional explanatory power we have with the

granular residual.

7 Conclusion

This work has analyzed how the Spanish economy is granular in the sense of Gabaix

(2011), i.e. large Spanish companies, in particular the 100 largest, represent a large

GDP fraction and therefore the shocks that may have these companies can be trasnlated

to the aggregate. The explanation of why the idiosyncratic shocks do not cancel out in

the aggregate, as was stated in the diversification argument, is because the firm’s size

distribution does not have thin tails, but fat tails, which makes the law of large numbers

does not apply. This leads shocks to decay at the rate ln N , instead of
√
N , which is the

rate resulting from the application of the Central Limit Theorem. Therefore shocks does

not disappear so quickly when there is a power-law distribution (fat tails).

Using the granular residual as a tool to measure shocks, and regressing GDP on it,

it has been found that the explanatory power is high, around 36% and 56%, considering

the sector each company belongs to. This explanatory power is near, or it is even supe-

rior, to traditional measures of aggregate output variability. However, with regard to the

explanatory power of granular on TFP, I have shown that the results are antagonistic to

those presented by Gabaix (2011). As I mentioned, the cause of these results can be

based on the bubble that suffered the main sector of the Spanish economy during the ex-

pansion phase of the cycle, which increased GDP but not the productivity of the Spanish

economy.

This fact in part explains the limitations of this work, which is conditioned by a fairly

limited period of time, where Spain has suffered a phase of large growth and then the

worst recession in recent history.

But despite the limitations of the work, the granular residual has proved to be a useful

tool, and should be considered in subsequent analyses. And therefore it can serve to

draw some interesting implications, as most prominent example, this work shows that

systemic risk is not an exclusive problem of the financial sector but it can also be present

in other sectors as well. As we have seen, a negative shock in a big firm, such as
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Mercadona, could significantly affect the Spanish economy.

Finally, I would like to suggest a line of future research. This could be based on

the simulation of the behavior of the Spanish economy as a whole in the presence of

granularity, and how it changes in the aggregate when there are potential idiosyncratic

shocks.
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A R codes

In this work we have used the R Studio software for calculating all results presented.24 I

have chosen this software because it is a open software, allowing access to more tools.

In addition, the lower complexity of the code and its intuitive interface make data manip-

ulation and calculation faster and easier.

A.1 Power law R code

To show evidence that firm’s size distribution is a power law, I have used two approaches,

the log-log regression and MLE estimation. The first, log-log regression, is quite simple

in terms of code. As one can see in code 1, I have selected a year, in this case, as an

example, it is 2007. Then I have ordered all the companies by their volume of sales,

in decreasing order. After that I have assigned a number to each firm, this is the new

rank variable. Then, as I am following the approach of Gabaix & Ibragimov (2011), to the

rank variable I have subtracted 1/2. And finally, with regard to data manipulation, I have

selected the variables that will be part of the regression.

To make Table 3 I have used different sample sizes, for that it has been necessary to

establish a cut off, the purpose of this line 5, which takes the n variable as cutting. And

finally line 7 is the regression.

Code 1: log-log Regression

1 regresion = spanish_Data %>% filter(year==2007) %>% arrange(desc(Sales))

24The only exception is Figure 7, where the size distribution of the company is represented.
This was made with Stata14.
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2 regresion = spanish_Data %>% mutate(Rank=seq(from=1, to=nrow(xj))) %>%

mutate(Rank_0=Rank-0.5) %>% select(Name,Sales,Rank)

3

4 n=10001 # For instance

5 regresion = regresion %>% filter(Rank < n)

6

7 lm(log(xj$rank)~log(xj$Operating.revenue)) #log-log Regression

MLE estimation is far more complicated, and it requires a package called powerRlaw.

Code 2 is used to calculate the results presented in Table 4 and represent Figure 9. I will

not comment on the functioning of each line that makes up the function “MLE_estimation",

because the creator of this package has many articles where it is explained. What I think

is worth to point out is that input function must be a vector, in this case sales in a given

year.

Code 2: poweRlaw package for MLE estimation

1 library(poweRlaw)

2

3 MLE_estimation <- function(x,xlabel,ylabel,print=TRUE){

4 m_bl = conpl$new(x)

5 est = estimate_xmin(m_bl)

6 m_bl$setXmin(est)

7 p.plot <- plot(m_bl,main="",ylab="",xlab="",pch=16,col="grey")

8 mtext(ylabel, side=2, line=2.4, cex=1.2)

9 mtext(xlabel, side=1, line=3.3, cex=1.2)

10 p.plot <- lines(m_bl, col="black", lwd=2)

11 max=max(x)

12 cutoff=round(est$xmin,digit=2)

13 lmd=round(est$pars,digit=2)

14 total=length(x)

15 n=sum(x>=cutoff)

16 print(p.plot)

17 return(p.plot) # Function is configured to show the plot

18 }

19

20 MLE_estimation(Vector,"Sales","P(x)")
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A.2 Granular R code

To calculate the granular I have created first what I called “input granular residual" (code

3), which it is a function that joins the dataframes top 100 large companies in the year

t − 1 and firms in the year t, regardless of whether they are in the top 100 or not.

Each dataframe includes Sales and Employees variables, this is why in the code appear,

sales.x (t − 1) y sales.y (t). In addition, I have included in the function the calculation of

the firm’s size relative to the GDP that each company has in the year t− 1.

As an example the line 10 presents the calculation for the first year using data from

the top 100 companies in 1999 and 2000, along with the nominal GDP of 1999.

Code 3: Input Granular Residual

1 input.granular=function(topxo,dx1o,gdp1="gdp"){

2 gx=left_join(topxo,dx1o,by="name")

3 gx=select(gx,name,sales.x,employees.x,sales.y,employees.y,sic.x)

4 gx=mutate(gx,gdp=rep(gdp1))

5 gx=mutate(gx,sgdp=sales.x/gdp)

6 gx=gx[complete.cases(gx),] #Leave only the observations that have no "missing

values"

7 return(gx)

8 }

9

10 g00=input.granular(top99,p00,gdpn$X1999) #As an example (this is done for each

year)

Code 4: Granular Residual

1 granular=function(gx){

2 zt=log((gx$sales.x)/(gx$employees.x))

3 ztt=log((gx$sales.y)/(gx$employees.y))

4 g=(ztt-zt)

5 gmed=mean(g)

6 e=(g-gmed)

7 e=ifelse(e< (-0.2),(-0.2),e)

8 e=ifelse(e>0.2,0.2,e)

9 gr=sum(gx$sgdp*e)

10 return(gr)

11 }

12
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13 a00=granular(g00) #A modo de ejemplo

14

15 gr=data.frame(a00,a01,a02,a03,a04,a05,a06,a07,a08,a09,a10,a11,a12,a13,a14) #This

is the granular serie

Once I have the input, I created a function to calculate the granular from this (code

4). The granular function first calculates the change in productivity of each company

between t (ztt) y t− 1 (zt), which is g (gi in the granular equation, 6.1). Then I calculated

the average of g, which is g, being this average subtracted from g. Possible “outliers"

are softened, as I has been explained, and the sum of all the shocks of each company

multiplied by the relative weight of the economy in t− 1 is performed. Finally, the serie is

created from the data obtained for the granular each year.

Code 5: Granular Residual Industry Demeaning

1 #Industry average

2 gmed_ind=function(gx){

3 m_s= gx %>% group_by(sic.x) %>% summarise(mean(git))

4 return(m_s)

5 }

6

7 gmed00_ind=gmed_ind(g00) #As an example

8

9 p00=left_join(g00,gmed00_ind, by="sic.x") #It is joined by sic

10

11 top.p=function(dx,b){

12 dx=mutate(dx,rank=seq(from=1,to=nrow(dx)))

13 dx=filter(dx,rank<b)

14 }

15

16 b=101

17 top00.ind=top.p(p00,b)#a modo de ejemplo

18

19 granular=function(gx){

20 gmed= gx$‘mean(git)‘

21 e=(gx$git-gmed)

22 e=ifelse(e< (-0.2),(-0.2),e)

23 e=ifelse(e>0.2,0.2,e)

24 gr=sum(gx$sgdp*e)
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25 return(gr)

26 }

27

28 a00=granular(top00.ind) #a modo de ejemplo

29

30 gr=data.frame(a00,a01,a02,a03,a04,a05,a06,a07,a08,a09,a10,a11,a12,a13,a14) #This

is the granular serie

In the case of granular residual with industry demeaning, presented in the code 5, the

difficulty increases because the average subtracted to the shock has to be the average of

the top 100 firms that belong to the same sector. This is the purpose of the first function.

When I have the average for the top 100 companies belonging to the same sector, I put

together this average and the input granular, calculated in code 3, using the SIC code.

This is the function of line 9. Once done this for every year I set the cut for the 100 largest

companies. I create the granular function, under the same parameters as above, but this

time I only take into account the companies that have the same SIC code inside the top

100.

B Granular Residual Graphs

Fig. 11: Granular Residual and Granular Residual Industry Demeaned time series. Source: own
elaboration.

40




	1 Introduction
	2 Related literature
	3 Data set
	3.1 Descriptive statistics
	3.2 Empirical distributions

	4 Power law
	4.1 Empirical specification
	4.2 Evidence of power law

	5 Idiosyncratic shocks with power law firms
	5.1 The model and its calibration
	5.2 Testing the diversification argument
	5.3 Approximation to the granular effects

	6 Granular Residual
	6.1 Definitions and methodology
	6.2 Empirical Granular Residual
	6.3 Robustness

	7 Conclusion
	8 References
	A R codes
	A.1 Power law R code
	A.2 Granular R code

	B Granular Residual Graphs



