FINITE CODIMENSIONAL ISOMETRIES ON SPACES OF VECTOR-VALUED CONTINUOUS FUNCTIONS*

Jesús Araujo ${ }^{\dagger}$ and Juan J. Font ${ }^{\ddagger}$

Abstract

Based on the vector-valued generalization of Holsztyński's theorem by M. Cambern, we provide a complete description of the linear isometries of $C(X, E)$ into $C(Y, F)$ whose range has finite codimension.

1 Introduction.

Throughout this paper, X and Y will stand for compact Hausdorff spaces, and E and F for Banach spaces over the field \mathbb{K} of real or complex numbers. $C(X, E)$ and $C(Y, F)$ will be the Banach spaces of continuous E-valued and F-valued functions defined on X and Y, respectively, endowed with the supremum norm $\|\cdot\|_{\infty}$. If $E=F=\mathbb{K}$, then we will write $C(X)$ and $C(Y)$ instead of $C(X, E)$ and $C(Y, F)$.

The classical Banach-Stone theorem states that if there exists a linear isometry T of $C(X)$ onto $C(Y)$, then there are a homeomorphism ψ of Y onto X and a continuous map $a: Y \longrightarrow \mathbb{K},|a| \equiv 1$, such that T can be written as a weighted composition map, that is,

$$
(T f)(y)=a(y) f(\psi(y)) \text { for all } y \in Y \text { and all } f \in C(X)
$$

[^0]An important generalization of the Banach-Stone theorem was given by W. Holsztyński in [13] (see also [3]) by considering non-surjective isometries. Namely, he proved that, in this case, there is a closed subset Y_{0} of Y where the isometry can still be represented as a weighted composition map.

This result of Holsztyński was used in [11] (see also [2, 4, 9, 10, 12, 14, 16]) to classify linear isometries on $C(X)$ whose range has codimension 1 as follows: Let $T: C(X) \longrightarrow C(X)$ be a codimension 1 linear isometry. Then there exists a closed subset X_{0} of X such that either
(1) $X_{0}=X \backslash\{p\}$
where p is an isolated point of X, or
(2) $X_{0}=X$,
and such that there exists a continuous map h of X_{0} onto X and a function $a \in C\left(X_{0}\right),|a| \equiv 1$, such that $(T f)(x)=a(x) \cdot f(h(x))$ for all $x \in X_{0}$ and all $f \in C(X)$.

In the context of continuous vector-valued functions, M. Jerison ([18]) investigated the vector analogue of the Banach-Stone theorem: If X and Y are compact Hausdorff spaces and E is a strictly convex Banach space, then every linear isometry T of $C(X, E)$ onto $C(Y, E)$ can be written as a weighted composition map; namely, $(T f)(y)=\omega(y)(f(\psi(y)))$, for all $f \in C(X, E)$ and all $y \in Y$, where ω is a continuous map from Y into the space of continuous linear operators from E to E (taking values in the subset of surjective isometries) endowed with the strong operator topology. Furthermore, ψ is a homeomorphism of Y onto X. As in the scalar-valued case, Jerison's results have been extended in many directions (see e.g., [5], [1], [15] or [6]). In particular, M. Cambern obtained in [8] the following formulation of Holsztyński's theorem for spaces of continuous vector-valued functions.

Theorem 1.1 If F is a strictly convex Banach space, then every linear isometry T of $C(X, E)$ into $C(Y, F)$ can be written as a weighted composition map; namely,

$$
(T f)(y)=J_{y}(f(h(y)))
$$

for all $f \in C(X, E)$ and all $y \in Y_{0} \subset Y$, where J is a continuous map from Y into the space $L(E, F)$ of bounded operators from E into F endowed with the strong operator topology, with $\left\|J_{y}\right\| \leq 1$ for all $y \in Y$ and $\left\|J_{y}\right\|=1$ for $y \in Y_{0}$. Furthermore, h is a continuous function of Y_{0} onto X. If E is finite-dimensional, then Y_{0} is a closed subset of Y.

Let us recall that there are counter-examples (see [7] or [18]) which show that all the above results may not hold if the assumption of strict convexity is not observed.

In this paper we provide, based on this theorem of Cambern, a complete description of the linear isometries of $C(X, E)$ into $C(Y, F), E$ and F strictly convex, whose range has finite codimension n_{0}.

2 Preliminaries and main results.

Given a continuous linear operator $T: C(X, E) \longrightarrow C(Y, F)$, the map

$$
\begin{aligned}
J: Y & \longrightarrow L(E, F) \\
y & \mapsto J_{y}
\end{aligned}
$$

given by $J_{y}(\mathbf{e}):=(T \widehat{\mathbf{e}})(y)$ for all $\mathbf{e} \in E$ (being $\widehat{\mathbf{e}}$ the function constantly equal to \mathbf{e}) is well defined and continuous when, as usual, $L(E, F)$ is endowed with the strong operator topology. Furthermore, $\left\|J_{y}\right\| \leq\|T\|$ for all $y \in Y$.

On the other hand, we can define three subsets of Y as follows:
$Y_{3}:=\{y \in Y:(T f)(y)=\mathbf{0} \quad \forall f \in C(X, E)\} ;$
$Y_{1}:=\left\{y \in Y \backslash Y_{3}: \exists x_{y} \in X\right.$ such that $(T f)(y)=\mathbf{0}$ if $\left.f\left(x_{y}\right)=\mathbf{0}, f \in C(X, E)\right\} ;$
$Y_{2}:=Y \backslash\left(Y_{1} \cup Y_{3}\right)$.
It is easy to see that the point $x_{y} \in X$ corresponding to each $y \in Y_{1}$ is uniquely determined, so if we define $\bar{h}: Y_{1} \longrightarrow X$ by $\bar{h}(y):=x_{y}$, then

$$
(T f)(y)=J_{y}(f(\bar{h}(y)))
$$

for every $f \in C(X, E)$ and $y \in Y_{1}$. Summing up, Y_{1} coincides with the subset of Y where T can be written as a (nontrivial) weighted composition map. This implies that, given any $y_{0} \in Y_{1}$ and a neighborhood U of $\bar{h}\left(y_{0}\right)$ in X, there exists $f \in C(X, E)$ such that $f \equiv 0$ outside U and $(T f)\left(y_{0}\right) \neq 0$, so the set V of all $y \in Y_{1}$ with $(T f)(y) \neq 0$ is an open neighborhood of y_{0} in Y_{1}. Now it is clear that $\bar{h}\left(V_{1}\right) \subset U$, and the fact that \bar{h} is continuous follows easily.

Recall that a Banach space E is said to be strictly convex if every element of its unit sphere is an extreme point of the closed unit ball of E. It is wellknown that if E is strictly convex and $\mathbf{e}_{1}, \mathbf{e}_{2} \in E \backslash\{\mathbf{0}\}$, then $\left\|\mathbf{e}_{1}+\mathbf{e}_{2}\right\|=$
$\left\|\mathbf{e}_{1}\right\|+\left\|\mathbf{e}_{2}\right\|$ implies $\mathbf{e}_{1}=r \mathbf{e}_{2}$ for some positive real r (see [19, pp. 332-336]). From this, it is straightforward to see that

$$
\left\|\mathbf{e}_{1}\right\|,\left\|\mathbf{e}_{2}\right\|<\max \left\{\left\|\mathbf{e}_{1}+\mathbf{e}_{2}\right\|,\left\|\mathbf{e}_{1}-\mathbf{e}_{2}\right\|\right\}
$$

whenever $\mathbf{e}_{1}, \mathbf{e}_{2} \in E \backslash\{\mathbf{0}\}$.
From now on, E and F will be strictly convex normed spaces (see Remark 2.1 below). Also, T will be a linear isometry of $C(X, E)$ into $C(Y, F)$ whose range has finite codimension $n_{0} \geq 1$.

For a function $f \in C(X, E)$, we will write $c(f)$ to denote the cozero set of f, that is, $c(f):=\{x \in X: f(x) \neq 0\}$. If V is a subset of X, we will write cl V to denote its closure in X.

We rephrase the formulation of Holsztyński's theorem for spaces of continuous vector-valued functions obtained by M. Cambern in [8].

Theorem 2.1 (Cambern) The restriction of \bar{h} to $Y_{0}:=\left\{y \in Y_{1}:\left\|J_{y}\right\|=1\right\}$ is a continuous function onto X. Also, if E is finite-dimensional, then Y_{0} is a closed subset of Y.

We denote by h the restriction of \bar{h} to Y_{0}. We then have that $h: Y_{0} \longrightarrow X$ is continuous and surjective, and that for $y \in Y_{1} \backslash Y_{0}$, the mapping $J_{y}: E \longrightarrow$ F defined by

$$
J_{y}(\mathbf{e}):=\widehat{\mathbf{e}}(y)
$$

is linear and continuous and its norm is less than 1.
Points in Y_{1} can be classified into two disjoint categories:

$$
\begin{aligned}
Y_{10} & :=\left\{y \in Y_{1}: J_{y} \text { is an isometry }\right\} \\
Y_{11} & :=\left\{y \in Y_{1}: J_{y} \text { is not an isometry }\right\} .
\end{aligned}
$$

We shall see that $Y_{11} \cup Y_{2} \cup Y_{3}$ consists of finitely many isolated points of Y. Indeed, if F is assumed to be infinite-dimensional, then it will be proved that $Y_{11} \cup Y_{2} \cup Y_{3}$ is empty, that is, $Y=Y_{0}=Y_{10}$.

Related to the subsets Y_{0} and Y_{1} and the corresponding maps h and \bar{h}, we consider, for each $x \in X$, the sets

$$
F_{x}:=\left\{y \in Y_{0}: h(y)=x\right\}
$$

and

$$
G_{x}:=\left\{y \in Y_{1}: \bar{h}(y)=x\right\} .
$$

It will turn out that G_{x} (and consequently F_{x}) is finite for every $x \in X$.
Prior to providing the description of T, we still need to classify the points of X into three not necessarily disjoint classes that will be widely used in the paper:

$$
\begin{aligned}
A_{0} & :=\left\{x \in X: \exists y \in F_{x} \text { with } J_{y} \text { not a surjective isometry }\right\} \\
A_{1} & :=\left\{x \in X: \operatorname{card} G_{x} \geq 2\right\} \\
A_{2} & :=\left\{x \in X: x \notin A_{0}, \operatorname{card} G_{x}=1\right\}
\end{aligned}
$$

We shall prove that A_{0} and A_{1} are finite.
Summarizing, there exists $J: Y \longrightarrow L(E, F)$ continuous with respect to the strong operator topology and $\bar{h}: Y_{1} \longrightarrow X$ continuous and surjective such that $(T f)(y)=J_{y}(f(\bar{h}(y)))$ for all $f \in C(X, E)$ and $y \in Y_{1}$. We next state the main results.

Theorem 2.2 Assume that F is infinite-dimensional. Then $Y_{0}=Y_{1}=Y$ and $h=\bar{h}: Y \longrightarrow X$ is a homeomorphism. Moreover, J_{y} is an isometry for all $y \in Y$, which is surjective for all $y \in Y \backslash Y_{N}$, where Y_{N} is a finite subset satisfying

$$
\sum_{y \in Y_{N}} \operatorname{codim}\left(\operatorname{ran} J_{y}\right)=n_{0}
$$

The finite-dimensional case turns out to be more intricate. First it is apparent that, since \bar{h} is surjective, if Y is finite, then X is also finite. Consequently, it is clear that $n_{0}=(\operatorname{dim} F)(\operatorname{card} Y)-(\operatorname{dim} E)(\operatorname{card} X)$. Next we study the case when Y is infinite.

Theorem 2.3 Assume $\operatorname{dim} F<\infty$. If Y is infinite, then the set of all $y \in Y$ for which $J_{y}: E \longrightarrow F$ is a surjective isometry is clopen and its complement is finite. Furthermore,

$$
n_{0}=(\operatorname{dim} F)\left(\operatorname{card}\left(Y_{2} \cup Y_{3}\right)+\sum_{x_{i} \in A_{1}}\left(\operatorname{card}\left(G_{x_{i}}\right)-1\right)\right)
$$

Remark 2.1 Theorem 2.3 does not hold in general if E (or F) is not strictly convex. For instance, suppose that, for $F=\mathbb{K}$ and $E=\mathbb{K}^{2}$ endowed with the sup norm, and Y being the topological sum of two copies $X \times\{1\}, X \times\{2\}$ of X and n_{0} isolated points p_{i}. It is easy to see that the map $T: C(X, E) \longrightarrow$ $C(Y, F)$ defined, for each $f \in C(X, E)$, by $(T f)(x, i):=\left\langle f(x), \mathbf{e}_{\mathbf{i}}\right\rangle$ (where $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}\right\}$ is the canonical basis in $\left.\mathbb{K}^{2}\right)$, and $(T f)\left(p_{j}\right):=0$ for all j, is a linear isometry with codimension n_{0}. As in [17], it can be checked that T is not a weighted composition map.

3 Some previous lemmas.

Lemma 3.1 The set A_{0} is finite.
Proof. Suppose, contrary to what we claim, that A_{0} is infinite. Then we can find pairwise distinct $x_{1}, x_{2}, \ldots, x_{n_{0}+1} \in A_{0}$. For $i=1,2, \ldots, n_{0}+1$, we choose $y_{i} \in F_{x_{i}}$ with $J_{y_{i}}$ not a surjective isometry. Next we divide the set $\left\{1,2, \ldots, n_{0}+1\right\}$ into three mutually disjoint subsets. Namely,

$$
\begin{aligned}
I_{1} & :=\left\{i \in\left\{1,2, \ldots, n_{0}+1\right\}: J_{y_{i}} \text { isometry }\right\} \\
I_{2} & :=\left\{i \in\left\{1,2, \ldots, n_{0}+1\right\}: J_{y_{i}} \text { not injective }\right\} \\
I_{3} & :=\left\{i \in\left\{1,2, \ldots, n_{0}+1\right\}: J_{y_{i}} \text { injective but not isometry }\right\} .
\end{aligned}
$$

Let $i \in I_{2}$. Then there is $\mathbf{e}_{i} \in E$ with $\left\|\mathbf{e}_{i}\right\|=1$ and $J_{y_{i}}\left(\mathbf{e}_{i}\right)=\mathbf{0}$. Take $f_{i} \in C(X)$ such that $0 \leq f_{i} \leq 1, f_{i}\left(x_{i}\right)=1$, and $f_{i}\left(x_{j}\right)=0$ for $j \neq i$. It is clear that, if we put $k_{i}:=f_{i} \mathbf{e}_{i} \in C(X, E)$, then $\left\|k_{i}\right\|_{\infty}=1$ and $\left(T k_{i}\right)\left(y_{i}\right)=\mathbf{0}$. Furthermore, for $j \neq i, 1 \leq j \leq n_{0}+1$, we have that

$$
k_{i}\left(x_{j}\right)=k_{i}\left(h\left(y_{j}\right)\right)=\mathbf{0} .
$$

Hence, $\left(T k_{i}\right)\left(y_{j}\right)=\mathbf{0}$.
Consequently, for each $i \in I_{2}$, the set

$$
V_{i}:=\left\{y \in Y:\left\|\left(T k_{i}\right)(y)\right\|<\frac{1}{2}\right\}
$$

is open in Y and contains y_{j} for all j. For the same reason, if we define $V:=Y$ if $I_{2}=\emptyset$ and

$$
V:=\bigcap_{i \in I_{2}} V_{i}
$$

otherwise, then V is an open neighborhood of y_{j} for all $j \in\left\{1,2, \ldots, n_{0}+1\right\}$.
Next we consider pairwise disjoint open neighborhoods V_{i}^{\prime} of y_{i} in Y for all $i \in\left\{1,2, \ldots, n_{0}+1\right\}$, and define

$$
W_{i}:=V_{i}^{\prime} \cap V
$$

It is clear that $W_{i} \cap W_{j}=\emptyset$ if $i \neq j$ and that $y_{i} \in W_{i}$ for all i.
Next we consider, for each $i \in\left\{1,2, \ldots, n_{0}+1\right\}$, a function $g_{i} \in C(Y)$ such that $0 \leq g_{i} \leq 1, c\left(g_{i}\right) \subset W_{i}$ and $g_{i}\left(y_{i}\right)=1$, and a vector $\mathbf{f}_{i} \in F$ given as follows:

1. If $i \in I_{1}$, then we choose $\mathbf{f}_{i} \notin \operatorname{ran} J_{y_{i}}$ with $\left\|\mathbf{f}_{i}\right\|=1$.
2. If $i \in I_{2} \cup I_{3}$, then we take a norm-one $\mathbf{e}_{i}^{\prime} \in E$ with $0<\left\|J_{y_{i}}\left(\mathbf{e}_{i}^{\prime}\right)\right\|<1$, and define $\mathbf{f}_{i}:=J_{y_{i}}\left(\mathbf{e}_{i}^{\prime}\right)$.

As the codimension of the range of T is n_{0}, there exist $a_{1}, \ldots, a_{n_{0}+1} \in \mathbb{K}$ such that $g:=\sum_{i=1}^{n_{0}+1} a_{i} g_{i} \mathbf{f}_{i} \neq 0$ belongs to the range of T. Let us choose i_{0} such that $\|g\|_{\infty}=\left|a_{i_{0}}\right|\left\|\mathbf{f}_{i_{0}}\right\|$. We claim that $i_{0} \in I_{2}$ (so $I_{2} \neq \emptyset$).

Let $f \in C(X, E)$ with $T f=g$. If we fix $i \in I_{1}$, then

$$
a_{i} \mathbf{f}_{i}=(T f)\left(y_{i}\right)=J_{y_{i}}\left(f\left(h\left(y_{i}\right)\right) .\right.
$$

This is to say that $a_{i} \mathbf{f}_{i}$ belongs to the range of $J_{y_{i}}$ and, since $i \in I_{1}$, we get $a_{i}=0$. Hence $i_{0} \notin I_{1}$. Next, if $i \in I_{3}$, then $g\left(y_{i}\right)=J_{y_{i}}\left(f\left(x_{i}\right)\right)$, and also $g\left(y_{i}\right)=a_{i} \mathbf{f}_{i}=a_{i} J_{y_{i}}\left(\mathbf{e}_{i}^{\prime}\right)$, implying that $\left|a_{i}\right|=\left|a_{i}\right|\left\|\mathbf{e}_{i}^{\prime}\right\|=\left\|f\left(x_{i}\right)\right\| \leq\|g\|_{\infty}$. Hence $\left|a_{i}\right|\left\|\mathbf{f}_{i}\right\|<\|g\|_{\infty}$ and $i_{0} \notin I_{3}$, as we wanted to prove.

Since $\|g\|_{\infty}=\left|a_{i_{0}}\right|\left\|\mathbf{f}_{i_{0}}\right\|=\left\|J_{y_{i_{0}}}\left(f\left(x_{i_{0}}\right)\right)\right\|$, we deduce that $f\left(x_{i_{0}}\right) \neq \mathbf{0}$ and, since E is strictly convex, it is now clear that either

$$
\left\|k_{i_{0}}\left(x_{i_{0}}\right)+f\left(x_{i_{0}}\right)\right\|>1
$$

or

$$
\left\|k_{i_{0}}\left(x_{i_{0}}\right)-f\left(x_{i_{0}}\right)\right\|>1,
$$

that is, either $\left\|k_{i_{0}}+f\right\|_{\infty}>1$ or $\left\|k_{i_{0}}-f\right\|_{\infty}>1$.
With no loss of generality, we shall assume that $\|g\|_{\infty}=\frac{1}{2}$.
We claim that $\left\|T k_{i} \pm g\right\|_{\infty} \leq 1$ for all i. To this end, fix $y \in Y$ and assume first that $y \in c(g)$, so $y \in V$. Hence $\left\|\left(T k_{i}\right)(y)\right\|<1 / 2$ and, consequently,
$\left\|\left(T k_{i} \pm g\right)(y)\right\|<1$. Assume next that $y \notin c(g)$, which is to say that $g(y)=\mathbf{0}$. Then, since $\left\|k_{i}\right\|_{\infty}=1,\left\|\left(T k_{i} \pm g\right)(y)\right\| \leq 1$. Hence

$$
\left\|T k_{i} \pm g\right\|_{\infty} \leq 1
$$

This contradicts the isometric property of T, and we are done.
The proof of the following lemma is immediate.
Lemma 3.2 Let $x \in X$ and let $y_{1}, y_{2} \in G_{x}$ with $J_{y_{1}}$ injective. If $g \in C(Y, F)$ satisfies $g\left(y_{1}\right)=0$ and $g\left(y_{2}\right) \neq 0$, then $g \notin \operatorname{ran} T$.

Lemma 3.3 The set A_{1} is finite.
Proof. Suppose, contrary to what we claim, that A_{1} is infinite. Then, since A_{0} is finite by Lemma 3.1, we can find pairwise distinct $x_{1}, x_{2}, \ldots, x_{n_{0}+1}$ in $A_{1} \backslash A_{0}$. For each $i=1,2, \ldots, n_{0}+1$, we choose two distinct elements y_{i}^{1}, y_{i}^{2} in $G_{x_{i}}$. Since h is onto, we can assume that $y_{i}^{1} \in F_{x_{i}}$ for all i.

Also for each i, we can choose a function $g_{i} \in C(Y, F)$ such that

- $g_{i}\left(y_{i}^{2}\right) \neq \mathbf{0}$ and $\left.g_{i}\left(y_{j}^{2}\right)\right)=\mathbf{0}$ for $j \neq i$.
- $g_{i}\left(y_{j}^{1}\right)=\mathbf{0}$ for all $j=1,2, \ldots, n_{0}+1$.

By Lemma 3.2, no nonzero linear combination of the g_{i} belongs to ran T, which is impossible.

Lemma 3.4 For each $x \in X$, the set G_{x} is finite.
Proof. Suppose, contrary to what we claim, that there is $x_{0} \in X$ such that $G_{x_{0}}$ is infinite.

First, if there exists $y_{0} \in G_{x_{0}}$ such that $J_{y_{0}}$ is injective, then we take $y_{1}, y_{2}, \ldots, y_{n_{0}+1} \in G_{x_{0}}$ pairwise distinct and different from y_{0}. For each $i \in\left\{1,2, \ldots, n_{0}+1\right\}$ we choose a function $g_{i} \in C(Y, F)$ such that $g_{i}\left(y_{i}\right) \neq \mathbf{0}$ and $g_{i}\left(y_{j}\right)=\mathbf{0}=g_{i}\left(y_{0}\right)$ for $j \neq i$. Using Lemma 3.2, no nontrivial linear combination of the g_{i} belongs to ran T. We conclude that, for all $y \in G_{x_{0}}$, J_{y} is not injective.

We shall prove that this is also impossible. To this end, let us first see that

$$
G_{x_{0}} \cap \operatorname{cl}\left(h^{-1}\left(X \backslash A_{0}\right)\right)=\emptyset
$$

If $y \in G_{x_{0}}$, then there exists $\mathbf{e}_{y} \in E,\left\|\mathbf{e}_{y}\right\|=1$, such that $J_{y}\left(\mathbf{e}_{y}\right)=0$. On the other hand, given $y^{\prime} \in h^{-1}\left(X \backslash A_{0}\right)$, $J_{y^{\prime}}$ is an isometry and, consequently, $\left\|J_{y^{\prime}}\left(\mathbf{e}_{y}\right)\right\|=1$. In other words, we have that $\left(T \widehat{\mathbf{e}_{y}}\right)(y)=0$ and, for all $y^{\prime} \in h^{-1}\left(X \backslash A_{0}\right),\left\|\left(T \widehat{\mathbf{e}_{y}}\right)\left(y^{\prime}\right)\right\|=1$. This yields $y \notin \operatorname{cl}\left(h^{-1}\left(X \backslash A_{0}\right)\right)$.

Since we are assuming that $G_{x_{0}}$ is infinite, we can now consider two subsets of $G_{x_{0}},\left\{y_{1}^{1}, \ldots, y_{n_{0}+1}^{1}\right\}$ and $\left\{y_{1}^{2}, \ldots, y_{n_{0}+1}^{2}\right\}$, consisting of $2 n_{0}+2$ pairwise distinct elements.

Let us also consider, for each $i \in\left\{1,2, \ldots, n_{0}+1\right\}$ and each $j \in\{1,2\}$, an open neighborhood U_{i}^{j} of y_{i}^{j} such that $U_{i}^{j} \cap h^{-1}\left(X \backslash A_{0}\right)=\emptyset$. Clearly, we can assume that these $2 n_{0}+2$ sets are pairwise disjoint, and then take functions $g_{i}^{j} \in C(Y, F)$ such that $c\left(g_{i}^{j}\right) \subset U_{i}^{j}$ and $\left\|g_{i}^{j}\left(y_{i}^{j}\right)\right\|=1=\left\|g_{i}^{j}\right\|_{\infty}$ for all i, j. Then we have two nonzero functions $g_{1}:=\sum_{i=1}^{n_{0}+1} \alpha_{i} g_{i}^{1}$ and $g_{2}:=\sum_{i=1}^{n_{0}+1} \beta_{i} g_{i}^{2}$ in the range of T, that is, $T f_{1}=g_{1}$ and $T f_{2}=g_{2}$ for some $f_{1}, f_{2} \in C(X, E)$. Assume, without loss of generality, that $\left\|g_{1}\right\|_{\infty}=\left\|g_{2}\right\|_{\infty}=1$.

Since $g_{i} \equiv 0$ on $h^{-1}\left(X \backslash A_{0}\right)(i=1,2)$, we infer that $f_{i} \equiv 0$ on $X \backslash A_{0}$. However, if $f_{i}\left(x_{0}\right)=\mathbf{0}$, then $g_{i}(y)=\mathbf{0}$ for all $y \in G_{x_{0}}$. Consequently, $f_{i}\left(x_{0}\right) \neq \mathbf{0}$ for $i=1,2$. As A_{0} is finite and $x_{0} \in A_{0}$, we deduce that $\left\{x_{0}\right\}$ is an open set. Then we can write the functions f_{i} as

$$
f_{i}=f_{i} \chi_{\left\{x_{0}\right\}}+f_{i} \chi_{A_{0} \backslash\left\{x_{0}\right\}} .
$$

As $f_{i} \chi_{A_{0} \backslash\left\{x_{0}\right\}}\left(x_{0}\right)=\mathbf{0}$, then $\left(T f_{i} \chi_{A_{0} \backslash\left\{x_{0}\right\}}\right)(y)=\mathbf{0}$ for all $y \in G_{x_{0}}$, so $\left(T f_{i} \chi_{\left\{x_{0}\right\}}\right)(y)=$ $\left(T f_{i}\right)(y)$ for all $y \in G_{x_{0}}$.

Hence, since each $\left\|T f_{i}(y)\right\|=\left\|g_{i}(y)\right\|$ attains its maximum in $G_{x_{0}}$,

$$
\left\|T f_{i} \chi_{\left\{x_{0}\right\}}\right\|_{\infty} \geq\left\|T f_{i}\right\|_{\infty}=1
$$

implying that $\left\|T f_{i} \chi_{\left\{x_{0}\right\}}\right\|_{\infty}=1$. This yields $\left\|f_{i}\left(x_{0}\right)\right\|=1, i=1,2$. As a consequence, either $\left\|f_{1}\left(x_{0}\right)+f_{2}\left(x_{0}\right)\right\|>1$ or $\left\|f_{1}\left(x_{0}\right)-f_{2}\left(x_{0}\right)\right\|>1$, which implies that either

$$
\left\|T f_{1}+T f_{2}\right\|_{\infty}>1
$$

or

$$
\left\|T f_{1}-T f_{2}\right\|_{\infty}>1
$$

These inequalities contradict the fact that

$$
\left\|g_{1} \pm g_{2}\right\|_{\infty}=\max \left(\left\|g_{1}\right\|_{\infty},\left\|g_{2}\right\|_{\infty}\right)=1
$$

Lemma 3.5 The set Y_{3} is finite.
Proof. Suppose that there exist $n_{0}+1$ distinct points $y_{1}, \ldots, y_{n_{0}+1}$ in Y_{3}. Let us choose $n_{0}+1$ functions $g_{1}, \ldots, g_{n_{0}+1}$ in $C(Y, F)$ such that $g_{i}\left(y_{j}\right)=\mathbf{0}$ if $i \neq j$ and $g_{i}\left(y_{i}\right) \neq \mathbf{0}$ for $i \in\left\{1, \ldots, n_{0}+1\right\}$. It is apparent that no nonzero linear combination of $\left\{g_{1}, \ldots, g_{n_{0}+1}\right\}$ belongs to the range of T, which is impossible.

Lemma 3.6 The set Y_{2} is finite and each point of Y_{2} is isolated in Y.
Proof. We first check that $Y_{2} \cap \operatorname{cl} Y_{1}=\emptyset$. Obviously, $Y_{2} \cap Y_{1}=\emptyset$.
First, by Lemmas 3.1, 3.3 and 3.4, $\bar{h}^{-1}\left(A_{0} \cup A_{1}\right)$ is finite. Since $X=$ $A_{0} \cup A_{1} \cup A_{2}$, in order to prove that $Y_{2} \cap \operatorname{cl} Y_{1}=\emptyset$, it suffices to check that

$$
Y_{2} \cap \operatorname{cl}\left(\bar{h}^{-1}\left(A_{2}\right)\right)=\emptyset
$$

which, by the definition of A_{2}, is the same as proving $Y_{2} \cap \operatorname{cl}\left(h^{-1}\left(A_{2}\right)\right)=\emptyset$.
Let $y_{0} \in \operatorname{cl}\left(h^{-1}\left(A_{2}\right)\right)$ and consider, for $f \in C(X, E)$ and $\epsilon>0$, the set

$$
K(f, \epsilon):=\left\{x \in X:\left|\|f(x)\|-\left\|(T f)\left(y_{0}\right)\right\|\right| \leq \epsilon\right\} .
$$

Each of these is a closed subset of X, which is also nonempty as a consequence of the fact that, for each $y \in h^{-1}\left(A_{2}\right),\|f(h(y))\|=\|(T f)(y)\|$. We are going to check that the family of all these sets satisfies the finite intersection property. Indeed, we shall prove that if $f_{1}, \ldots, f_{n} \in C(X, E)$ and $\epsilon_{1}, \ldots, \epsilon_{n}>$ 0 , then

$$
\bigcap_{i=1}^{n} K\left(f_{i}, \epsilon_{i}\right) \neq \emptyset .
$$

The set

$$
U:=\bigcap_{i=1}^{n}\left\{y \in Y:\left\|\left(T f_{i}\right)(y)-\left(T f_{i}\right)\left(y_{0}\right)\right\|<\epsilon_{i}\right\}
$$

is an open neighborhood of y_{0} and, by assumption, there exists $y_{1} \in h^{-1}\left(A_{2}\right) \cap$ U. Then

$$
\left\|\left\|\left(T f_{i}\right)\left(y_{1}\right)\right\|-\right\|\left(T f_{i}\right)\left(y_{0}\right)\left\|\|<\epsilon_{i}\right.
$$

for $i=1,2, \ldots, n$. On the other hand, for each $i,\left(T f_{i}\right)\left(y_{1}\right)=J_{y_{1}}\left(f_{i}\left(h\left(y_{1}\right)\right)\right)$ and, as $J_{y_{1}}$ is a surjective isometry, we have that $\left\|\left(T f_{i}\right)\left(y_{1}\right)\right\|=\left\|f_{i}\left(h\left(y_{1}\right)\right)\right\|$. Consequently,

$$
\left|\left\|f_{i}\left(h\left(y_{1}\right)\right)\right\|-\left\|\left(T f_{i}\right)\left(y_{0}\right)\right\|\right|<\epsilon_{i}
$$

which implies that, as was to be proved,

$$
h\left(y_{1}\right) \in \bigcap_{i=1}^{n} K\left(f_{i}, \epsilon_{i}\right) .
$$

Hence, since X is compact, there exists

$$
x_{0} \in \bigcap_{\substack{\epsilon>0 \\ f \in C(X, E)}} K(f, \epsilon) .
$$

By definition, we deduce that, for every $f \in C(X, E),\left\|f\left(x_{0}\right)\right\|=\left\|(T f)\left(y_{0}\right)\right\|$. In particular, if $f\left(x_{0}\right)=\mathbf{0}$, then $(T f)\left(y_{0}\right)=\mathbf{0}$, and consequently $y_{0} \notin Y_{2}$. This contradiction yields

$$
Y_{2} \cap \operatorname{cl} Y_{1}=\emptyset
$$

Now, as $Y_{2}=Y \backslash\left(Y_{3} \cup \mathrm{cl} Y_{1}\right)$ and Y_{3} is a finite set, we infer that Y_{2} is open.
Next, suppose that Y_{2} contains infinitely many elements. Then there exist $n_{0}+1$ pairwise disjoint open subsets $V_{1}, \ldots, V_{n_{0}+1}$ contained in Y_{2}. For each $i \in\left\{1,2, \ldots, n_{0}+1\right\}$, we can take $g_{i} \in C(Y, F), g_{i} \neq 0$, with $c\left(g_{i}\right) \subset V_{i}$. From the finite codimensionality of the range of T, we infer that there exists a nonzero linear combination $g:=\sum_{i=1}^{n_{0}+1} \alpha_{i} g_{i}$ in the range of T, that is, there exists $f \in C(X, E)$ such that $T f=g$. Then, it is apparent that $g\left(h^{-1}(X)\right) \equiv 0$ and, in order to get a contradiction, it suffices to check that $f(X) \equiv 0$. To this end, note that, by definition, if $x \notin A_{0}$, then, given $y \in F_{x}, J_{y}$ is an isometry. Hence, $\mathbf{0}=(T f)(y)=J_{y}(f(x))$ yields $f(x)=\mathbf{0}$, which is to say that $f \equiv 0$ on X except perhaps on a finite set $\left\{x_{1}, \ldots, x_{n}\right\} \subset A_{0}$. Then we can write $f=f \chi_{\left\{x_{1}\right\}}+\ldots+f \chi_{\left\{x_{n}\right\}}$. Also for each $y \in Y_{1}$, there exists at most one i such that $\left(T f \chi_{\left\{x_{i}\right\}}\right)(y) \neq \mathbf{0}$ because in that case, necessarily, $\bar{h}(y)=x_{i}$. We then infer that $T f \chi_{\left\{x_{i}\right\}} \equiv \mathbf{0}$ on Y_{1} for all i. Hence there exists $y_{1} \in Y_{2}$ such that $\left\|\left(T f \chi_{\left\{x_{i}\right\}}\right)\left(y_{1}\right)\right\|=$ $\left\|T f \chi_{\left\{x_{i}\right\}}\right\|_{\infty} \neq 0$ for some $i \in\{1, \ldots, n\}$. Since $y_{1} \in Y_{2}$, we can find $k \in$ $C(X, E)$ such that $k\left(x_{i}\right)=\mathbf{0}$ and $(T k)\left(y_{1}\right) \neq \mathbf{0}$. If we suppose, with no loss of generality, that $\|k\|_{\infty}=\left\|f \chi_{\left\{x_{i}\right\}}\right\|_{\infty}=1$, then $\left\|k \pm f \chi_{\left\{x_{i}\right\}}\right\|_{\infty}=1$, but either $\left\|\left(T f \chi_{\left\{x_{i}\right\}}\right)\left(y_{1}\right)+(T k)\left(y_{1}\right)\right\|>1$ or $\left\|\left(T f \chi_{\left\{x_{i}\right\}}\right)\left(y_{1}\right)-(T k)\left(y_{1}\right)\right\|>1$, which is impossible.

Lemma 3.7 The set $Y_{11} \cup Y_{2} \cup Y_{3}$ is finite, and all of its points are isolated in Y.

Proof. We already know, by Lemma 3.6, that the result is true for Y_{2}. On the other hand, it is apparent that

$$
Y_{11} \subset \bigcup_{x \in X \backslash A_{0}}\left(G_{x} \backslash F_{x}\right) \cup \bigcup_{x \in A_{0}} G_{x}
$$

Since A_{0}, A_{1} and G_{x} are finite sets (see Lemmas 3.1, 3.3 and 3.4), then we deduce that Y_{11} is finite. Also, for any $\mathbf{e} \in E,\|\mathbf{e}\|=1$, the open set $C_{\mathbf{e}}:=\{y \in Y:\|(T \widehat{\mathbf{e}})(y)\|<1\}$ is contained in the finite set $Y_{11} \cup Y_{2} \cup Y_{3}$, which implies that $C_{\mathbf{e}}$ consists of isolated points. If $y_{0} \in Y_{11}$, then there exists $\mathbf{e} \in E$ such that $\|\mathbf{e}\|=1$ and $\left\|(T \widehat{\mathbf{e}})\left(y_{0}\right)\right\|=\left\|J_{y_{0}}(\mathbf{e})\right\|<1$, which is to say that $y_{0} \in C_{\mathbf{e}}$, that is, it is isolated.

A similar reasoning shows that every element of Y_{3} is isolated in Y.
Corollary 3.1 Y_{1} is a clopen subset of Y.

4 The infinite-dimensional case

In this section we shall assume that F is infinite-dimensional. Our first result shows that J_{y} is an isometry for all $y \in Y$.

Lemma 4.1 $Y_{11} \cup Y_{2} \cup Y_{3}=\emptyset$.
Proof. Suppose that $y_{0} \in Y_{11} \cup Y_{2} \cup Y_{3}$ and consider $n_{0}+1$ linearly independent vectors $\mathbf{g}_{1}, \ldots, \mathbf{g}_{n_{0}+1} \in F$. Since $\left\{y_{0}\right\}$ is a clopen subset (Lemma 3.7), then $\chi_{\left\{y_{0}\right\}} \mathbf{g}_{1}, \ldots, \chi_{\left\{y_{0}\right\}} \mathbf{g}_{n_{0}+1}$ belong to $C(Y, F)$ and are linearly independent. Then, there exists a nonzero linear combination

$$
g:=\sum_{i=1}^{n_{0}+1} \alpha_{i} \chi_{\left\{y_{0}\right\}} \mathbf{g}_{i}
$$

in the range of T.
It is apparent that $g\left(h^{-1}\left(X \backslash A_{0}\right)\right) \equiv 0$. Hence, $f:=T^{-1} g$ satisfies $f\left(X \backslash A_{0}\right) \equiv 0$ and, if we write $A_{0}=\left\{x_{1}, \ldots, x_{k}\right\}$ (see Lemma 3.1), then $f=f \chi_{\left\{x_{1}\right\}}+\ldots+f \chi_{\left\{x_{k}\right\}}$. As $g\left(y_{0}\right) \neq \mathbf{0}$, we infer that $y_{0} \notin Y_{3}$. Hence we only have two possible cases:

1. $y_{0} \in Y_{2}$
2. $y_{0} \in Y_{11}$

Before studying these cases, we need some preparation. With no loss of generality, we can assume that $\|g\|_{\infty}=\|f\|_{\infty}=1$. Hence, there exists $j \in\{1, \ldots, k\}$, say $j=1$, such that $\left\|f\left(x_{1}\right)\right\|=1$. Let us now check that $f\left(x_{2}\right)=\cdots=f\left(x_{k}\right)=\mathbf{0}$. To this end, we define

$$
\begin{gathered}
f_{1}:=f \chi_{\left\{x_{1}\right\}} \\
f_{2}:=f \chi_{\left\{x_{2}, \ldots, x_{k}\right\}}
\end{gathered}
$$

Claim 4.1 $T f_{1}=g$.
As $\left\|f\left(x_{1}\right)\right\|=1$, there is $y_{1} \in Y$ with $\left\|\left(T f_{1}\right)\left(y_{1}\right)\right\|=1$. Besides, as $f_{1} \equiv 0$ on $X \backslash\left\{x_{1}\right\}, y_{1} \notin G_{x}$ for any $x \neq x_{1}$, which is to say that $y_{1} \in G_{x_{1}} \cup Y_{2}$. Therefore, if $y_{1} \neq y_{0}$, then we have

$$
\begin{gathered}
\left\|T\left(f_{1}-f_{2}\right)\left(y_{1}\right)\right\|=\left\|\left(T f_{1}\right)\left(y_{1}\right)-(T f)\left(y_{1}\right)+\left(T f_{1}\right)\left(y_{1}\right)\right\|= \\
=\left\|2\left(T f_{1}\right)\left(y_{1}\right)-g\left(y_{1}\right)\right\|=\left\|2\left(T f_{1}\right)\left(y_{1}\right)\right\|=2
\end{gathered}
$$

but

$$
\left\|f_{1}-f_{2}\right\|_{\infty}=\left\|f_{1}\left(x_{1}\right)\right\|=1
$$

This contradiction yields $y_{1}=y_{0}$ and, consequently, $\left\|\left(T f_{1}\right)\left(y_{0}\right)\right\|=1$.
On the other hand, let us check that $\left(T f_{2}\right)\left(y_{0}\right)=\mathbf{0}$. If this is not the case, then $\left\|f_{1}+f_{2}\right\|_{\infty}=1=\left\|f_{1}-f_{2}\right\|_{\infty}$, but as F is strictly convex, then either

$$
\left\|\left(T f_{1}\right)\left(y_{0}\right)+\left(T f_{2}\right)\left(y_{0}\right)\right\|>1
$$

or

$$
\left\|\left(T f_{1}\right)\left(y_{0}\right)-\left(T f_{2}\right)\left(y_{0}\right)\right\|>1
$$

which is impossible since T is an isometry.
Consequently, for $y_{2} \in Y \backslash\left\{y_{0}\right\}$ with $\left\|\left(T f_{2}\right)\left(y_{2}\right)\right\|=\left\|T f_{2}\right\|_{\infty} \leq 1$, we have $\left(T f_{1}\right)\left(y_{2}\right)=-\left(T f_{2}\right)\left(y_{2}\right)$. Also, if $T f_{2} \neq 0$, then either

$$
\left\|\left(T f_{1}\right)\left(y_{2}\right)+\frac{\left(T f_{2}\right)\left(y_{2}\right)}{\left\|T f_{2}\right\|_{\infty}}\right\|>1
$$

or

$$
\left\|\left(T f_{1}\right)\left(y_{2}\right)-\frac{\left(T f_{2}\right)\left(y_{2}\right)}{\left\|T f_{2}\right\|_{\infty}}\right\|>1
$$

contrary to the fact that

$$
\left\|f_{1} \pm \frac{f_{2}}{\left\|T f_{2}\right\|_{\infty}}\right\|_{\infty}=1
$$

This contradiction yields $f_{2} \equiv 0$, which is to say that $T f_{1}=g$. The proof of the claim is done.

Case 1 If we suppose that $y_{0} \in Y_{2}$, then there exists $f_{3} \in C(X, E)$ such that $\left\|f_{3}\right\|_{\infty}=1, f_{3}\left(x_{1}\right)=\mathbf{0}$ and $\left(T f_{3}\right)\left(y_{0}\right) \neq \mathbf{0}$. It is clear that $\left\|f_{3}+f_{1}\right\|_{\infty}=$ $1=\left\|f_{3}-f_{1}\right\|_{\infty}$ but either

$$
\left\|\left(T f_{3}+T f_{1}\right)\left(y_{0}\right)\right\|>1
$$

or

$$
\left\|\left(T f_{3}-T f_{1}\right)\left(y_{0}\right)\right\|>1
$$

This contradiction shows that $y_{0} \notin Y_{2}$.
Case 2 Assume finally that $y_{0} \in Y_{11}$, that is, $J_{y_{0}}$ is not an isometry. Hence we know that there exists $\mathbf{e} \in E,\|\mathbf{e}\|=1$, such that $\left\|J_{y_{0}}(\mathbf{e})\right\|<1$. Let us define

$$
\alpha=1-\left\|J_{y_{0}}(\mathbf{e})\right\|
$$

and

$$
f_{3}:=\chi_{\left\{x_{1}\right\}} \mathbf{e} .
$$

It is clear that $\left\|f_{3}\right\|_{\infty}=1$ and $\left\|\left(T f_{3}\right)\left(y_{0}\right)\right\|=\left\|J_{y_{0}}(\mathbf{e})\right\|<1$. On the other hand

$$
\left\|\left(T\left(\alpha f_{1} \pm f_{3}\right)\right)\left(y_{0}\right)\right\| \leq \alpha\left\|\left(T f_{1}\right)\left(y_{0}\right)\right\|+\left\|\left(T f_{3}\right)\left(y_{0}\right)\right\|=1
$$

Also if $y \neq y_{0},\left(T f_{1}\right)(y)=0$ and $\left\|\left(T f_{3}\right)(y)\right\| \leq\left\|T f_{3}\right\|_{\infty}=1$. Consequently

$$
\left\|\left(T\left(\alpha f_{1} \pm f_{3}\right)\right)\right\|_{\infty} \leq 1
$$

However, either

$$
\left\|\alpha f_{1}\left(x_{1}\right)+f_{3}\left(x_{1}\right)\right\|>1
$$

or

$$
\left\|\alpha f_{1}\left(x_{1}\right)-f_{3}\left(x_{1}\right)\right\|>1
$$

which contradicts the isometric condition of T. The lemma is proved.

Lemma 4.2 $Y=Y_{0}$ and $h: Y \longrightarrow X$ is a surjective homeomorphism. Moreover J_{y} is an isometry for every $y \in Y$. Furthermore, the set $Y_{N} \subset Y$ of all y such that J_{y} is not surjective is finite.

Proof. By Lemma 4.1, $Y=Y_{10}$, so every J_{y} is an isometry and $Y=Y_{0}$.
Suppose next that there exists $x_{0} \in X$ with card $G_{x_{0}} \geq 2$, and take $y_{1}, y_{2} \in G_{x_{0}}, y_{1} \neq y_{2}$. Pick $g=T f \in C(Y, F)$ with $g\left(y_{1}\right)=\mathbf{0}$. By Lemma 3.2, $g\left(y_{2}\right)=\mathbf{0}$, which is impossible because $\operatorname{codim}(\operatorname{ran} T)$ is finite. We deduce that, for all $x \in X$, card $G_{x}=1$, and consequently $F_{x}=G_{x}$. We infer that h is injective and, since it is a continuous surjection and Y is compact, then h is a surjective homeomorphism.

Finally, let us note that, if $h(y) \notin A_{0}$, then J_{y} is a surjective isometry. Consequently, as A_{0} is finite, so is Y_{N}.

Proposition 4.1 Let $g \in C(Y, F)$ be such that $g(y) \in \operatorname{ran} J_{y}$ for all $y \in Y$. Then $g \in \operatorname{ran} T$.

Proof. By Lemma 4.2, given $x \in X$,

$$
J_{h^{-1}(x)}: E \longrightarrow F
$$

is a linear isometry which is also surjective except for finitely many $x \in h\left(Y_{N}\right)$, being $Y_{N}:=\left\{y_{1}, \ldots, y_{k}\right\}$.

Fix any $x_{0} \in X$ and take an open neighborhood V of $h^{-1}\left(x_{0}\right)$ such that $V \cap Y_{N} \subset\left\{h^{-1}\left(x_{0}\right)\right\}$. Hence, for all $y \in V \backslash\left\{h^{-1}\left(x_{0}\right)\right\}$, we have that J_{y} is a surjective isometry.

Claim 4.2 Let $\mathbf{f} \in \operatorname{ran} J_{h^{-1}\left(x_{0}\right)}$ and let $\epsilon>0$. There exists an open neighborhood U_{ϵ} of x_{0} such that, if $x \in U_{\epsilon}$, then $\mathbf{f} \in \operatorname{ran} J_{h^{-1}(x)}$ and

$$
\left\|\left(J_{h^{-1}\left(x_{0}\right)}\right)^{-1}(\mathbf{f})-\left(J_{h^{-1}(x)}\right)^{-1}(\mathbf{f})\right\|<\epsilon
$$

As $\mathbf{f} \in \operatorname{ran} J_{h^{-1}\left(x_{0}\right)}$, there exists $\mathbf{e} \in E$ with $J_{h^{-1}\left(x_{0}\right)}(\mathbf{e})=\mathbf{f}$. Hence $(T \widehat{\mathbf{e}})\left(h^{-1}\left(x_{0}\right)\right)=J_{h^{-1}\left(x_{0}\right)}(\mathbf{e})=\mathbf{f}$ and there exists an open neighborhood V_{ϵ} of $h^{-1}\left(x_{0}\right)$ such that $V_{\epsilon} \subset V$ and

$$
\left\|(T \widehat{\mathbf{e}})(y)-(T \widehat{\mathbf{e}})\left(h^{-1}\left(x_{0}\right)\right)\right\|<\epsilon
$$

for all $y \in V_{\epsilon}$, that is,

$$
\left\|J_{y}(\mathbf{e})-\mathbf{f}\right\|<\epsilon
$$

On the other hand, as $\mathbf{f} \in \operatorname{ran} J_{y}$ for all $y \in V_{\epsilon}$, there exists $\mathbf{e}_{y}^{\prime} \in E$ such that $\mathbf{f}=J_{y}\left(\mathbf{e}_{y}^{\prime}\right)$. Hence, if $y \in V_{\epsilon}$, then $\left\|J_{y}(\mathbf{e})-J_{y}\left(\mathbf{e}_{y}^{\prime}\right)\right\|<\epsilon$, that is,

$$
\left\|J_{y}\left(\mathbf{e}-\mathbf{e}_{y}^{\prime}\right)\right\|<\epsilon,
$$

and, since J_{y} is an isometry, $\left\|\mathbf{e}-\mathbf{e}_{y}^{\prime}\right\|<\epsilon$. Summarizing, if $x \in U_{\epsilon}:=h\left(V_{\epsilon}\right)$, then

$$
\left\|\left(J_{h^{-1}\left(x_{0}\right)}\right)^{-1}(\mathbf{f})-\left(J_{h^{-1}(x)}\right)^{-1}(\mathbf{f})\right\|<\epsilon
$$

and the proof of the claim is done.
Next, define the function $f: X \longrightarrow E$ by

$$
f(x):=\left(J_{h^{-1}(x)}\right)^{-1}\left(g\left(h^{-1}(x)\right)\right)
$$

for all $x \in X$. Hence, if we prove that f is continuous, then for $y=h^{-1}(x)$, we have

$$
(T f)(y)=J_{y}\left(f(h(y))=J_{y}\left(\left(J_{y}\right)^{-1}(g(y))\right)=g(y) .\right.
$$

Thus, it only remains to check the continuity of f at x_{0}. To this end, fix any $\epsilon>0$. Since g is continuous, there exists an open neighborhood W of $h^{-1}\left(x_{0}\right)$ in Y such that, if $y \in W$, then

$$
\left\|g(y)-g\left(h^{-1}\left(x_{0}\right)\right)\right\|<\frac{\epsilon}{2} .
$$

Let us define $U:=h(W) \cap U_{\epsilon / 2}$, where $U_{\epsilon / 2}$ is given by the claim above for $\mathbf{f}:=g\left(h^{-1}\left(x_{0}\right)\right)$. Then, by definition, if $x \in U$,

$$
\begin{aligned}
\left\|f\left(x_{0}\right)-f(x)\right\| & =\left\|\left(J_{h^{-1}\left(x_{0}\right)}\right)^{-1}\left(g\left(h^{-1}\left(x_{0}\right)\right)\right)-\left(J_{h^{-1}(x)}\right)^{-1}\left(g\left(h^{-1}(x)\right)\right)\right\| \\
& \leq\left\|\left(J_{h^{-1}\left(x_{0}\right)}\right)^{-1}(\mathbf{f})-\left(J_{h^{-1}(x)}\right)^{-1}(\mathbf{f})\right\| \\
& +\left\|\left(J_{h^{-1}(x)}\right)^{-1}(\mathbf{f})-\left(J_{h^{-1}(x)}\right)^{-1}\left(g\left(h^{-1}(x)\right)\right)\right\| \\
& <\frac{\epsilon}{2}+\left\|\left(J_{h^{-1}(x)}\right)^{-1}\left(\mathbf{f}-g\left(h^{-1}(x)\right)\right)\right\| \\
& =\frac{\epsilon}{2}+\left\|\mathbf{f}-g\left(h^{-1}(x)\right)\right\| \\
& <\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon,
\end{aligned}
$$

and the continuity of f is proved.
We can now prove the main result in this section.

Proof of Theorem 2.2. Taking into account the previous lemmas, it only remains to check that $\sum_{i=1}^{k} \operatorname{codim}\left(\operatorname{ran} J_{y_{i}}\right)=n_{0}$, where $Y_{N}=\left\{y_{1}, \ldots, y_{k}\right\}$ is the subset introduced in Lemma 4.2.

Notice first that, due to the representation of T,

$$
\operatorname{codim}\left(\operatorname{ran} J_{y_{i}}\right) \leq \operatorname{codim}(\operatorname{ran} T)
$$

for each i. Then there exist k sets formed by linearly independent vectors

$$
\begin{aligned}
\mathbf{F}_{1} & :=\left\{\mathbf{f}(1,1), \ldots, \mathbf{f}\left(1, n_{1}\right)\right\}, \\
\mathbf{F}_{2} & :=\left\{\mathbf{f}(2,1), \ldots, \mathbf{f}\left(2, n_{2}\right)\right\}, \\
& \vdots \\
\mathbf{F}_{k} & :=\left\{\mathbf{f}(k, 1), \ldots, \mathbf{f}\left(k, n_{k}\right)\right\}
\end{aligned}
$$

such that

$$
\operatorname{ran} J_{y_{i}}+\operatorname{span} \mathbf{F}_{i}=F
$$

and

$$
\begin{equation*}
\operatorname{ran} J_{y_{i}} \cap \operatorname{span} \mathbf{F}_{i}=\{\mathbf{0}\} \tag{1}
\end{equation*}
$$

for each $i \in\{1,2, \ldots, k\}$.
Contrary to what we claim, suppose first that

$$
\sum_{i=1}^{k} n_{i}=\sum_{i=1}^{k} \operatorname{codim}\left(\operatorname{ran} J_{y_{i}}\right)>n_{0}
$$

Let us consider, for each $i \in\{1,2, \ldots, k\}$, an open neighborhood V_{i} of y_{i} such that $V_{i} \cap V_{j}=\emptyset$ if $i \neq j$. Let $g_{i} \in C(Y)$ be such that $c\left(g_{i}\right) \subset V_{i}$ and $g_{i}\left(y_{i}\right)=1$. Define also, for each $i \in\{1,2, \ldots, k\}$ and each $j \in\left\{1,2, \ldots, n_{i}\right\}$, a function $g(i, j):=g_{i} \mathbf{f}(i, j)$. Hence we have $\sum_{i=1}^{k} n_{i}$ linearly independent functions in $C(Y, F)$, so there exists a linear combination

$$
g_{0}:=\sum_{i, j} \alpha(i, j) g(i, j)
$$

in the range of T, with some $\alpha\left(i_{0}, j_{0}\right) \neq 0$. Let $f \in C(X, E)$ satisfy $T f=g_{0}$. Then

$$
\mathbf{0} \neq \sum_{j=1}^{n_{i_{0}}} \alpha\left(i_{0}, j\right) \mathbf{f}\left(i_{0}, j\right)=g_{0}\left(y_{i_{0}}\right)=(T f)\left(y_{i_{0}}\right)=J_{y_{i_{0}}}\left(f\left(h\left(y_{i_{0}}\right)\right)\right)
$$

We deduce that ran $J_{y_{i_{0}}} \cap \operatorname{span} \mathbf{F}_{i_{0}} \neq\{\mathbf{0}\}$, which contradicts (1) above. Hence $\sum_{n=1}^{k} \operatorname{codim}\left(\operatorname{ran} J_{y_{n}}\right) \leq n_{0}$.

Suppose now that $\sum_{n=1}^{k} \operatorname{codim}\left(\operatorname{ran} J_{y_{n}}\right)<n_{0}$. We shall check that, given n_{0} linearly independent functions $g_{1}, \ldots, g_{n_{0}}$ in $C(Y, F)$, there exists a nonzero linear combination in the range of T. This fact implies that the codimension of the range of T is strictly less than n_{0}, which is impossible.

Let us define the linear mappings

$$
\lambda: \mathbf{K}^{n_{0}} \longrightarrow \operatorname{span}\left\{g_{1}, \ldots, g_{n_{0}}\right\}
$$

by $\lambda\left(\gamma_{1}, \ldots, \gamma_{n_{0}}\right):=\sum_{j=1}^{n_{0}} \gamma_{j} g_{j}$ for all $\left(\gamma_{1}, \ldots, \gamma_{n_{0}}\right) \in \mathbb{K}^{n_{0}}$. Next, for $i \in$ $\{1,2, \ldots, k\}$, consider

$$
\mu_{i}: C(Y, F) \longrightarrow F / \operatorname{ran} J_{y_{i}}
$$

where $\mu_{i}(g):=g\left(y_{i}\right)+\operatorname{ran} J_{y_{i}}$ for all $g \in C(Y, F)$, and finally let

$$
\mu: C(Y, F) \longrightarrow\left(F / \operatorname{ran} J_{y_{1}}\right) \times \cdots \times\left(F / \operatorname{ran} J_{y_{k}}\right),
$$

where $\mu(g):=\left(\mu_{1}(g), \ldots, \mu_{k}(g)\right)$ for all g. As a consequence, $\mu \circ \lambda$ turns out to be a linear mapping from a n_{0}-dimensional space to a space whose dimension is $\sum_{i=1}^{k} n_{i}<n_{0}$. It is apparent that $\mu \circ \lambda$ is not injective. Thus there exists $\left(\gamma_{1}, \ldots, \gamma_{n_{0}}\right) \in \mathbb{K}^{n_{0}} \backslash\{(0, \ldots, 0)\}$ such that $(\mu \circ \lambda)\left(\gamma_{1}, \ldots, \gamma_{n_{0}}\right)=\mathbf{0}$. This means that $\left(\mu_{i} \circ \lambda\right)\left(\gamma_{1}, \ldots, \gamma_{n_{0}}\right)=\mathbf{0}+\operatorname{ran} J_{y_{i}}$ for each $i \in\{1, \ldots, k\}$, which is to say that $\sum_{j=1}^{n_{0}} \gamma_{j} g_{j}\left(y_{i}\right) \in \operatorname{ran} J_{y_{i}}$ for all $i \in\{1, \ldots, k\}$. Taking into account the definition of Y_{N}, we see by Proposition 4.1 that $\sum_{j=1}^{n_{0}} \gamma_{j} g_{j} \in \operatorname{ran} T$, as was to be proved.

Contrary to what could be expected in principle, the points of Y_{N} need not be isolated, as the following example shows.

Example 4.1 Let $X=Y:=\{1 / n: n \in \mathbb{N}\} \cup\{0\}$ and let $h: Y \longrightarrow X$ be the identity map. Given $f \in C\left(X, \ell^{2}\right)$, we define

$$
(T f)\left(\frac{1}{n}\right):=\left(\lambda_{n}^{n}, \lambda_{1}^{n}, \lambda_{2}^{n}, \ldots, \lambda_{n-1}^{n}, \lambda_{n+1}^{n}, \ldots\right)
$$

where $f(1 / n):=\left(\lambda_{1}^{n}, \lambda_{2}^{n}, \ldots, \lambda_{n-1}^{n}, \lambda_{n}^{n}, \lambda_{n+1}^{n}, \ldots\right)$. Also, if

$$
f(0)=\left(\lambda_{1}^{0}, \lambda_{2}^{0}, \ldots, \lambda_{n-1}^{0}, \lambda_{n}^{0}, \lambda_{n+1}^{0}, \ldots\right),
$$

then define

$$
(T f)(0):=\left(0, \lambda_{1}^{0}, \lambda_{2}^{0}, \ldots, \lambda_{n-1}^{0}, \lambda_{n}^{0}, \lambda_{n+1}^{0}, \ldots\right),
$$

so that $T f$ belongs to $C\left(Y, \ell^{2}\right)$.
It is clear that T is a linear isometry where $J_{\frac{1}{n}}: \ell^{2} \longrightarrow \ell^{2}$ turns out to be $J_{\frac{1}{n}}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n-1}, \lambda_{n}, \lambda_{n+1}, \ldots\right)=\left(\lambda_{n}, \lambda_{1}, \lambda_{2}, \ldots, \lambda_{n-1}, \lambda_{n+1}, \ldots\right)$. On the other hand $J_{0}\left(\mathbf{e}_{n}\right)=\mathbf{e}_{n+1}$ for all $n \in \mathbb{N}$, and J_{0} is a codimension 1 linear isometry on ℓ^{2}. Consequently T is a codimension 1 linear isometry, where the constant function $\widehat{\mathbf{e}_{1}}$ does not belong to the range of T. In this case, $Y_{N}=\{0\} \in Y$, which is not isolated.

5 The finite-dimensional case.

From now on, we shall assume that $m:=\operatorname{dim} F<\infty$.
Lemma 5.1 Suppose that $x \in X$ and $G_{x}=\left\{y_{1}, \ldots, y_{n_{x}}\right\}$. Then the mapping $Q_{x}: E \longrightarrow F^{n_{x}}$, defined by

$$
Q_{x}(\mathbf{e}):=\left((T \mathbf{e})\left(y_{1}\right), \ldots,(T \mathbf{e})\left(y_{n_{x}}\right)\right)
$$

for all $\mathbf{e} \in E$, is a linear isometry if $F^{n_{x}}$ is endowed with the sup norm $\left.\|\left(\mathbf{f}_{1}, \ldots, \mathbf{f}_{n_{x}}\right)\right)\left\|_{\infty}=\max _{1 \leq i \leq n_{x}}\right\| \mathbf{f}_{i} \|$.

Proof. Fix $\mathbf{e} \in E$ with $\|\mathbf{e}\|=1$. Since T is an isometry, $\left\|Q_{x}(\mathbf{e})\right\| \leq 1$, so we must see that there exists $i \in\left\{1, \ldots, n_{x}\right\}$ with $\left\|J_{y_{i}}(\mathbf{e})\right\|=1$. Obviously, if some y_{i} belongs to Y_{10}, then $J_{y_{i}}$ is an isometry and we are done.

Consequently, we suppose that $G_{x} \cap Y_{10}=\emptyset$. This implies that $x \notin \bar{h}\left(Y_{10}\right)$ and, since Y_{10} is compact, x is isolated in X. Hence the characteristic function $f:=\chi_{\{x\}} \mathbf{e}$ is continuous. As $f \equiv 0$ on $X \backslash\{x\}$, it is clear that $T f \equiv 0$ on $\bar{h}^{-1}(X) \backslash \bar{h}^{-1}(x)$, which is to say that there must exist $y \in G_{x} \cup Y_{2}$ such that $\|(T f)(y)\|=\|T f\|_{\infty}=1$. If we suppose that $y \in Y_{2}$, then there exists $f^{\prime} \in C(X, E)$ with $f^{\prime}(x)=0$ and $\left(T f^{\prime}\right)(y) \neq 0$. Without loss of generality, we shall assume that $\left\|f^{\prime}\right\|_{\infty}=1$. Hence $\left\|f+f^{\prime}\right\|_{\infty}=1=\| f-$ $f^{\prime} \|_{\infty}$. However, as F is strictly convex, we have $\left\|(T f)(y)+\left(T f^{\prime}\right)(y)\right\|>1$ or $\left\|(T f)(y)-\left(T f^{\prime}\right)(y)\right\|>1$, which contradicts the isometric property of T. As a consequence, $T f$ attains its maximum in G_{x}, which is to say that there exists $i \in\left\{1, \ldots, n_{x}\right\}$ with $\left\|J_{y_{i}}(\mathbf{e})\right\|=\left\|(T f)\left(y_{i}\right)\right\|=1$, as we wanted to see.

Next we deduce the relationship between the sets A_{0} and A_{1} introduced in Section 2.

Corollary 5.1 A_{0} is contained in A_{1}.
Proof. Let $x_{0} \in A_{0}$ and $y_{0} \in F_{x_{0}}$ with $J_{y_{0}}$ not a surjective isometry, which, in this finite-dimensional case, means that it is not an isometry. If $x_{0} \notin A_{1}$, then $G_{x_{0}}=F_{x_{0}}=\left\{y_{0}\right\}$, and Lemma 5.1 easily leads to a contradiction.

Proposition 5.1 Let Y be infinite. Suppose that $g \in C(Y, F)$ satisfies $g\left(\bar{h}^{-1}\left(A_{1}\right)\right) \equiv 0$. Then there exists a unique $f \in C(X, E)$ such that $T f \equiv g$ on Y_{1}.

Proof. Define the function $f \in C(X, E)$ as follows:

- $f(x):=\mathbf{0}$ for $x \in A_{1}$.
- $f(x):=\left(J_{\bar{h}^{-1}(x)}\right)^{-1}\left(g\left(\bar{h}^{-1}(x)\right)\right)$ if $x \notin A_{1}$.

We first check that f is well-defined outside A_{1}, that is, $J_{\bar{h}^{-1}(x)}$ is a surjective isometry. Let $x \notin A_{1}$. Then $\bar{h}^{-1}(x)=h^{-1}(x)$ because $G_{x}=F_{x}$. Also, by Corollary 5.1, $x \notin A_{0}$, so $J_{h^{-1}(x)}: E \longrightarrow F$ is a surjective isometry.

Next we study the continuity of f. Let $x_{0} \in X \backslash A_{1}$ and $\epsilon>0$. We consider an open neighborhood V_{1} of $h^{-1}\left(x_{0}\right)$ in Y such that, for all $y \in V_{1}$,

$$
\left\|g(y)-g\left(h^{-1}\left(x_{0}\right)\right)\right\|<\frac{\epsilon}{2} .
$$

With no loss of generality, we can assume that $V_{1} \subset Y_{10}$ because $h^{-1}\left(x_{0}\right) \in$ $Y_{10} \backslash \bar{h}^{-1}\left(A_{1}\right)$ and this set is open being Y_{10} clopen by Lemma 3.7. Also, since $\bar{h}^{-1}\left(A_{1}\right)$ is finite, V_{1} can be taken such that $\operatorname{cl}\left(V_{1}\right) \cap \bar{h}^{-1}\left(A_{1}\right)=\emptyset$.

We can rewrite the above inequality as

$$
\left\|J_{y}(f(h(y)))-J_{h^{-1}\left(x_{0}\right)}\left(f\left(x_{0}\right)\right)\right\|<\frac{\epsilon}{2}
$$

for all $y \in V_{1}$.
On the other hand, since $Y_{10} \subset Y_{0}$ is clopen and $J: Y_{0} \longrightarrow L(E, F)$ is continuous with respect to the strong operator topology, we can take an open neighborhood V_{2} of $h^{-1}\left(x_{0}\right)$ with $V_{2} \subset Y_{10}$ such that

$$
\left\|J_{y}\left(f\left(x_{0}\right)\right)-J_{h^{-1}\left(x_{0}\right)}\left(f\left(x_{0}\right)\right)\right\|<\frac{\epsilon}{2}
$$

for all $y \in V_{2}$. We thus deduce that if $y \in V_{1} \cap V_{2}$, then

$$
\left\|J_{y}(f(h(y)))-J_{y}\left(f\left(x_{0}\right)\right)\right\|<\epsilon
$$

that is,

$$
\left\|J_{y}\left[f(h(y))-f\left(x_{0}\right)\right]\right\|<\epsilon
$$

But as $y \in Y_{10}, J_{y}$ is an isometry, and consequently,

$$
\begin{equation*}
\left\|f(h(y))-f\left(x_{0}\right)\right\|<\epsilon \tag{2}
\end{equation*}
$$

for all $y \in V_{1} \cap V_{2}$. Hence, in order to obtain the continuity of f at $x_{0} \in X \backslash A_{1}$, it suffices to notice that sets of the form $h\left(V_{1} \cap V_{2}\right)$ are open neighborhoods of x_{0}.

Let us now study the continuity of f on A_{1}. To this end, fix $x_{0} \in A_{1}$. Since A_{1} is a finite set, there exists an open neighborhood U of x_{0} such that $U \cap A_{1}=\left\{x_{0}\right\}$.

Suppose that f is not continuous at x_{0}. Then there exist $\epsilon>0$ and a net $\left(x_{\alpha}\right)$ in U which converges to x_{0} such that $\left\|f\left(x_{\alpha}\right)\right\| \geq \epsilon$ for all α. Since each element of the net x_{α} belongs to $X \backslash A_{1}$, we infer that $\bar{h}^{-1}\left(x_{\alpha}\right)$ is a singleton in Y_{10}. Furthermore, as Y_{10} is compact, there exists a subnet $\bar{h}^{-1}\left(x_{\beta}\right)$ convergent to a certain $y_{0} \in Y_{10}$. Since \bar{h} is continuous, we deduce that $\left(x_{\beta}\right)$ converges to $\bar{h}\left(y_{0}\right)$ and, as a consequence, that $\bar{h}\left(y_{0}\right)=x_{0}$. This fact yields $y_{0} \in \bar{h}^{-1}\left(A_{1}\right)$. By hypothesis, $g\left(y_{0}\right)=\mathbf{0}$. However, each $J_{\bar{h}^{-1}\left(x_{\beta}\right)}$ is an isometry and, by the definition of f,

$$
g\left(\bar{h}^{-1}\left(x_{\beta}\right)\right)=J_{\bar{h}^{-1}\left(x_{\beta}\right)}\left(f\left(x_{\beta}\right)\right) .
$$

Hence $\left\|g\left(\bar{h}^{-1}\left(x_{\beta}\right)\right)\right\| \geq \epsilon$ for all β. This implies that g is not continuous at y_{0}, a contradiction, which completes the proof of the continuity of f. The rest of the proof is apparent.

Proof of Theorem 2.3. Put $A_{1}=\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$ and, for each $x_{i} \in A_{1}$ (see Lemmas 3.3 and 3.4), let

$$
G_{x_{i}}=\left\{y\left(x_{i}, 1\right), \ldots, y\left(x_{i}, n_{i}\right)\right\}
$$

By Corollary 3.1, for each $i \in\{1,2, \ldots, k\}$ and each $j \in\left\{1,2, \ldots, n_{i}\right\}$ we can consider an open neighborhood $U(i, j)$ of $y\left(x_{i}, j\right)$ such that $U(i, j) \subset Y_{1}$ and
$U(i, j) \cap U\left(i^{\prime}, j^{\prime}\right)=\emptyset$ if $(i, j) \neq\left(i^{\prime}, j^{\prime}\right)$. For each pair (i, j) we choose a function $g_{(i, j)} \in C(Y)$ such that $g_{(i, j)}\left(y\left(x_{i}, j\right)\right)=1=\left\|g_{(i, j)}\right\|_{\infty}$ and $c\left(g_{(i, j)}\right) \subset U(i, j)$.

Note that, since Y is infinite, the set $Y_{10} \backslash \bar{h}^{-1}\left(A_{0}\right)$ is nonempty, which easily leads to $\operatorname{dim} E=\operatorname{dim} F$. Now, by Lemma 5.1, each mapping $Q_{x_{i}}$: $E \longrightarrow F^{n_{i}}$ is an isometry, so $m:=\operatorname{dim} F=\operatorname{dim} Q_{x_{i}}(E)$. Hence we can find $m\left(n_{i}-1\right)$ linearly independent vectors in $F^{n_{i}}$ of the form

$$
\Im(i, l):=\left(\mathbf{f}(i, l, 1), \mathbf{f}(i, l, 2), \ldots, \mathbf{f}\left(i, l, n_{i}\right)\right)
$$

for $l=1, \ldots, m\left(n_{i}-1\right)$ such that

$$
\begin{equation*}
F^{n_{i}}=\operatorname{ran} Q_{x_{i}} \bigoplus \operatorname{span}\left\{\Im(i, 1), \ldots, \Im\left(i, m\left(n_{i}-1\right)\right)\right\} \tag{3}
\end{equation*}
$$

Next we define, for each $i \in\{1,2, \ldots, k\}, m\left(n_{i}-1\right)$ functions in $C(Y, F)$ related to $\Im(i, j)$ and $g_{(i, j)}$ of the form

$$
\aleph_{[i, l]}:=\sum_{j=1}^{n_{i}} g_{(i, j)} \mathbf{f}(i, l, j)
$$

for $l=1, \ldots, m\left(n_{i}-1\right)$.
Note that, for $i \in\{1,2, \ldots, k\}$ and each $l \in\left\{1,2, \ldots, m\left(n_{i}-1\right)\right\}$, we have $\aleph_{[i, l]}\left(Y_{2} \cup Y_{3}\right) \equiv \mathbf{0}$, and if $i^{\prime} \neq i, i^{\prime} \in\{1,2, \ldots, k\}$, then $\aleph_{[i, l]}\left(G_{x_{i^{\prime}}}\right) \equiv \mathbf{0}$, and, for $j \in\left\{1,2, \ldots, n_{i}\right\}$,

$$
\begin{equation*}
\aleph_{[i, l]}\left(y\left(x_{i}, j\right)\right)=\mathbf{f}(i, l, j) \tag{4}
\end{equation*}
$$

Now assume that $Y_{2}:=\left\{z_{1}, \ldots, z_{t}\right\}$ and $Y_{3}:=\left\{w_{1}, \ldots, w_{s}\right\}$ (see Lemmas 3.5, 3.6 and 3.7). For every $i \in\{1,2, \ldots, t\}$ and every $l \in\{1,2, \ldots, m\}$ we can consider $\Xi_{[i, l]}:=\chi_{\left\{z_{i}\right\}} \mathbf{b}_{l} \in C(Y, F)$ where $B:=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{m}\right\}$ is a basis of F. In like manner, we can define, for every $i \in\{1,2, \ldots, s\}$ and every $l \in\{1,2, \ldots, m\}, \Upsilon_{[i, l]}:=\chi_{\left\{w_{i}\right\}} \mathbf{b}_{l} \in C(Y, F)$.

We now claim that the functions we have just introduced are linearly independent. To this end, suppose that

$$
\sum_{i, l} \alpha(i, l) \aleph_{[i, l]}+\sum_{i, l} \beta(i, l) \Xi_{[i, l]}+\sum_{i, l} \gamma(i, l) \Upsilon_{[i, l]} \equiv 0 \in C(Y, F) .
$$

If we evaluate this sum at the point $z_{i} \in Y_{2}$, then we get

$$
\sum_{l=1}^{m} \beta(i, l) \mathbf{b}_{l}=\mathbf{0} \in F
$$

As $\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{m}\right\}$ is a basis of F, we infer that each $\beta(i, l)=0$. Similarly, by evaluating the above sum at each point of Y_{3}, we conclude that $\gamma(i, l)=0$ for each $i \in\{1,2, \ldots, s\}$ and $l \in\{1,2, \ldots, m\}$.

On $G_{x_{i}}$ the above sum turns out to be

$$
\sum_{l=1}^{m\left(n_{i}-1\right)} \alpha(i, l) \aleph_{[i, l]} \equiv 0 \in C(Y, F)
$$

Taking into account equality (4), this means that for each $y\left(x_{i}, j\right), 1 \leq j \leq n_{i}$,

$$
\begin{equation*}
\sum_{l=1}^{m\left(n_{i}-1\right)} \alpha(i, l) \mathbf{f}(i, l, j) \equiv \mathbf{0} \tag{5}
\end{equation*}
$$

so $\sum_{l=1}^{m\left(n_{i}-1\right)} \alpha(i, l) \Im(i, l)=\mathbf{0} \in F^{n_{i}}$. As a consequence, all the $\alpha(i, l)$ are zero because all vectors $\Im(i, l)$ are linearly independent.

Claim 5.1 The function

$$
g:=\sum_{i, l} \alpha(i, l) \aleph_{[i, l]}+\sum_{i, l} \beta(i, l) \Xi_{[i, l]}+\sum_{i, l} \gamma(i, l) \Upsilon_{[i, l]}
$$

does not belong to the range of T, except when $g \equiv 0$.
Suppose that there exists $f \in C(X, E)$ with $T f=g$. This yields, by the definition of Y_{3}, that each $\gamma(i, l)$ is zero. We shall check that all $\alpha(i, l)$ are zero. Fix $i \in\{1, \ldots, k\}$. Given $j \in\left\{1,2, \ldots, n_{i}\right\}$, we have

$$
g\left(y\left(x_{i}, j\right)\right)=J_{y\left(x_{i}, j\right)}\left(f\left(x_{i}\right)\right) .
$$

On the other hand, by equality (4),

$$
\begin{aligned}
g\left(y\left(x_{i}, j\right)\right) & =\sum_{l=1}^{m\left(n_{i}-1\right)} \alpha(i, l) \aleph_{[i, l]}\left(y\left(x_{i}, j\right)\right) \\
& =\sum_{l=1}^{m\left(n_{i}-1\right)} \alpha(i, l) \mathbf{f}(i, l, j) \in F,
\end{aligned}
$$

which implies that

$$
Q_{x_{i}}\left(f\left(x_{i}\right)\right)=\sum_{l=1}^{m\left(n_{i}-1\right)} \alpha(i, l) \Im(i, l) \in F^{n_{i}} .
$$

Since

$$
\operatorname{ran} Q_{x_{i}} \cap \operatorname{span}\left\{\Im(i, 1), \ldots, \Im\left(i, m\left(n_{i}-1\right)\right)\right\}=\{\mathbf{0}\},
$$

we have $Q_{x_{i}}\left(f\left(x_{i}\right)\right)=\mathbf{0} \in F^{n_{i}}$, and consequently $\alpha(i, l)$ is zero for all l. Summarizing, $g \equiv 0$ on Y_{1}, implying that $g \equiv 0$ on Y_{2}. This completes the proof of the claim.

Gathering the information obtained so far, we deduce that the vectors

$$
\aleph_{[i, l]}+\operatorname{ran} T, \Xi_{[i, l]}+\operatorname{ran} T, \Upsilon_{[i, l]}+\operatorname{ran} T,
$$

are linearly independent in the space $C(Y, F) / \operatorname{ran} T$. In order to finish the proof, it suffices to check that, given $g \in C(Y, F)$, there exist scalars $\alpha(i, j), \beta(i, j), \gamma(i, j)$ such that

$$
g-\sum_{i, l} \alpha(i, l) \aleph_{[i, l]}+\sum_{i, l} \beta(i, l) \Xi_{[i, l]}+\sum_{i, l} \gamma(i, l) \Upsilon_{[i, l]}
$$

belongs to the range of T.
For each $i \in\{1,2, \ldots, k\}$ we consider the vector

$$
N_{i}:=\left(g\left(y\left(x_{i}, 1\right)\right), g\left(y\left(x_{i}, 2\right)\right), \ldots, g\left(y\left(x_{i}, n_{i}\right)\right)\right) \in F^{n_{i}} .
$$

Then, by equality (3), there exist $\mathbf{e}_{i} \in E$ and constants $\alpha(i, 1), \ldots, \alpha\left(i, m\left(n_{i}-\right.\right.$ 1)) such that

$$
N_{i}=Q_{x_{i}}\left(\mathbf{e}_{i}\right)+\sum_{l=1}^{m\left(n_{i}-1\right)} \alpha(i, l) \Im(i, l) .
$$

Hence, if we fix $j \in\left\{1,2, \ldots, n_{i}\right\}$, then, by equality (4),

$$
\begin{aligned}
g\left(y\left(x_{i}, j\right)\right) & =\left(T \mathbf{e}_{i}\right)\left(y\left(x_{i}, j\right)\right)+\sum_{l=1}^{m\left(n_{i}-1\right)} \alpha(i . l) \mathbf{f}(i, l, j) \\
& =\left(T f_{i}\right)\left(y\left(x_{i}, j\right)\right)+\sum_{l=1}^{m\left(n_{i}-1\right)} \alpha(i, l) \aleph_{[i, l]}\left(y\left(x_{i}, j\right)\right) \in F,
\end{aligned}
$$

where $f_{i} \in C(X, E)$ with $f_{i}\left(x_{i}\right)=\mathbf{e}_{i}$ and $f_{i}\left(x_{i^{\prime}}\right)=\mathbf{0}$ for $i \neq i^{\prime}$. If we do so for each $i \in\{1,2, \ldots, k\}$ and each $j \in\left\{1,2, \ldots, n_{i}\right\}$, we obtain k functions $f_{i} \in C(X, E)$ such that, for $i_{0} \in\{1,2, \ldots, k\}$ and $j_{0} \in\left\{1,2, \ldots, n_{i_{0}}\right\}$,

$$
g\left(y\left(x_{i_{0}}, j_{0}\right)\right)=\sum_{i=1}^{k}\left(T f_{i}\right)\left(y\left(x_{i_{0}}, j_{0}\right)\right)+\sum_{i, l} \alpha(i, l) \aleph_{[i, l]}\left(y\left(x_{i_{0}}, j_{0}\right)\right)
$$

Therefore, the function

$$
g_{0}:=g-\sum_{i=1}^{k} T f_{i}-\sum_{i, l} \alpha(i, l) \aleph_{[i, l]}
$$

vanishes on each $y\left(x_{i}, j\right)$, which is to say, on $\bar{h}^{-1}\left(A_{1}\right)$. By Proposition 5.1, there exists $f_{0} \in C(X, E)$ such that $T f_{0} \equiv g_{0}$ on Y_{1}. Hence there exist certain constants $\beta(i, l)$ and $\gamma(i, l)$ such that

$$
g_{0}-T f_{0}-\sum_{i, l} \beta(i, l) \Xi_{[i, l]}-\sum_{i, l} \gamma(i, l) \Upsilon_{[i, l]} \equiv 0
$$

on $Y_{2} \cup Y_{3}$ and, consequently, on Y. That is,

$$
g-\sum_{i=1}^{k} T f_{i}-T f_{0}-\sum_{i, l} \alpha(i, l) \aleph_{[i, l]}-\sum_{i, l} \beta(i, l) \Xi_{[i, l]}-\sum_{i, l} \gamma(i, l) \Upsilon_{[i, l]} \equiv 0
$$

on Y. We now easily complete the proof of the theorem.

References

[1] J. Araujo, The noncompact Banach-Stone theorem. J. Operator Theory 55 (2006), 285-294.
[2] J. Araujo, On the separability problem for isometric shifts on $C(X)$. J. Funct. Anal. 256 (2009), 1106-1117.
[3] J. Araujo and J.J. Font, Linear isometries between subspaces of continuous functions. Trans. Amer. Math. Soc. 349 (1997), 413-428.
[4] J. Araujo and J.J. Font, Codimension 1 linear isometries on function algebras. Proc. Amer. Math. Soc. 127 (1999), 2273-2281.
[5] E. Behrends, M-structure and the Banach-Stone theorem. Lecture Notes in Mathematics, 736, Springer-Verlag, Berlin, 1979.
[6] M. Cambern, Isomorphisms of spaces of continuous vector-valued functions, Illinois J. Math. 20 (1976), 1-11.
[7] M. Cambern, The Banach-Stone property and the weak Banach-Stone property in three-dimensional spaces, Proc. Amer. Math. Soc. 67 (1977), 55-61.
[8] M. Cambern, A Holsztynski theorem for spaces of vector-valued continuous functions. Studia Math. 63 (1978), 213-217.
[9] R.M. Crownover, Commutants of shifts on Banach spaces. Michigan Math. J. 19 (1972), 233-247.
[10] F.O. Farid and K. Varadajaran, Isometric shift operators on $C(X)$. Can. J. Math. 46 (1994), 532-542.
[11] A. Gutek, D. Hart, J. Jamison and M. Rajagopalan, Shift Operators on Banach Spaces. J. Funct. Anal. 101 (1991), 97-119.
[12] R. Haydon, Isometric shifts on $C(K)$. J. Funct. Anal. 135 (1996), 157-162.
[13] H. Holsztyński, Continuous mappings induced by isometries of spaces of continuous functions. Studia Math. 26 (1966), 133-136.
[14] J.R. Holub, On Shift Operators. Canad. Math. Bull. 31 (1988), 85-94.
[15] J. Jeang and N. Wong, Into isometries of $C_{0}(X, E)$'s. J. Math. Anal. Appl. 207 (1997), 286-290.
[16] J. Jeang and N. Wong, Isometric shifts on $C_{0}(X)$. J. Math. Anal. Appl. 274 (2002), 772-787.
[17] J. Jeang and N. Wong, On the Banach-Stone problem. Studia Math. 155 (2003), 95-105.
[18] M. Jerison, The space of bounded maps into a Banach space, Ann. of Math. 52 (1950), 309-327.
[19] E. Kreyszig, Introductory functional analysis with applications. Wiley Classics Library. John Wiley \& Sons, Inc., New York, 1989.

Departamento de Matemáticas, Estadística y Computación, Facultad de Ciencias, Universidad de Cantabria, Avda. de los Castros s/n E-39071, SanTANDER, Spain.

E-mail address: jesus.araujo@unican.es

Departamento de Matemáticas, Universitat Jaume I, Campus Riu Sec, E12071, Castellón, Spain.

E-mail address: font@mat.uji.es

[^0]: *2010 Mathematics Subject Classification. Primary 46E40, 47B38.
 Keywords: Finite codimensional isometries; Banach-Stone Theorem; strict convexity; weighted composition operators.
 ${ }^{\dagger}$ Research of the first author was partially supported by the Spanish Ministry of Science and Education (Grant number MTM2011-23118).
 ${ }^{\ddagger}$ Research of the second author was partially supported by the Spanish Ministry of Science and Education (Grant number MTM2011-23118), and by Bancaixa (Projecte P11B2011-30).

