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Abstract. Let F be a finite field (or discrete) and let A and B be vector spaces of F-
valued continuous functions defined on locally compact spaces X and Y , respectively.
We look at the representation of linear bijectionsH : A −→ B by continuous functions
h : Y −→ X as weighted composition operators. In order to do it, we extend the
notion of Hamming metric to infinite spaces. Our main result establishes that under
some mild conditions, every Hamming isometry can be represented as a weighted
composition operator. Connections to coding theory are also highlighted.

1. Introduction

In this paper, we are concerned with the representation of linear isomorphisms de-

fined on spaces of continuous functions taking values in a vector space Fn over a finite

field F. The starting point, and our main motivation, stems from two very celebrated,

and apparently disconnected, results, whose formulation is strikingly similar, namely:

MacWilliams Equivalence Theorem and Banach-Stone Theorem. The former one com-

pletely describes the isometries between block codes (see [25, 26]). For the reader’s

sake, we recall its main features here.

Let F be a finite field. Two linear codes C1 and C2 over F of length n are equivalent if

there is a monomial transformation H of Fn such that H(C1) = C2. Here, a monomial
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transformation is a linear isomorphism H of the form

H(a1, ..., an) = (aσ(1)w1, ..., aσ(n)wn), (a1, ..., an) ∈ Fn,

where σ is a permutation of {1, 2, ..., n} and (w1, ..., wn) ∈ (F \ {0})n.

The Hamming weight wt(x) of a vector x ∈ Fn is defined as the number of coordinates

that are different from zero. The following classical result establishes the relation

between Hamming isometries and equivalent codes.

Theorem 1.1 (MacWilliams). Two linear codes C1, C2 of dimension k in Fn are

equivalent if and only if there exists an abstract F-linear isomorphism f : C1 −→ C2

which preserves weights, wt(f(x)) = wt(x), for all x ∈ C1.

Hence, two block codes are isometric if and only if they are monomially equivalent.

More precisely, if H is a weight-preserving isomorphism between two codes C1 and C2,

then H = W · P , where W = diag(wi) and P is a permutation matrix.

This fundamental result has been extended in different directions by many workers

(cf. [6, 10, 31, 33]). In particular, Heide Gluesing-Luerssen has established a variant of

MacWilliams theorem for 1-dimensional convolutional codes and the isometries defined

between them that respect the module structure of the codes (see [21]). It remains open

the representation of general F-isometries defined between convolutional codes (cf. [21]

and [28, Ch. 8]).

The second result we are concerned in this paper, the Banach-Stone Theorem, es-

tablishes that every linear isometry defined between the spaces of continuous functions

of two compact spaces is a weighted composition operator (see [5, 30]). This celebrated

theorem has now become a classical result that has been extended in many ways. Even

though we approach this research using techniques of separating (disjoint preserving)
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maps, we refer to the volumes by Fleming and Jamison [14, 15] and the survey article

[19], which contain a current and comprehensive exposition on this topic.

Theorem 1.2 (Banach-Stone Theorem). Let X and Y be compact spaces and let

H : C(X) −→ C(Y ) be a linear isometry. Then X and Y are homeomorphic and

the isometry H has the following form: there is a homeomorphism h : Y −→ X, and a

scalar-valued continuous function w on C(Y ) such that

Hf(y) = w(y)f(h(y)), ∀f ∈ C(X), ∀y ∈ Y.

The analogy between MacWilliams and Banach-Stone theorems is blatant and our

motivation has been to explore the application of functional analysis methods in order

to extend MacWilliams Equivalence Theorem to a more general setting. All in all,

there is a clear difference between these two important theorems. While, MacWilliams

theorem applies to any two vector subspaces of Fn, the Banach-Stone theorem, and

most of its variants and generalizations, deal with algebraic or analytical subspaces

that separate the points of the topological spaces where they are defined. In the

presence of infinite topological spaces, the former approach takes us to more elaborated

(and perhaps less elegant) results. However, this point of view raises the question of

representing linear operator defined between general vector subspaces of continuous

mappings without the constraint of separating points. Our overall goal is to clarify

this question in this and subsequent papers. We are also concerned with the possible

application of this approach to describe F-isomorphisms defined between (possibly

multi-dimensional) convolutional codes. In this sense, we include here an application

of our results for discrete spaces. Finally, even though we have been concerned with

finite fields along this paper, we remark that all results extend, mutatis mutandis,



4 M. FERRER, M. GARY, AND S. HERNÁNDEZ

for general discrete fields without any essential modification in the arguments (this is

because we only work with compactly supported functions). We leave the verification

of this fact to the interested reader (cf. [12]).

In the sequel, we look at continuous mappings defined on a locally compact space

X. Since we are concerned here with finite fields, it is clear that we can assume

without loss of generality that X is totally disconnected. Furthermore, being a locally

compact space, it follows that X is also 0-dimensional. Thus, let X be a 0-dimensional

locally compact space, equipped with a Borel regular, strictly positive, measure µ,

and let C00(X,Fn) designate the space of F-valued, compactly supported, continuous

functions defined on X. For any f ∈ C00(X,Fn) and x ∈ X, we define

wt(f(x))
def
= |{j : πj(f(x)) ̸= 0}|

and

wt(f)
def
=

∫
X

wt(f(x))dµ(x).

Notice that this integral is finite because wt(f(x)) is continuous and has compact

support. Moreover, in the scalar case, i.e. n = 1, the weight of a function coincides

with the measure of its support set, namely,

wt(f) = µ(supp(f)).

The map

d(f, g)
def
= wt(f − g)

defines a metric on the vector space C00(X,Fn) that is compatible with its additive

group structure. Since this metric extends the well known distance introduced by

Hamming in coding theory, we call it Hamming metric.
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Definition 1.3. Let A and B be vector subspaces of C00(X,Fn) and C00(Y,Fn), where

X and Y are 0-dimensional locally compact spaces equipped with Borel regular mea-

sures µX and µY , respectively.

A linear map H : A −→ B is called Hamming isometry if it is a linear isomorphism

such that wt(f) = wt(Hf) for each f ∈ A.

The map H is called weighted composition operator when there exist continuous

functions h : Y −→ X and w : Y −→ F such that Hf(y) = w(y)f(h(y)) for all y ∈ Y

and f ∈ A.

Along this paper, we deal with vector subspaces of continuous functions that do not

necessarily separate the points of the topological spaces where the functions are defined.

Furthermore, this feature is essential in our approach as we have explained above.

Since it is impossible to distinguish among the points that may not be separated by

the functions we deal with, we need a more general definition of weighted composition

operator in order to tackle this difficulty.

Definition 1.4. Let A and B be vector subspaces of C00(X,Fn) and C00(Y,Fn), re-

spectively. We say that H : A −→ B is a general weighted composition operator when

there is a quotient map π : X → X̃, continuous maps h : Y −→ X̃ and ω : Gr[h] −→ F

satisfying

Hf(y) = ω(x, y)f(x)

for each y ∈ Y , x ∈ h(y), and every f ∈ A.

Here

Gr[h]
def
=

∪
y∈Y

(h(y)× {y})

denotes the graphic of h equipped with the topology inherited as a subspace of X×Y .
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The main question we address in this research is as follows:

Question 1.5. Is every Hamming isometry H : A −→ B representable as a general

weighted composition operator?

We now introduce some pertinent notions and terminology.

All spaces are assumed to be 0-dimensional and Hausdorff and throughout this paper

the symbol F denotes a finite (or discrete) field. If X is a locally compact space, then

X∗ denotes the Alexandroff compactification of X, that is, X∗ = X ∪ {∞}, being ∞

the point at infinity.

For f ∈ C(X,Fn), set

coz(f)
def
= {x ∈ X : f(x) ̸= 0}.

Since Fn is discrete coz(f) and Z(f) = X \ coz(f) are open and closed (clopen) subsets

of X.

Let A be a linear subspace of C00(X,Fn). For x ∈ X, let δx : A → Fn be the canonical

evaluation map

δx(f)
def
= f(x) ∀f ∈ A.

and

Ix
def
= {f ∈ A : f(x) = 0}.

Set

S
def
= {x ∈ X : Ix ̸= A} =

∪
f∈A

coz(f).

Therefore S is an open subset of X and, as a consequence, is also a locally compact

space when it is equipped with the topology inherited from X. Hence we assume
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WLOG that S = X throughout this paper. Thus, for each linear subspace of continuous

functions considered from here on, it is assumed:

(1) for every x ∈ X there exists f ∈ A such that f(x) ̸= 0.

Define Z(A)
def
= {Z(f) : f ∈ A}, coz(A)

def
= {coz(f) : f ∈ A}, and let D denote

the smallest ring (with respect to finite unions and intersections) of subsets containing

coz(A).

In coding theory, it is said that a convolutional code is controllable when any code

sequence can be reached from the zero sequence in a finite interval (see [13, 18, 29, 32]).

The gist of controllability can be conveyed in a natural way to subspaces of continuous

functions defined on a topological space. In an informal way, let us say that a vector

subspace of continuous functions is controllable when any continuous functions can be

reached from the zero function modulo a relatively compact open subset. It turns out

that this notion is an essential ingredient in the approach we have taken in this paper.

Definition 1.6. We say that A is controllable if for every f ∈ A and D1, D2 ∈ D with

D1 ∩D2 = ∅, there exist f ′ ∈ A and U ∈ D such that

D1 ⊆ U ⊆ X \D2, f|D1 = f ′
|D1

, and f ′
|(Z(f)∪(X\U)) = 0.

We say that A separates the points x1, x2 ∈ X, if there is f ∈ A such that x1 ∈ coz(f)

and x2 ∈ Z(f) or vice versa.



8 M. FERRER, M. GARY, AND S. HERNÁNDEZ

Along this paper, we deal with scalar-valued functions. The case of vector-valued

functions will be considered in a subsequent paper. We now formulate the main result

in this paper.

Theorem 1.7. Let A and B two vector spaces of F-valued, compactly supported, con-

tinuous functions defined on two locally compact spaces X and Y , which are equipped

with a Borel regular measures µX and µY . If A is controllable, then every Hamming

isometry H : A −→ B is a general weighted composition operator.

As a consequence, it follows the following representation, as weighted composition

operators, of Hamming isometries defined between vector subspaces of FX and FY when

X and Y are two discrete spaces and µX and µY are the counting measures defined on

them.

Corollary 1.8. Let A and B two vector spaces of F-valued, finitely supported, func-

tions defined on two discrete spaces X and Y . If A is controllable, then every Hamming

isometry H : A −→ B is a weighted composition operator.

We remark that convolutional codes are shift invariant subspaces of FX withX = Zk.

The isometries considered by Gluesin-Luerssen in [21] are module homomorphisms with

respect to the polynomial ring F[z]. Here, we are considering the more general case of

F-linear isometries.

2. Basic notions and facts

In this section, we introduce some topological notions that will be needed in the rest

of the paper. Some basic properties connecting them are also established.
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Definition 2.1. Two points x1 and x2 in X are related, written x1 ∼ x2, if for every

f ∈ A with f(x1) · f(x2) = 0, it follows that f(x1) = f(x2) = 0. Let X̃ be the set of

equivalence classes X/̃ equipped with the quotient topology inherited from X. Every

element x̃ ∈ X̃ is associated to the coset subset [x] ⊆ X consisting of all elements

related to x. For simplicity’s sake, we shall use the same symbol [x] to denote either

the coset [x] or the element x̃ ∈ X̃. Remark that Ix1 = Ix2 for every x1 and x2 belonging

to the same coset.

Proposition 2.2. Let [x] be an equivalence class in X and let x1, x2 ∈ [x]. Then there

is a unique element λ(x1, x2) ∈ F \ {0} such that f(x1) = λ(x1, x2)f(x2) for all f ∈ A.

Proof. We know that A \ Ix ̸= ∅ by (1). On the other hand, if f ∈ A \ Ix, it follows

that [x] ⊆ coz(f). Pick out x1, x2 ∈ [x]. Since f(x1) = f(x1)f(x2)
−1f(x2), we define

λf (x1, x2) = f(x1)f(x2)
−1,

which yields f(x1) = λf (x1, x2)f(x2). It will suffice to verify that λf (x1, x2) does not

depend on the selected f in A\Ix. Indeed, let g ∈ A\Ix. Then g(x1) = λg(x1, x2)g(x2).

The map h
def
= f(x2)

−1f − g(x2)
−1g ∈ A and h(x2) = 0. Therefore [x] ⊆ Z(h) and

0 = h(x1)

= f(x2)
−1f(x1)− g(x2)

−1g(x1)

= f(x2)
−1λf (x1, x2)f(x2)− g(x2)

−1λg(x1, x2)g(x2)

= λf (x1, x2)− λg(x1, x2).

As a consequence

λf (x1, x2) = λg(x1, x2) = λ(x1, x2) ∈ F \ {0}.

�
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It is readily seen that the map λ( , ) has the following properties:

• λ(x2, x1) = λ(x1, x2)
−1,

• λ(x1, x2) = λ(x1, x)λ(x, x2).

Lemma 2.3. If x1, x2 ∈ X and x1 ̸∼ x2, then there is fx1x2 such that x1 ∈ coz(fx1x2)

and x2 ∈ Z(fx1x2).

Proof. Since x1 ̸∼ x2 there is f ∈ A such that f(x1)f(x2) = 0 and f(x1) ̸= 0 or

f(x2) ̸= 0. If f(x1) ̸= 0 and f(x2) = 0, then fx1x2 = f and we are done. Otherwise, by

(1), there is g ∈ A such that g(x1) ̸= 0. Set h
def
= g(x2)f − f(x2)g ∈ A. Then h(x2) = 0

and h(x1) = −f(x2)g(x1) ̸= 0. In this case fx1x2 = h. �

Definition 2.4. A ⊆ X is called saturated if and only if x ∈ A implies [x] ⊆ A.

The proof of the next result is easy. We include it for the sake of completeness.

Proposition 2.5. For every f ∈ A and x ∈ X, we have:

(a) coz(f) and Z(f) are saturated subsets of X.

(b) [x] is a saturated compact subset of X.

Proof. The proof of (a) is clear. (b) Let x ∈ X. We first proof that [x] is closed in X.

Let x′ ∈ X \ [x]. By Lemma 2.3 there is f ∈ A such that x′ ∈ coz(f) and x ∈ Z(f).

Applying (a), it follows that [x′] ⊆ coz(f) and [x] ⊆ Z(f). Then x′ ∈ coz(f) ⊆ X \ [x]

and coz(f) is open in X.

On the other hand, by (1), there is g ∈ A such that [x] ⊆ coz(g). Since coz(g) is

compact and [x] is closed in X, we have that [x] is compact. �
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Let π : X → X̃ denote the canonical quotient map associated to the equivalence

relation ∼ and equip X̃ with the canonical quotient topology. Using Proposition 2.5, it

is easily seen that the subsets π(coz(f)) and π(Z(f)) are clopen in X̃ for every f ∈ A

and, with a little more effort, it is proved that X̃ is a Hausdorff, locally compact space.

We leave the verification of this fact to the interested reader.

A standard compactness argument is used in the proof of the following lemma. We

include it here for the sake of completeness.

Lemma 2.6. Let K1 and K2 be compact subsets of X such that x1 ̸∼ x2 for every

x1 ∈ K1 and x2 ∈ K2. Then there are D1, D2 ∈ D such that K1 ⊆ D1, K2 ⊆ D2 and

D1 ∩D2 = ∅.

Proof. Let x1 ∈ K1 and x ∈ K2, which implies x1 ̸∼ x. By Lemma 2.3, there is fx ∈ A

such that [x1] ⊆ coz(fx) and [x] ⊆ Z(fx). We have K2 ⊆
∪

[x]∈π(K2)

Z(fx) and [x1] ⊆∩
[x]∈π(K2)

coz(fx). Since K2 is compact and Z(fx) is open, we have K2 ⊆
n∪

i=1

Z(fx(i)) and

[x1] ⊆
n∩

i=1

coz(fx(i)) = X \
n∪

i=1

Z(fx(i)) ⊆ X \K2.

Define Cx1 =
n∩

i=1

coz(fx(i)), which is a clopen subset ofX. Remark that [x1] ⊆ Cx1 and

Cx1 ∩K2 = ∅. Consequently K1 ⊆
∪

[x]∈π(K1)

Cx and Cx ∩K2 = ∅ for every [x] ∈ π(K1).

Since K1 is compact, we have K1 ⊆
m∪
j=1

Cx(j)
.

Define D1 =
m∪
j=1

Cx(j)
∈ D and observe that K1 ⊆ D1 and D1 ∩ K2 = ∅. Since D1

is a saturated compact subset of X, we repeat again the same procedure in order to

obtain D2 ∈ D such that K2 ⊆ D2 and D1 ∩D2 = ∅. �

We notice that the lemma above applies to any two disjoint saturated compact

subsets of X. On the other hand, the following remark is easily seen.
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Remark 2.7. Every D ∈ D is a saturated compact subset of X and π(D) is clopen in

X̃. Furthermore, the collection {π(D) : D ∈ D} is an open base for X̃.

3. Separating maps and support subsets

Definition 3.1. A map H : A −→ B is said to be separating (or disjointness preserv-

ing) when coz(f) ∩ coz(g) = ∅ implies coz(Hf) ∩ coz(Hg) = ∅, f, g ∈ A.

A linear functional φ : A −→ F is called separating when coz(f)∩ coz(g) = ∅ implies

φ(f)·φ(g) = 0. The link between weight-preserving isomorphisms and separating maps

is given by the next lemma. It follows easily taking into account that the weight of

a function coincides with the measure of its support set. We sketch the proof for the

sake of completeness.

Lemma 3.2. Let f and g be two elements in A. Then coz(f)∩ coz(g) = ∅ if and only

if wt(f + g) = wt(f) + wt(g).

Proof. It is obvious that coz(f) ∩ coz(g) = ∅ implies wt(f + g) = wt(f) + wt(g). On

the other hand, assume that wt(f + g) = wt(f) + wt(g). From the inequality

wt(f + g) ≤ wt(f) + wt(g)− wt(f · g)

it follows that wt(f · g) = 0, which implies coz(f) ∩ coz(g) = ∅. �

Corollary 3.3. Every Hamming isometry is a separating linear isomorphism.

Separating isomorphisms have been studied by many workers and have found ap-

plication to a variety of fields (cf. [1, 2, 3, 4, 7, 8, 9, 16, 17, 20, 22, 23, 24]). After

Corollary 3.3, it is clear that, in order to prove Theorem 1.7, it suffices to deal with

the broader case of separating isomorphisms and so we do in the rest of the paper.
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The following definition makes sense for every subset of X but we have restricted it

to saturated subsets, because it will only be applied to these subsets in this paper.

Definition 3.4. Let φ : A −→ F be a map. A saturated closed subset K of X is said

to be a support for φ if given f ∈ A with K ⊆ Z(f), it holds that φ(f) = 0.

Support subsets enjoy several nice properties.

Proposition 3.5. Let φ : A −→ F be a non null, separating, linear functional. Then

the following assertions hold:

(a) X is a support for φ.

(b) If K is a support for φ then K ̸= ∅.

(c) Let K be a support for φ and f, g ∈ A such that f|K = g|K. Then φ(f) = φ(g).

(d) If A is controllable and K1 and K2 are both supports for φ, then K1 ∩K2 ̸= ∅.

Proof. (a) This is clear.

(b) Let K be a support for φ and suppose K = ∅. Then K = ∅ ⊆ Z(f) for all f ∈ A.

Consequently φ(f) = 0 for all f ∈ A, which is a contradiction since φ is non null.

(c) Let K be a support for φ. If f, g ∈ A and f|K = g|K then f − g ∈ A and

K ⊆ Z(f − g). So 0 = φ(f − g) = φ(f)− φ(g).

(d) Let K1 and K2 be supports for φ and suppose that K1 ∩K2 = ∅. Since φ is non

null, there is f ∈ A such that φ(f) ̸= 0. Remark that the set C1 = coz(f) ∩K1 ̸= ∅

because, otherwise, K1 ⊆ Z(f) and then φ(f) = 0, which is not true. Since coz(f)

is a saturated compact subset of X and K1 is also saturated and closed, it follows

that C1 is a saturated compact subset of X. In like manner C2 = coz(f) ∩ K2 is

non empty, saturated and compact. Furthermore C1 ∩ C2 = ∅ and by Lemma 2.6
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there exist D1, D2 ∈ D such that C1 ⊆ D1, C2 ⊆ D2 and D1 ∩ D2 = ∅. Applying

that A is controllable to D1, D2 and f , we obtain U ∈ D and f ′ ∈ A such that

C1 ⊆ D1 ⊆ U ⊆ X \D2 ⊆ X \ C2 and f|D1 = f ′
|D1

and f ′
|(Z(f)∪(X\U)) = 0.

Remark that coz(f) = C1 ∪ C2 ∪ (coz(f) \ (C1 ∪ C2)). Evaluating f ′ yields:

If x ∈ C1 then f ′(x) = f(x).

If x ∈ K1 \ C1 then f ′(x) = 0 = f(x).

If x ∈ K2 then f ′(x) = 0.

As a consequence f ′
|K1

= f|K1 and f ′
|K2

= 0. Applying (c), we deduce that φ(f ′) =

φ(f) ̸= 0 and φ(f ′) = 0, which is a contradiction. This completes the proof.

�

Next it is proved that, when A is controllable, every non null, separating, linear

functional φ : A −→ F has a minimum support set consisting of an equivalence class

[x]. For that purpose, we define

S = {A ⊆ X : A is support for φ}.

It easily seen that S has a ⊆-minimal element K. Indeed, just take the intersection

of all support sets. It follows from an easy compactness argument (each function f is

compactly supported) that the intersection is again a (closed and saturated) support

set.

Proposition 3.6. Let φ : A −→ F be a non null, separating, linear functional. If A

is controllable, then there exists x ∈ X such that K = [x] is a support for φ.

Proof. By Proposition 3.5 K ̸= ∅. Suppose now that there are two different cosets

[x1], [x2] that are contained in K. Since X is Hausdorff and K is saturated, using
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Lemma 2.6, we can select two disjoint saturated open sets V1, V2 ⊆ X such that [x1] ⊆

V1 and [x2] ⊆ V2. Since K is minimal, the subset K \ Vi is a saturated closed subset

of X that is not a support for φ. Hence, there is fi ∈ A such that K \ Vi ⊆ Z(fi) and

φ(fi) ̸= 0, 1 ≤ i ≤ 2. As φ is a separating functional, the subset A = coz(f1)∩ coz(f2)

is a nonempty saturated compact subset of X. We claim that K ∩ A = ∅. Indeed,

otherwise, pick out an element a ∈ K ∩ A. Then [a] ⊆ K ∩ A. If [a] ⊆ V1 then

[a] ⊆ K \ V2 and [a] ⊆ Z(f2), which is a contradiction. On the other hand, if [a] * V1

then [a] ⊆ K \ V1 and [a] ⊆ Z(f1), which is a contradiction again. Therefore, we have

proved that K ∩ A = ∅.

Take now B = K∩(coz(f1)∪coz(f2)). If B = ∅ then K∩coz(fi) = ∅ and K ⊆ Z(fi),

which implies φ(fi) = 0, 1 ≤ i ≤ 2, and we obtain a contradiction. Therefore, we have

B ̸= ∅. Thus B is a saturated compact subset of X satisfying that A∩B = ∅. Applying

Lemma 2.6, we can select two disjoint subsets DA, DB ∈ D such that A ⊆ DA and

B ⊆ DB. Applying that A is controllable to DA, DB and f1, we can take U ∈ D

and f ′ ∈ A such that B ⊆ DB ⊆ U ⊆ X \ DA ⊆ X \ A, which implies U ∩ A = ∅,

f1|DB
= f ′

|DB
and f ′

|(Z(f1)∪(X\U)) = 0.

Let us see that f ′
|K = f1|K . Indeed, if x ∈ K \ coz(f1) then f ′(x) = 0 = f1(x) and if

x ∈ K ∩ coz(f1) ⊆ DB then f ′(x) = f1(x) ̸= 0. By Proposition 3.5 φ(f ′) = φ(f1) ̸= 0.

Since φ is separating, ∅ ≠ coz(f ′) ∩ coz(f2) ⊆ coz(f1) ∩ coz(f2) = A. But this is a

contradiction because A ⊆ Z(f ′). By Proposition 2.5, it follows that K may only

contain an equivalence class [x] = K, for some point x in X. This completes the

proof. �
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4. Proof of main result

We have remarked after Corollary 3.3 that, in order to prove the main result for-

mulated at the Introduction, it suffices to deal with separating linear isomorphisms.

Therefore, assume that H : A −→ B is a linear separating map defined between linear

subspaces A and B of C00(X,F) and C00(Y,F), respectively. Observe that for every

y ∈ Y , the composition δy ◦H is a separating linear functional of A into F. Conveying

to Y and B the equivalence relation we have defined above on X and A, and applying

to δy ◦H the last two results in the previous section, we obtain:

Proposition 4.1. Let H : A −→ B be a linear separating map. If K is a support for

δy ◦H and y′ ∈ [y] then K is a support to δy′ ◦H.

Proof. It suffices to take into account that every Z ∈ Z(B) is saturated. �

Applying Proposition 3.6 to δy ◦H, for each y ∈ Y , we are now in position of defining

the support map h that is associated to H. This map is defined between the spaces Y

and X̃. Again, in order to simplify the notation, we will use the same symbol h(y) to

denote both, an element of X̃, and the equivalence class π−1(h(y)), which is a subset

of X.

Proposition 4.2. Let H : A −→ B a separating linear map satisfying that for every

y ∈ Y there is fy ∈ A such that Hfy(y) ̸= 0. If A is controllable, then there is a map

h : Y −→ X̃ satisfying the following properties:

(a) For every f ∈ A with f|h(y) = 0, it follows that Hf(y) = 0.

(b) h(y′) = h(y) for all y′ ∼ y.

(c) If A ( X̃ is open, f ∈ A and π−1(A) ⊆ Z(f) then h−1(A) ⊆ Z(Hf).
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(d) h(coz(Hf)) ⊆ π(coz(f)) for every f ∈ A.

Proof. We define h(y) as the smallest support associated to δy ◦H.

(a) This is clear.

(b) It follows from Sy = Sy′ when y ∼ y′.

(c) Take y ∈ h−1(A). Then π−1(X̃ \ A) is a nonempty, saturated, and closed subset

that it is not a support for δy◦H. Therefore, there is g ∈ A such that π−1(X̃\A) ⊆ Z(g)

and Hg(y) ̸= 0. So we have coz(g) ⊆ π−1(A) and coz(f) ⊆ X \ π−1(A). Since H is a

separating map, coz(Hg) ∩ coz(Hf) = ∅. As a consequence Hf(y) = 0.

(d) Let [x] ∈ h(coz(Hf)), then [x] = h(y) for some y ∈ coz(Hf). Since h(y) is

support for δy ◦ H, we have [x] * Z(f). Since Z(f) is saturated, it follows that

[x] ⊆ coz(f). �

Let Gr[h]
def
=

∪
y∈Y

(h(y) × {y}) denote the graphic of h equipped with the topology

inherited as a subspace of X × Y . Using the map λ(., .) defined in Proposition 2.2, we

have the following representation of separating linear maps.

Proposition 4.3. Let H : A −→ B a separating linear map satisfying that for every

y ∈ Y there is fy ∈ A such that Hfy(y) ̸= 0. If A is controllable, then there is a map

ω : Gr[h] −→ F \ {0} satisfying the following properties:

(a) Hf(y) = ω(x, y)f(x) for all (x, y) ∈ Gr[h] and all f ∈ A.

(b) ω(x′, y′) = λ(y′, y)ω(x, y)λ(x, x′) for all y′ ∼ y and (x, y), (x′, y′) ∈ Gr[h].

(c) ω is continuous.

Proof. (a) Let (x, y) ∈ Gr[h]. By hypothesis, there is f ′ ∈ A such that Hf ′(y) ̸= 0.

Then f ′(x) ̸= 0 since h(y) is a support set for δy ◦ H. Set α = f ′(x) ∈ F \ {0} and

fx = α−1f ′ ∈ A, which implies fx(x) = 1.
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We define

ω(x, y) = Hfx(y) = α−1Hf ′(y) ∈ F \ {0}.

Observe that ω(x, y) does not depend on the specific map f ∈ A with f(x) = 1 we

select. Indeed, let gx ∈ A such that gx(x) = 1. Take x′ ∈ h(y), then by Proposition 2.2

fx(x
′) = λ(x′, x)fx(x) = λ(x′, x) = λ(x′, x)gx(x) = gx(x

′). Thus, we have shown that

(fx)|h(y) = (gx)|h(y). By Proposition 3.5, we have Hgx(y) = Hfx(y) = ω(x, y).

Pick out now an arbitrary map f ∈ A. If f(x) = 0 then, since Z(f) is saturated,

h(y) = [x] ⊆ Z(f) and Hf(y) = 0. Obviously Hf(y) = ω(x, y)f(x) = 0. Therefore,

suppose WLOG that f(x) = β ̸= 0 and set g′x = β−1f ∈ A. Then we have g′x(x) = 1

and, since ω(x, y) does not depend on g′x, it follows that Hg′x(y) = Hfx(y) = ω(x, y).

Taking into account that H is a linear map, we get Hg′x = β−1Hf . Thus β−1Hf(y) =

ω(x, y), which yields Hf(y) = βω(x, y) = ω(x, y)f(x). This completes the proof.

(b) This is clear after making some straightforward evaluations.

(c) Let ((xd, yd))d be a net converging to (x, y) in Gr[h] and take fx ∈ A such that

fx(x) = 1. Since F is discrete and fx and Hfx are continuous, there exists d0 such that

fx(xd) = 1 and Hfx(yd) = Hfx(y) for all d ≥ d0. Thus ω(xd, yd) = ω(xd, yd)fx(xd) =

Hfx(yd) = Hfx(y) = ω(x, y)fx(x) = ω(x, y) for all d ≥ d0. This implies that the net

(ω(xd, yd))d converges to ω(x, y). �

As a consequence of the previous result, we obtain a converse to Proposition 4.2.

Corollary 4.4. Hf(y) = 0 implies f(x) = 0 for all (x, y) ∈ Gr[h] .

Our next goal is to verify that the support map h is continuous and surjective

assuming the same conditions as in Proposition 4.2 if H is also one-to-one. We split

the proof in several lemmata for the reader’s sake.
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Lemma 4.5. Assuming the same conditions as in Proposition 4.2, the support map

h : Y → X̃ is continuous.

Proof. Let (yd)d∈D be a net in Y converging to y ∈ Y . Since X̃ is locally compact

and Hausdorff, its Alexandroff compactification X̃∗ is also Hausdorff. By a standard

compactness argument, we may assume WLOG that (h(yd))d converges to t ∈ X̃∗.

Reasoning by contradiction, suppose h(y) ̸= t and take two disjoint open neighborhoods

Vh(y) and Vt of h(y) and t respectively. Take d1 such that h(yd) ∈ Vt ∩ X̃ for all d ≥ d1.

Since the support sets for δz ◦ H contains h(z) for all z ∈ Y , it follows that the

subset π−1(X̃ \ (Vh(y)∩ X̃)) may not be a support set for δy ◦H. Therefore, there exists

f ∈ A such that π−1(X̃ \ (Vh(y) ∩ X̃)) ⊆ Z(f) and Hf(y) ̸= 0. Moreover, since H(f) is

continuous, the net (Hf(yd))d∈D converges to Hf(y) and, since F is discrete, there is

d2 ≥ d1 such that Hf(yd) ̸= 0 for all d ≥ d2. Therefore, the subset π−1(X̃ \ (Vt ∩ X̃))

may not be a support set for δyd3 ◦H for some index d3 ≥ d2. As a consequence, there

exists f3 ∈ A such that π−1(X̃ \ (Vt ∩ X̃)) ⊆ Z(f3) and Hf3(yd3) ̸= 0. Thus, we have

yd3 ∈ coz(Hf3)∩ coz(Hf) and, since H is a separating map, coz(f3)∩ coz(f) ̸= ∅. But

coz(f3) ⊆ π−1(Vt ∩ X̃) is disjoint from coz(f) ⊆ π−1(Vh(y) ∩ X̃). This contradiction

completes the proof. �

Lemma 4.6. Assuming the same conditions as in Proposition 4.2, if H is also one-

to-one, then h(Y ) is dense in X̃.

Proof. Reasoning by contradiction again, suppose there is x ∈ X such that [x] /∈

h(Y )
X̃
. Set A = h(Y )

X̃
, which implies [x] ∩ π−1(A) = ∅. On the other hand, by

(1), there is f ∈ A such that [x] ⊆ coz(f). Define B = π−1(A) ∩ coz(f), which

is a saturated compact subset because π−1(A) is closed and coz(f) is compact and
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saturated. Moreover, we have that B ̸= ∅. Otherwise, π−1(h(Y )) ⊆ π−1(A) ⊆ Z(f).

This implies that Hf ≡ 0 and f ≡ 0, which is a contradiction. Since [x] ∩ B = ∅,

by Lemma 2.6, there are two disjoint subsets Dx, DB ∈ D such that [x] ⊆ Dx and

B ⊆ DB. Then the subset D = Dx ∩ coz(f) ∈ D contains [x] and D ∩ π−1(A) = ∅.

We now apply that A is controllable to D, DB and f in order to obtain U ∈ D and

f ′ ∈ A such that [x] ⊆ D ⊆ U ⊆ X \DB ⊆ X \ B, f|D = f ′
|D and f ′

|(Z(f)∪(X\U)) = 0.

Hence coz(f ′) ⊆ U ∩ coz(f), U ∩ B = ∅ and coz(f ′) ∩ π−1(A) = ∅. As a consequence

π−1(h(Y )) ⊆ π−1(A) ⊆ Z(f ′) and Hf(y) = 0 for all y ∈ Y . Since H is a linear

monomorphism we have f ≡ 0, which is a contradiction. Therefore h(Y )
X̃
= X̃, which

completes the proof. �

Let Y ∗ and X̃∗ be the Alexandroff compactification of Y and X̃ respectively. Then

there is a canonical way of extending h to a map h∗ : Y ∗ → X̃∗ by h∗|Y = h and

h∗(∞) = ∞. It turns out that this canonical extension is a continuous onto map.

Lemma 4.7. Assuming the same conditions as in Proposition 4.2, if H is also one-

to-one, then h∗ is continuous and onto.

Proof. Since h∗|Y = h is continuous, in order to prove the continuity of h∗, it suffices

to verify the continuity of h∗ at ∞. Reasoning by contradiction, suppose that h∗ is

not continuous at ∞. Then, there must be a compact subset K0 ⊆ X̃ such that

∞ ∈ h−1(K0)
Y ∗

. Otherwise, we would have ∞ /∈ h−1(K)
Y ∗

for every compact subset

K of X̃. Since h−1(K) is closed in Y , it follows that h−1(K) = h−1(K)
Y
= h−1(K)

Y ∗

.

However, every closed subset of Y ∗ is either the union of {∞} and a closed subset

of Y , or a compact subset of Y . Hence h−1(K) is compact in Y for every compact

subset K in X̃ and, as a consequence, we have ∞ ∈ Y ∗ \ h−1(K), which is open in
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Y ∗. Thus, we have proved that X̃∗ \K is an open neighborhood of ∞ = h∗(∞) and

h∗(∞) ∈ h∗(Y ∗ \ h−1(K)) ⊆ X̃∗ \ K for every compact subset K of X̃, which would

yield the continuity of h∗ at ∞.

Take a net (yd)d∈D ⊆ h−1(K0) converging to ∞. By the compactness of K0, we may

assume WLOG that (h(yd))d∈D converges to [x0] ∈ K0. But coz(Hf) is compact and

∞ ∈ Y ∗ \ coz(Hf) for all f ∈ A. Therefore, for every f ∈ A, there is an index d(f)

such that yd ∈ Y \ coz(Hf) for all d ≥ d(f). That is Hf(yd) = 0 and, by Corollary

4.4, we have f|h(yd) = 0 for all d ≥ d(f). Thus (h(yd))d≥d(f)) is contained in π(Z(f))

and, as a consequence, we have [x0] ∈ π(Z(f))
X̃
= π(Z(f)) for all f ∈ A. This implies

that f(x0) = 0 for all f ∈ A, which is a contradiction.

Now, it is easy to show that h∗ is an onto map. Indeed, since Y ∗ is compact, h∗

is continuous and X̃∗ is Hausdorff, we have that h∗(Y ∗) is a compact subset of X̃∗.

Therefore h∗(Y ∗)
X̃∗

= h∗(Y ∪{∞}) = h(Y )∪{∞} ⊆ h(Y )
X̃∗

∪{∞} = h∗(Y ∗)
X̃∗

and, by

Lemma 4.6, it follows that h∗(Y ∗) = h∗(Y ∗)
X̃∗

= h(Y )
X̃
∪ {∞} = X̃ ∪ {∞} = X̃∗. �

From Proposition 4.7, it follows a main partial result.

Corollary 4.8. Assuming the same conditions as in Proposition 4.2, if H is also

one-to-one, then h : Y → X̃ is continuous and onto.

Set h̃ : Ỹ → X̃ by h̃([y]) = h(y) for all [y] ∈ Ỹ , which is clearly well defined. A

straightforward consequence of Corollary 4.8 is:

Proposition 4.9. Assuming the same conditions as in Proposition 4.2, if H is also a

bijection, then h̃ is a homeomorphism of Ỹ onto X̃.

Proof. The continuity of h̃ follows from the continuity of h and π.
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Take [y1] ̸= [y2] in Y . By Lemma 2.3, there is f ∈ A such that [y1] ⊆ Z(Hf) and

[y2] ⊆ coz(Hf). Applying Corollary 4.4 and Proposition 4.2, we obtain h(y1) ⊆ Z(f)

and h(y2) ⊆ coz(f), which implies h̃([y1]) ̸= h̃([y2]). Thus h̃ is 1-to-1. On the other

hand, the map h̃ is onto because so is h.

Now, we can proceed as in Lemma 4.7, in order to extend h̃ to a continuous map

h̃∗ : Ỹ ∗ → X̃∗. Clearly the map h̃∗ is a continuous bijection and, therefore a homeo-

morphism between compact spaces. This automatically implies that h̃ is a homeomor-

phism. �

We can now establish the representation of separating isomorphisms as weighted

composition operator, which implies Theorem 1.7.

Theorem 4.10. Let H : A −→ B a separating, linear, onto, map. If A is controllable,

then there are continuous maps h : Y −→ X̃ and ω : Gr[h] −→ F satisfying the

following properties:

(a) For each y ∈ Y , x ∈ h(y), and every f ∈ A it holds

Hf(y) = ω(x, y)f(x).

(b) H is continuous with respect to the pointwise convergence topology.

(c) H is continuous with respect to the compact open topology.

Proof. Since both A and B satisfy the initial assumption (1), it follows that item (a) is

a direct consequence from Proposition 4.3. On the other hand, it is readily seen that

(a) implies (b). Thus only (c) needs verification.

(c) Let (fd)d ⊆ A be a net uniformly converging to 0 in the compact open topo-

logy. If K is a compact subset of Y , then h(K) is a compact subset of X̃ by the
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continuity of h. Furthermore, by Remark 2.7, the subset π−1(h(K)) is compact in

X. Indeed, for every [x] ∈ h(K), there is fx ∈ A such that [x] ∈ π(coz(fx)). Hence

h(K) ⊆
∪

[x]∈h(K)

π(coz(fx)). By compactness, there is a finite subcover, say h(K) ⊆∪
1≤i≤n

π(coz(fi)). Thus π−1(h(K)) ⊆
∪

1≤i≤n

coz(fi), which yields the compactness of

π−1(h(K)).

Since (fd)d converges to 0 uniformly on π−1(h(K)), it follows that (fd)d is eventually

equal to 0 on π−1(h(K)). Applying (a), it follows that (Hfd)d is eventually 0 on K.

This completes the proof. �

We are now in position of establishing the main result formulated at the Introduction.

Proof of Theorem 1.7. Since H is a Hamming isometry of A onto B, it is separating by

Corollary 3.3. Thus H must be a general weighted composition operator by Theorem

4.10. �

Proof of Corollary 1.8. Applying Proposition 4.9 and Theorem 1.7, it follows that there

is a homeomorphism (in fact, bijection) h̃ : Ỹ −→ X̃ such that Hf(y) = ω(x, y)f(x)

for each x ∈ h̃([y]), [y] ∈ Ỹ , and f ∈ A.

We claim that µ([y]) = µ(h̃([y])) for all [y] ∈ Ỹ . Indeed, take [x] ∈ X̃ and consider

f ∈ A such that [x] ⊆ coz(f). For every z ∈ coz(f) such that z /∈ [x], there is fz ∈ A

such that fz(z) = 0 and fz(x) ̸= 0. Hence [x] = coz(f)∩{coz(fz) : z ∈ coz(f), z /∈ [x]}.

Since coz(f) is finite, this implies that [x] ∈ D.

Applying that A is controllable, there exist f ′ ∈ A and U ∈ D such that

[x] ⊆ U ⊆ X \ [z], f|[x] = f ′
|[x], and f ′

|(Z(f)∪(X\U)) = 0.
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Thus [x] ⊆ coz(f ′) ( coz(f). Again, since coz(f) is finite, we can repeat this

argument finitely many times in order to obtain a map g ∈ A such that [x] = coz(g).

The claim is now verified by applying that H is a Hamming isometry and Theorem 1.7.

Therefore, we have proved that |[y]| = |h̃([y])| for all [y] ∈ Ỹ . Let hy be any bijection

from [y] onto h̃([y]) for every [y] ∈ Ỹ . The map h : Y −→ X defined as h(y′)
def
= hy(y

′)

for y′ ∈ [y], [y] ∈ Ỹ , is clearly a bijection of X onto itself. Now, set

w(y′)
def
= w(h(y′), y′), y′ ∈ [y], [y] ∈ Ỹ .

By Theorem 1.7, we have that Hf(y′) = w(y′)f(h(y′)) for all y′ ∈ X and f ∈ A,

which completes the proof. �
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