
1



Dynamics of a multipoint variant of Chebyshev-Halley’s
family

B. Campos
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Abstract

In this paper, a complex dynamical study of a parametric Chebyshev-Halley type fam-

ily of iterative methods on quadratic polynomial is presented. The stability of the fixed

points is analyzed in terms of the parameter of the family. We also calculate the crit-

ical points building their corresponding parameter planes which allow us to analyze

the qualitative behaviour of this family. Moreover, we locate some dynamical planes

showing different pathological aspects of this family.
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lems whose mathematical expression is a nonlinear equation or a differential equation

or, more often, a system of equations. The problem is that in practice it is very difficult,5

if not impossible, to find the exact solution of these equations; therefore, it is necessary

to resort to numerical approximations by using iterative methods. This means that the

output of the method is a sequence of images
{
z0, R (z0) , R

2 (z0) , ..., R
n (z0) , ...

}
for the initial condition z0, where R is a function that represents the fixed-point oper-

ator of the iterative scheme. Therefore, it can be seen as a discrete dynamical system10

and we can study it from this point of view.

The historical seed of complex dynamics goes back to Ernst Schröder and Arthur

Cayley who, at the end of the nineteenth century, investigated the global dynamics of

Newton’s method in the complex plane C, applied on polynomials of degree two. They

were able to see that there are one neighborhood around each root of the quadratic poly-15

nomial where Newton’s method converges; in fact, these domains can be extended to

two half planes and the boundary straight line between them is precisely the bisectrix.

Furthermore, any Newton’s map for a quadratic polynomial with two different roots is

conformal conjugated to the map z2 in the Riemann sphere Ĉ. Nevertheless, Newton’s

method applied on polynomials of degree greater than two is a more complicated ra-20

tional function. In this case, the Riemann sphere Ĉ is considered as the domain of the

rational mapping R associated with the iterative method.

The study of the dynamics of Newton’s method has been extended to other one-

point iterative schemes used for solving nonlinear equations, with convergence order

up to 3 (see, e.g. [1]). In some previous papers, we have considered the dynamical25

study of Chebyshev-Halley’s family [9], the King’s family [8], the c-family [5] and

finally, the (α, c)-iterative class, which includes Chebyshev–Halley and c-families [6].

A dynamical study of the operators defined by the iterative methods help us to know

more widely the regions where these methods have a good behavior.

The natural space for iterating a rational map R is the Riemann sphere Ĉ. For a30

given rational map R, the sphere splits into two complementary domains: the Fatou set

F(R) where the family of iterates {Rn (z)}n∈N is a normal family, and the Julia set

J (R) where the family of iterates fails to be a normal family. The Fatou set, when

nonempty, is given by the union of, possibly, infinitely many open sets in Ĉ, usually
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called Fatou components, that is, the Fatou set is composed by the set of points whose35

orbits tend to an attractor (fixed point, periodic orbit, infinity, ...). On the other hand,

it is known that the Julia set is a closed, totally invariant, perfect nonempty set, and

coincides with the closure of the set of repelling periodic points. For a deep review on

iteration of rational maps see [2].

Given a rational function R : Ĉ→ Ĉ, where Ĉ is the Riemann sphere, the orbit of

a point z0 ∈ Ĉ is defined as:

{z0, R (z0) , R
2 (z0) , ..., R

n (z0) , ...}

We are interested in the study of the asymptotic behavior of the orbits depending on40

the initial condition z0, that is, we are going to analyze the phase plane of the map R

defined by the different iterative methods. To obtain these phase spaces, the first of all

is to classify the starting points from the asymptotic behavior of their orbits.

A z0 ∈ Ĉ is called a fixed point if it satisfies: R (z0) = z0. A periodic point

z0 of period p > 1 is a point such that Rp (z0) = z0 and Rk (z0) 6= z0, k < p.45

A pre-periodic point is a point z0 that is not periodic but there exists a k > 0 such

that Rk (z0) is periodic. A critical point z0 is a point where the derivative of rational

function vanishes, R′ (z0) = 0.

On the other hand, a fixed point z0 is called attractor if |R′(z0)| < 1, superattractor

if |R′(z0)| = 0, repulsor if |R′(z0)| > 1 and parabolic if |R′(z0)| = 1.50

The basin of attraction of an attractor α is defined as the set of pre-images of any

order:

A (α) = {z0 ∈ Ĉ : Rn (z0)→α, n→∞}.

As we have said, iterative methods are used for finding roots of a nonlinear equa-

tion and, from a dynamical point of view, these roots are fixed points of the operator R

associated to the method; we conducted this study in Section 2, with particular empha-

sis in the study of the region of the parameter plane where the fixed points are attractive

(Propositions 1 and 3).55

The basin of attraction of an attractor needs at least one critical point inside, so, it is

important the number of critical points because they are the causative of the instability

of numerical methods (Section 3). In Section 3 we also build the parameter planes
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associated to the different free critical points. Finally, in Section 4, we study some

methods coming from the parametric family studied in this paper, specially chosen for60

their stable or unstable behavior, and show the dynamical planes for these values of the

parameter.

1.1. A multipoint variant of Chebyshev-Halley’s family

In this paper we study the dynamics of a multipoint variant of Chebyshev’s method

for solving a nonlinear equation f(z) = 0. Considering the Newton-like iterative

method as a predictor

yn = zn − α
f (zn)

f ′ (zn)
,

Chebyshev-Halley’s family is modified by using the second-order derivative on yn in-

stead of zn:

zn+1 = zn −
f (zn)

f ′ (zn)
− 1

2

f (zn)
2
f ′ (zn) f

′′ (yn)

(f ′ (zn)
2 − af (zn) f ′′ (yn))2

, (1)

If we put a = 0 and α = 0 we have the Chebyshev’s method. In [3], the authors

present a new fourth-order variant of Chebyshev method from this family when α = 1
365

and a = 1
2 . So, we fix the value of α = 1

3 for developing a dynamical study of this

family, depending on one parameter a.

So, the fixed point operator corresponding to the family described in (1) is:

Of (z, a) = z − f (z)

f ′ (z)
− 1

2

f (z)
2
f ′ (z) f ′′ (y)

(f ′ (z)
2 − af (z) f ′′ (y))2

, (2)

when

y = z − 1

3

f (z)

f ′ (z)
.

In this work, we analyze the dynamics of this operator when it is applied on quadratic

polynomials. It is known that any quadratic polynomial can be transformed, by means

of an affine map, to p (z) = z2 + c with no qualitative changes on the dynamics of

family (1). Moreover, P. Blanchard [4], by considering the conjugacy map with the

following properties:

h (∞) = 1, h
(
i
√
c
)
= 0, h

(
−i
√
c
)
=∞,
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proved that, for quadratic polynomials, Newton’s operator is always conjugate to the

rational map z2, and z = 0 and z = ∞ are associated to the roots of the quadratic

polynomial p (z) = z2 + c. By the same procedure, after applying this conjugacy map70

to operator (2) we obtain the rational function:

Op (z, a) =
z3 (−1 + 2a− z)

(
2 + (3− 2a)z + z2

)
(−1 + (2a− 1)z) (1 + (3− 2a)z + 2z2)

, (3)

depending on the parameter a. Additionally, it is easy to prove the following result,

that will be useful for checking that z =∞ is a fixed point.

Lemma 1. The operator defined in equation (3) satisfies the following statement:

Op

(
1

z
, a

)
=

1

Op (z, a)
.

2. Study of the fixed points

We study the dynamics of operator Op (z, a) in terms of parameter a. In this sec-75

tion, we calculate the fixed points of Op (z, a) analyzing the number and their stability

depending on the parameter a.

The fixed points of Op (z, a) are the roots of the equation Op (z, a) = z. Solving

this equation we obtain z = 0, z = ∞, z = 1 (if a 6= 1 and a 6= 3) and the four roots

of the symmetric polynomial equation

z4 + (5− 4a)z3 + 4(2− 2a+ a2)z2 + (5− 4a)z + 1 = 0. (4)

These roots are given by:

z1,2(a) =
1

4

(
4a− 5 +

√
1− 8a± 2

√
1

4

(
4a− 5 +

√
1− 8a

)2 − 4

)
, (5)

z3,4(a) =
1

4

(
4a− 5−

√
1− 8a± 2

√
1

4

(
4a− 5−

√
1− 8a

)2 − 4

)
.

In the following we avoid the dependence of a in the notation of the fixed and

critical points, unless necessary.80

Due to the symmetry of the polynomial (4), we have that z1 =
1

z2
and z3 =

1

z4
.
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Indeed, the number of fixed points is reduced for some values of a. For example,

if a = 2 ± i then z1 = z2 = 1, if a = 0 then z1 = z2 = −1. Moreover, z = −1 is a

pre-periodic point, i. e. Op(−1, a) = 1.

Let us remember that fixed points different from z = 0, z =∞ (that are associated85

to the roots of the quadratic polynomial) are called strange fixed points.

In order to study the stability of the fixed points, we calculate the first derivative of

Op(z, a),

O′p (z, a) = −2z2
(1 + (2− 2a)z + z2)P (z, a)

(−1 + (2a− 1)z)
2
(1 + (3− 2a)z + 2z2)2

, (6)

where

P (z, a) = 6a−3+(−12+22a−12a2)z+(−18+32a−24a2+8a3)z2+(−12+22a−12a2)z3+(6a−3)z4.

(7)

As a fixed point is attractive or repulsive if |O′p (z, a) | is less than or greater than

one, respectively, this function is known as stability function.90

From (6) we obtain that z = 0 and z = ∞ are always superattractive fixed points,

but the stability of the other strange fixed points changes depending on the values of

the parameter a.

Remark 1. Let us notice that for a = 1
2 the degree of polynomial (7) decreases, in

fact, P (z, 12 ) = −z(4 + 7z + 4z2).95

2.1. Stability of z = 1

We begin with the stability of the strange fixed point z = 1, when a 6= 1 and a 6= 3.

Then we consider,

O′p (1, a) =
2(a− 2)2

(a− 3) (a− 1)
. (8)

The stability of this point is shown in the following result.

Proposition 1. For every value a = x + iy of the parameter, the strange fixed point100

z = 1 satisfies the following statements:

7



i) z = 1 is an attractor inside curve C defined by:

3y2 = (−11 + 12x− 3x2 + 2
√
−11 + 12x− 3x2).

It is a superattractor for a = 2.

ii) z = 1 is a parabolic point for values of the parameter a on curve C, and

iii) z = 1 is a repulsive fixed point for values of a outside curve C.

Proof. From equation (8), the stability function of the fixed point z = 1 is:105

∣∣O′p (1, a)∣∣ = ∣∣∣∣ 2(a− 2)2

(a− 3) (a− 1)

∣∣∣∣
To know where this point is parabolic, we look for the points where the stability

function equals one:

∣∣O′p (1, a)∣∣ = 1,

then

2 |a− 2|2 = |a− 3| |a− 1| .

By writing a = x+ yi, we obtain

4
(
(x− 2)

2
+ y2

)2
=
(
(x− 3)

2
+ y2

)(
(x− 1)

2
+ y2

)
,

developing on both sides of the equality and simplifying:

55− 104x+ 74x2 − 24x3 + 3x4 + (22− 24x+ 6x2)y2 + 3y4 = 0,

whose solution is the curve C (Figure 1):

3y2 = (−11 + 12x− 3x2 + 2
√
−11 + 12x− 3x2),

where x and y are the real and the imaginary part, respectively, of the parameter a.

As C is a closed curve, it separates the complex plane into two complementary110

regions, in each of which one of the inequalities is satisfied. From equation (8), it is

easy to see that z = 1 is a superattractor for a = 2; as this value is inside the curve C,

the fixed point z = 1 must be attractive inside this curve and repulsive outside.

As z = −1 is a pre-periodic point, its dynamical behaviour is determined by z = 1.
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Figure 1: Stability region of z = 1 in the parameter plane.

2.2. Stability of the strange fixed points zi115

In the next result we prove that the stability functions of z1 and z2 coincide; there-

fore, z1 and z2 exhibit the same dynamical behaviour. The same occurs for z3 and

z4.

Proposition 2. The stability functions of the strange fixed points zi, i = 1, 2, 3, 4 sat-

isfy the following statements:

∣∣O′p(z1, a)∣∣ =
∣∣O′p(z2, a)∣∣ , ∣∣O′p(z3, a)∣∣ =

∣∣O′p(z4, a)∣∣
for any value of the parameter a.

Proof.120

It can be checked that

O′p

(
1

z
, a

)
=

(−1 + (2a− 1)z)
2
(1 + (3− 2a)z + 2z2)2

z4 (−z + 2a− 1)
2
(z2 + (3− 2a)z + 2)2

O′p (z, a) .

Then, O′p

(
1

z
, a

)
= O′p (z, a) when

(−1 + (2a− 1)z)
2
(1 + (3− 2a)z + 2z2)2

z4 (−z + 2a− 1)
2
(z2 + (3− 2a)z + 2)2

=

1. So, we can require

(−1 + (2a− 1)z) (1 + (3− 2a)z + 2z2) = z2 (−z + 2a− 1) .(z2 + (3− 2a)z + 2)
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After some algebraic manipulations, we obtain that the values of z that satisfy this

request must satisfy the equation:

(z − 1)
(
z4 + (5− 4a)z3 + 4(2− 2a+ a2)z2 + (5− 4a)z + 1

)
= 0

and this equation is just equation (4), that it is satisfied by the strange fixed points

zi, i = 1, 2, 3, 4. As z1 =
1

x2
and z3 =

1

x4
, their corresponding stability functions

coincide.

Now, we draw the stability functions of all strange fixed points for real values

of parameter a (see Figure 2). In this figure the stability functions are coloured as125

follows: red colour corresponds to |O′p (z1(a), a) |, green to |O′p (z3(a), a) | and blue

to |O′p (1, a) |; black colour is for the unit.

-1 -0.5 0.5 1 1.5 2 2.5
a

2

4

6

8

10

�O'�zi�a��

Figure 2: Stability functions of strange fixed points for real values of a.

In Figure 3 we show an enlargement of Figure 2; we can observe that the stability

functions of z1 and z2 reach values below one whereas that the stability functions of

z3 and z4 are always above one. This information will be useful for finding the stability130

regions of these points in the complex plane.

We can also obtain the stability functions of these strange points in a three dimen-

sional picture (Figure 4). The horizontal plane is the complex plane where the parame-

ter a varies and the vertical axis corresponds to the stability functions of strange points,

i.e.,
∣∣O′p (z1 (a) , a)∣∣ and

∣∣O′p(1, a)∣∣. Moreover, we have also drawn here the curves135
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Figure 3: Detail of the stability functions of strange fixed points zi for real values of a.

obtained in Propositions 1 and 3.

1

1.5

2

2.5

3

-2

0

2

0

0.25

0.5

0.75

1

1

1.5

2

2.5

(a)

0.123
0.124

0.125
0.126

-0.001
-0.0005

0
0.0005

0.0010
0.25
0.5
0.75
1

0
0
0

(b)

Figure 4: Stability functions of the strange fixed points, z1, z2 and z = 1 and the curves

C, C1, C2 and C3 in the complex plane.

From Proposition 2, we know that the stability regions of the fixed points z1 and z2

in the parameter plane are the same and these regions are defined by
∣∣O′p(z1 (a) , a)∣∣ <

1. The curves
∣∣O′p(z1 (a) , a)∣∣ = 1 are difficult to find, so we look for algebraic curves

that approximate them according Figure 4. The results we obtain are shown in the140

following proposition.

Proposition 3. The fixed points z1 (a) and z2 (a) are attractors for a = x + iy ∈ D

such that D = D1 ∪ D2 ∪ D3, where D1 is the disk delimited by the circumference

C1:

(x− 2)
2
+ (y − 1.5)

2
=

1

4
, (9)
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2

(a) Upper bulb

1.6 1.8 2.2 2.4

-1.8

-1.6

-1.4

-1.2

-1

(b) Lower bulb

Figure 5: Fiber of circles inside the bulbs

D2 is the disk delimited by the circumference C2:

(x− 2)
2
+ (y + 1.5)

2
=

1

4
, (10)

and D3 is the region delimited by the cardioid C3:

x(t) =
1

8
− 1

4

6.9

6000
+

6.9

6000

(
1

2
cos t− 1

4
cos 2t

)
,

y(t) =
6.9

6000

(
1

2
sin t− 1

4
sin 2t

)
, t ∈ [0, 2π].

Proof.

We know that z1 = z2 = 1 for a = 2 ± i; so, we look for two bulbs which

are tangent to the curve C at these points. As we see in the following, z1 and z2145

are attractive inside these bulbs. In fact, a = 2 ± i are bifurcations points where

z = 1 changes from attractive to repulsive and the strange points z1 and z2 change

from repulsive to attractive. We can parametrize a bundle of circles inside each bulb

(Figure 5); the equations of the outer circles are:

C1 : (x− 2)
2
+ (y − 1.5)

2
=

1

4
,

C2 : (x− 2)
2
+ (y + 1.5)

2
=

1

4
.

We deduce that the strange fixed points z1 and z2 are attractive inside these bulbs150

by drawing the stability function
∣∣O′p(z1 (a) , a)∣∣ applied on the different circles pre-

viously defined and checking that the stability function
∣∣O′p(z1 (a) , a)∣∣ on the points

belonging to the bundle of circles have values lower than one (see Figure 6). In both
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1 2 3 4 5 6

0.2

0.4

0.6

0.8

1
�O'�z1�a�� for the upper bulb

1 2 3 4 5 6

0.2

0.4

0.6

0.8

1
�O'�z1�a�� for the lower bulb

Figure 6: Stability functions for z1 (a) for values of a belonging to the bundle of circles

inside upper and lower bulbs.

plots, the upper coloured curves correspond to
∣∣O′p(z1, a)∣∣ applied on the outer circum-

ferences C1 and C2. The black line is the unit. Moreover, the upper curves have value155

1 when a = 2± i, respectively.

Let us observe that both stability functions seem to be symmetric.

0.123 0.124 0.125 0.126
-0.001

-0.0005

0

0.0005

0.001

0.9999920.9999940.9999960.9999981 0 124 0 125 0.12

-

0

0.00

0.001

Figure 7: Bundle of cardioids inside the little bulb.

Similarly, we deduce from Figure 3 the existence of a small region in the complex

plane where z1 and z2 are also attractive (see Figure 4b; to prove that D3 is inside this

region we perform a bundle of cardioids inside D3 (Figure 7). The parametrization of160

13



the outer cardioid C3 is:

x(t) =
1

8
− 1

4

6.9

6000
+

6.9

6000

(
1

2
cos t− 1

4
cos 2t

)
y(t) =

6.9

6000

(
1

2
sin t− 1

4
sin 2t

)
, t ∈ [0, 2π].

As before, we apply the stability function
∣∣O′p(z1, a)∣∣ on the points belonging to the

bundle and we obtain values lower than one (Figure 8). The red curve correspond to∣∣O′p(z1, a)∣∣ applied on C3. The black line is the unit.

1 2 3 4 5 6

0.2

0.4

0.6

0.8

Figure 8: Stability functions for z1 for values of a belonging to the bundle of cardioids.

165

On the other hand, we have checked numerically that the only point where
∣∣O′p(z3, a)∣∣ =

1 is for a =
1

8
. So, from Figures 2 and 3 we can deduce that the other strange fixed

points z3 and z4 are always repulsive.

3. Study of the critical points and parameter planes

As we have pointed at the beginning, the critical points of Op(z, a) are the roots170

of O′p(z, a) = 0. From equation (6), we know that these roots are z = 0, z = ∞,

14



the solutions of 1 + (2 − 2a)z + z2 = 0 and the solutions of P (z, a) = 0, where

P (z, a) = 0 is described in (7).

The roots of 1 + (2− 2a)z + z2 = 0 are:

c± = a− 1±
√
a2 − 2a,

satisfying c+ =
1

c−
. The roots of the symmetric fourth degree polynomial P (z, a) are

given by:175

c1,2 =
1

2

(
x+ ±

√
x2+ − 4

)
, (11)

c3,4 =
1

2

(
x− ±

√
x2− − 4

)
,

where

x± =
6− 11a+ 6a2 ± a

√
1 + 36a− 12a2

3(2a− 1)
.

Let us remark that, due to the symmetry of P (z, a), c1 =
1

c2
and c3 =

1

c4
.

Then, there are six critical points (called free critical points), different from the

roots of the polynomial, but the parameter planes of inverse critical points coincide,

i.e. there are only three independent free critical points. This number decreases in the

following cases:180

• If a = 0 then, the only free critical point is −1.

• If a = 1 or a = 3 then, c1 = c2 = 1.

• If a = 2 then, c+ = c− = c1 = c2 = 1.

• If a = 1
6

(
9± 2

√
21
)

then, c1 = c3 and c2 = c4. There are four free critical

points.185

The dynamical behaviour of operatorOp (z, a) depends on the values of the param-

eter a. The parameter plane is obtained by iterating one critical (free) point; each point

of the parameter plane is associated with a complex value of a, i.e., with an element of

the family. To build this parameter plane we use the algorithms designed in [7], with

MatLab software. The following figures are made by using these algorithms, by using190

a mesh of 2000× 2000 points, a maximum of 200 iterations and a tolerance of 10−3.

15



IRe{α}
-1 0 1 2 3 4 5

IIm
{α
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0
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3

Figure 9: Parameter plane for the critical point c+

Red colour in Figures 9, 10 and 11 means that the critical point is into the basins of

attraction of z = 0 or z =∞, whereas that black colour indicates that the critical point

generates its own dynamics.

The critical points verify c+ =
1

c−
, c1 =

1

c2
and c3 =

1

c4
. As Op

(
1
z , a
)
=195

1

Op (z, a)
(Lemma 1) the conjugated critical points exhibit the same dynamics; so,

we consider only three independent critical points and we draw the parameter plane

corresponding to each of them (Figures 9, 10 and 11).

We can also ensure that the critical point c1 is in the basin of z = 1 or z1 for those

values of the parameter for which z = 1 or z1 are attractive, by overlaying their basins200

of attraction (Figure 4) with the parameter plane of c1 (Figure 10). This is illustrated

in Figure 12 .

4. Dynamical planes

A classical result establishes that there is at least one critical point associated with

each invariant Fatou component. As z = 0 and z = ∞ are both superattractive fixed205
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Figure 10: Parameter plane for the critical point c1.
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Figure 11: Parameter plane for the critical point c3.

points, they also are critical points and give rise to their respective Fatou components.

The other Fatou components need at least one free critical point.
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(a) Parameter plane of c1 and the curves C,

C1 and C2
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(b) A detail with the curve C3

Figure 12: The basins of attraction of z = 1, z1 and z2 in the parameter plane of c1.

Therefore, the number of free critical points for a given value of the parameter

determines how rich is the dynamics of the rational function. However, what is inter-

esting from a dynamical point of view, it is not from the point of view of stability of210

the numerical method. In this section, we consider those methods with a small number

of critical points and show the dynamical planes for given values of the parameter. The

dynamical planes are built by using the algorithms designed in [7], with MatLab soft-

ware, by using a mesh of 800×800 points, a maximum of 80 iterations and a tolerance

of 10−3.215

In the following figures we use different colours for the different basins of attrac-

tion: blue colour corresponds to the basin of attraction of z = ∞, orange colour is for

z = 0, black colour indicates the existence of attractive periodic orbits and the other

colours correspond to basins of attraction of strange fixed points.

• If a = 0, then

Op (z, 0) =
z3 (z + 2)

2z + 1
,

the fixed points are 0,∞, 1 and −3±
√
5

2 . From

O′p (z, 0) =
6z2 (z + 1)

2

(2z + 1)
2 ,

18



we obtain that the critical points are 0,∞ and −1; but, as we pointed out in the220

first section, −1 is a pre-image of 1, then its dynamics is given by the dynamical

behaviour of z = 1. As z = 1 is repulsive for this value of the parameter

(Proposition 1) z = −1 is in the Julia set. As the other strange points satisfy

that |O′p
(
−3±

√
5

2 , 0
)
| > 1, they are also repellors. So, in this case, the only

attractive fixed points are z = 0 and z =∞, that corresponds to the roots of the225

polynomial. The dynamical plane has only two Fatou components: the basins of

attraction of z = 0 and z =∞ (see Figure 13).

IRe{z}

IIm
{z

}

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure 13: Dynamical plane for a = 0

• When a = 1, then

Op (z, 1) = −z3
z2 + z + 2

2z2 + z + 1
.

In this case, the fixed points are 0,∞, z1, z2, z3 and z4.

In order to establish their stability, we calculate the derivative of the fixed point

operator

O′p (z, 1) =
−2z2

(
3z4 + 4z3 + 6z2 + 4z + 3

)
(2z2 + z + 1)

2 .

It leads to the free critical points: c± = ±i and c3,4 = − 2
3 ±

1
3 i
√
5. It can be

checked that Op (i, 1) = Op (−i, 1) = 1 and Op (1, 1) = −1. Then {−1, 1} is230
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a periodic orbit of period two and ±i are pre-images of 1. Since
∣∣O′p (1, 1)∣∣ >

1, this periodic orbit is repulsive and these critical points are in the Julia set.

The two free critical points c3, c4 generate their own dynamics: we can see the

existence of two nearby periodic orbits of period 6 in Figures 14a and 14b.

z=0.95181+i−0.30669
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(b)

Figure 14: Dynamical plane for a = 1 and periodic orbits of period 6

• If a = 2 then,235

Op (z, 2) = −
z3 (z − 3)

(
z2 − z + 2

)
(3z − 1) (2z2 − z + 1)

.

The fixed points are 0,∞, 1, z1, z2, z3 and z4. Moreover:

O′p (z, 2) = −
2z2 (z − 1)

4 (
9z2 + 2z + 9

)
(3z − 1)

2
(−z + 2z2 + 1)

2

gives c1 = c2 = c+ = c− = 1 and c3,4 = − 1
9

(
1± 4i

√
5
)

as free critical points.

As z = 1 is a fixed and critical point, it has its own basin of attraction. We can

observe these three basins of attraction of attractive fixed points in the dynamical

plane (Figure 15).

The other two more free critical points are in the basins of attraction of two240

period orbits depicted in Figures 15a and 15b.

• If a = 3 then,

Op (z, 3) = −
z3 (z − 2) (z − 5)

10z2 − 7z + 1
.
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Figure 15: Dynamical plane for a = 2

The fixed points are 0, ∞, z1, z2, z3 and z4. On the other hand,

O′p (z, 3) = −6
z2
(
−4z + z2 + 1

) (
−8z + 5z2 + 5

)
(5z − 1)

2
(2z − 1)

2

gives four critical points c± = 2±
√
3 and c3,4 = 4

5 ±
3
5 i.

These critical points are in the basins of attraction of two 4-periodic orbits (Fig-

ure 16a and 16b).

z=0.81431+i0.58043
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Figure 16: Dynamical plane for a = 3

• If a = 1
6

(
9± 2

√
21
)

then c1 = c3 and c2 = c4. Due to c1 = 1
c2

there are two

independent free critical points: c+ and c1. The associated operators are:

Op

(
z,

1

6

(
9 + 2

√
21
))

=
z3
(
6 + 2

√
21− 3z

) (
−6 + 2

√
21z − 3z2

)(
−3 + 2

(
3 +
√
21
)
z
) (

3− 2
√
21z + 6z2

) ,
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Op

(
z,

1

6

(
9− 2

√
21
))

=
z3
(
−6 + 2

√
21 + 3z

) (
6 + 2

√
21z + 3z2

)(
3 + 2

(
−3 +

√
21
)
z
) (

3 + 2
√
21z + 6z2

) .
The fixed points are 0, ∞, 1, z1, z2, z3 and z4, but it can be checked that all245

the strange fixed points are repulsive. In the dynamical planes of Figures 17a

and 17b we observe the non existence of attractive periodic orbits; then, there

are only two basins of attraction corresponding to 0 and∞.
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Figure 17: Dynamical planes for a = 1

6

(
9± 2

√
21
)

• Finally, we study the dynamical plane for a = 1
2 , where the numerical method is

of order four. For this value:250

Op

(
z,

1

2

)
= z4

2 + 2z + z2

1 + 2z + 2z2
,

whose fixed points are 0, 1 and∞ and the four strange zi, i = 1, 2, 3, 4. All the

strange fixed points are repulsive; so, they are located on the Julia set.

On the other hand,

O′p

(
z,

1

2

)
= z3

(1 + z + z2)(4 + 7z + 4z2)

(1 + 2z + 2z2)2

that gives four free critical points, that are in the Julia set. The dynamical plane

is given in Figure 18.255

This dynamical plane shows that the only attractive regions are those correspond-

ing to z = 0 and z =∞.
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Figure 18: Dynamical plane for a = 1
2

5. Final Remarks

In this paper, a complex dynamical study of a parametric Chebyshev-Halley type

family of iterative methods, on quadratic polynomial, is presented. Once the associated260

rational operator has been found and its symmetric property has been proved, the fixed

and critical points have been obtained. The relevance of this kind of analysis is showed

in the dynamical richness of the family: several fixed and critical points, different from

the roots of the polynomials, appear showing a particular behaviour, that can be stable

or unstable depending on the value of the parameter. In order to better understanding265

these facts, we have got the associated parameter planes to each independent free crit-

ical point. They have showed us which are the loci of bifurcation, that is, the values

of the parameter where the numerical stability of the methods changes. Some dynam-

ical planes show us different pathological aspects, such us attracting periodic orbits of

several periods, basins of attraction of strange fixed points that do not correspond to270

the solution of the problem, as well as perfectly stable basins. The last ones are the

most interesting elements of the family, under the numerical point of view, in terms of
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stability and reliability.
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