
Journal of Supercomputing manuscript No.
(will be inserted by the editor)

Accessing very high dimensional spaces in parallel

F.J. Artigas-Fuentes · J.M. Bad́ıa

Received: date / Accepted: date

Abstract Access methods are a fundamental tool on Information Retrieval.
However, most of these methods suffer the problem known as the curse of
dimensionality when they are applied to objects with very high dimensionality
representation spaces, such as text documents. In this paper we introduce
a new parallel access method that uses several graphs as distributed index
structure and a kNN search algorithm. Two parallel versions of the search
method are presented, one based on master-slave scheme and the other based
on a pipeline. A thorough experimental analysis on different datasets shows
that our method can process efficiently large flows of queries, compete with
other parallel algorithms and obtain at the same time very high quality results.

Keywords parallel access method · high dimensional spaces · multiple
graphs index

1 Introduction

One of the basic problems on Information Retrieval (IR) is the search in mul-
tidimensional spaces by spatial approximation [5]. A search space is formed
by a collection of objects U and a similarity function s to compare them. The
difference between metric and non-metric spaces is that on the first case s sat-
isfies the triangle inequality, and becomes a distance d. The goal of an access
method is to retrieve the most similar object or objects to a query q.

Special methods must be designed when representation space has very
large dimensionality, i.e. thousands of dimensions. In this case exact methods

F.J. Artigas-Fuentes
Facultad de Matemática y Computación, Univ. de Oriente. Santiago de Cuba, Cuba.
Tel.: +53-22662189, E-mail: artigas@csd.uo.edu.cu

J.M.Bad́ıa-Contelles
Dept. de Ingenieŕıa y Ciencia de los Computadores, Univ Jaume I, Castellón, España.
Tel.: +34-964728295, Fax: +34-964728486, E-mail: badia@uji.es

2 F.J. Artigas-Fuentes, J.M. Bad́ıa

cannot be used due to the curse of dimensionality [22], which causes them
to need an enormous quantity of space and time to reach the solutions. This
happens because the strategies applied by those methods to reduce the portion
of repository visited during the searches fail. For example, for access methods
using a space partitioning strategy, a very high dimensionality causes a high
degree of overlapping of candidate regions to find solutions to queries. Access
methods applying a data partitioning strategy [1] also fail because they are
unable to separate the data.

In [2] we introduced an approximate access method, nGraph, composed
by an index structure based on a single graph and a fast search algorithm
based on the k −NN strategy. The method was designed to support efficient
searches in very high dimensional spaces such as text document repositories.
It was also used in a fast text documents classifier, with high quality results
similar, or even better, than other state-of-art methods [3].

In IR we usually deal with a large flow of queries on very large datasets.
The best way to tackle the spatial and computational cost of this problem is
to implement parallel or distributed algorithms that can take advantage of the
current high performance architectures [5].

In this paper we introduce PMGraphs, a parallel access method imple-
mented with MPI. It includes both a distributed index structure based on
multiple graphs, and a parallel search algorithm. We compare two parallel ver-
sions of the search process that exploit a master-slave and a pipeline scheme
respectively.

To evaluate our our algorithms, we carried out thorough experiments us-
ing images and text documents datasets on distributed and shared memory
multiprocessors. We analyzed both the quality of the results and the efficiency
of the method. The experiments show that our proposal greatly reduces the
sequential cost of the index generation and search process, while preserving
the quality of results achieved with nGraph.

The rest of the paper is organized as follows: section 2 summarizes related
work, section 3 describes the sequential version of our method, section 4 intro-
duces our parallel proposal, section 5 includes our experiments and analysis of
the results. Finally, in section 7 the conclusions of this paper are presented.

2 Related work

There is a huge quantity of literature about sequential similarity search meth-
ods, mostly on metric spaces [15]. Similarity search methods can be mainly
classified as pivot or compact partitioning techniques. Other methods not
clearly fitting into this two classes include for example some methods based
on graph structures, such as kNN graphs [21]. State-of-the-art methods also
include dimension reduction methods based on hashing techniques [13].

On the one hand, compact partitioning techniques divide the data collec-
tion into spatial zones as compact as possible so that similar objects fall into
the same zone. Indexes store information about the partitions and are com-

Accessing very high dimensional spaces in parallel 3

bined with the triangle inequality to solve the queries reducing the number of
distance calculations. On the other hand, pivot techniques select some objects
from the collection as pivots and then compute the distance between the pivots
and the objects of the repository. For each query, a candidate list is built with
the objects that cannot be discarded when compared with the pivots so they
have to be compared directly with the query object. For example, permutation
methods [19] are a kind of pivot method with dimension reduction.

In [19] we can find a very good comparative analysis of several state-of-the-
art methods for approximate k-NN search. Experiments are performed with
a large number of varied datasets represented in both metric and non-metric
spaces. One of the main conclusions of the authors is that if we want high
quality results, the method based on a k-NN graph outperforms the others in
most cases. The main drawback of this method is a long indexing time.

Regarding parallel methods, the most extended criterion to classify query
processing depends on index partitioning among the processors. If we dis-
tribute the objects among the processors and each processor builds its own
index, we are dealing with local index methods. If, on the other hand, we build
an index including all the objects and then distribute it among the processors,
we are dealing with global index methods. Another classifying criterion differ-
entiates inter-query parallelism if different queries are executed concurrently
and intra-query parallelism if different parts of the same query are executed
in parallel.

In a very recent paper [4] the author surveys the notable advancements
in the parallelization efforts on nearest searching algorithms produced during
the last years. One of the main conclusions of the author of this survey is that
an optimal algorithm as well as removing the curse of dimensionality are still
open problems.

Different data structures have been proposed to index the objects in par-
allel, such as SAT [17], EGNAT [18] or SSS [10]. Many of the parallel nearest
neighbor search proposals of the last years have been developed on single GPU
or multi-GPU platforms [12]. Most of them use a brute force approach to solve
the problem [14] and differ on the sorting strategies to get the kNN. However,
there are also methods on GPU that parallelize the construction and use of
different data structures as indexes [6] or use hashing techniques to reduce the
dimensionality [20]. Many more references to parallel methods on GPU can be
found in [4] and on the cited papers.

We will compare our parallel algorithms with a parallel implementation
of a compact partitioning method that uses a List of clusters (LC) [8] as
index. This method builds the index by choosing a set of objects as centers c
of clusters with radius rc. We have chosen a version of the algorithm where
clusters contain a bucket that keeps the same number of closest elements to c.
Buckets are filled sequentially as the centers are created. Queries are solved by
scanning the centers in order of creation. Full clusters can be discarded during
query processing based on the triangle inequality.

There are several parallel algorithms that use the LC index on different
kinds of parallel platforms: distributed memory [11] and shared memory [9]

4 F.J. Artigas-Fuentes, J.M. Bad́ıa

multiprocessors, GPUs [6] and multi-GPU platforms [7]. We will compare our
parallel algorithms with the local version of the algorithm introduced in [9] to
deal with high query traffic. This algorithm is implemented with OpenMP and
uses inter-query parallelism to distribute the processing of different queries on
different cores of a shared memory multiprocessor. A global LC index is built
in parallel using several threads and it is accessed by the different threads that
process different blocks of queries.

3 Sequential access method MGraphs

In this section we briefly describe the two main stages of our new sequential
access method, MGraphs, that is, the construction of the index structure and
the search process.

To build the index structure we start by dividing the objects repository into
several subsets, where each object is represented as a vector of weighted terms.
For each subset the method builds a graph that fulfills the following conditions:
(a) every vertex corresponds to a different vector, and a vector represents the
set of objects whose similarity to that vector is 1 (or dissimilarity or distance
is 0) and (b) the neighborhood of every vertex contains at least its δ more
similar vertices, plus additional vertices to ensure that the graph is connected.

Algorithm 1 summarizes the process followed to build each graph of the
index.

First we define a similarity function s(vi, vj) between a pair of vectors.
Then we can define a similarity function between a vertex vi and an edge
aj = (vj1 , vj2) as d(vi, aj) = min{d(vi, vj1), d(vi, vj2)}.

To build each graph we sort the list of vectors by their similarity to the
centroid of the subset in decreasing order. Then, the first edge of the graph
is defined between the most similar pair of vertices (line 7 of Algorithm 1).
From this point on, the structure is built by adding new vertices that form the
smallest triangles to the vertices already on the graph. The process continues
until all the objects of the subset are connected (lines 8 to 15). To reduce
the cost of the process we applied an heuristic that divides the sorted list of
vertices of each graph in equal-sized groups (lines 5 and 6). When we add a
new vertex to the graph we only compare it with the other vertices of its group
(line 7). Therefore, we are building the graph as a succession of layers including
the vertices in each group. Finally, once all vertices have been included, the
graph is completed by adding new edges to each vertex until the graph fulfills
condition (b) (lines 17 to 23).

The index structure is completed by determining a subset of entry points
to each graph that can be used as starting points for the searches (line 24).
The outer entry points are the vertices closer to the centroid than their neigh-
borhood and the inner entry points are the vertices farther to the centroid
than their neighborhood.

The resulting index structure is a set of graphs that are sequentially searched
for each query q by spatial approximation to obtain the k −NN .

Accessing very high dimensional spaces in parallel 5

Algorithm 1 Process to build each of the graphs of the index
1: function BuildGraph(V, δ)
2: Input. V : Set of vectors to index, δ: minimum degree of the graph.
3: Output. G: Graph of the index.

4: c← (c[1], ..., c[|V |]) where c[j] =

∑
(vi[j])

|V | and j = 1.. |V | . centroid

5: Build a sorted list with the objects of V in decreasing order of similarity with c
6: Partition the sorted list in Nl equal size lists: Vi, i = 1..Nl

7: Select from V1 a pair (vh, vk), where s(vh, vk) is maximum for V1
8: A← {a1}, so that a1 = {(vh, vk)} . Initial set of edges of G
9: V1 ← V1 − {vh, vk}

10: for k ← 1, Nl do . Build connected graph
11: while Vk 6= ∅ do
12: Select vh ∈ Vk and at ∈ A, so that s(vh, at) is maximum.
13: A← A ∪ {(vh, at[1]), (vh, at[2])}; Vk ← Vk − {vh}
14: end while
15: end for
16: for all vi ∈ V do . Complete the set of edges to fulfill minimum degree
17: while s(vi) < δ do . s(vi) is the degree of vi
18: C ← {vk/vk /∈ NG(vi)} . NG(vi) is the neighborhood of vi
19: A

′ ← {ai/ai = (vi, vj) ∈ A} . Edges of a A containing vi

20: Select vh ∈ C and at ∈ A
′
, so that s(vh, at) is maximum.

21: C ← C − {vh}; A← A ∪ {(vh, at[1]), (vh, at[2])}
22: end while
23: end for
24: E ← {vi ∈ V/entrypoint(vi)} . Set of entry points of G
25: return G = (V,A,E)
26: end function

Algorithm 2 summarizes the search process on each graph. First we obtain
the most similar entry point to the query q (lines 5 and 6). Then we visit the
neighborhood of the entry point and select as new starting point the most
similar vertex to q. This process continues until we cannot find a more similar
vertex to q in the neighborhood of the current point (lines 7 to 12). We have
then obtained an approximate 1 − NN to the query. If more solutions are
needed we quickly obtain the next k − 1 from the neighborhood of the first
one. They are not necessarily obtained from most to least similar neighbors to
the query, but they are finally stored in a sorted list using this criterion (lines
13 to 19).

To extend the search process to all graphs in the index we apply successively
the same algorithm to each of them keeping always an updated list L with the
kNN obtained from the previous graphs. Each element of the list contains
the identifier of the object and its similarity to the query. This list, sorted in
decreasing order of similarity to the query, is updated with the local solution
of the current graph as follows: if the first nearest neighbor computed in the
current graph is less similar to the query than the last contained in the sorted
list L, we can stop the query on process on the current graph and start with
the next one. Otherwise, we compute the next k − 1 nearest neighbors in the
local graph and merge them with the k contained in sorted list L keeping
always the k most similar to the query.

6 F.J. Artigas-Fuentes, J.M. Bad́ıa

Algorithm 2 Approximate k-NN search on each graph of the index
1: function kNN(G, q, k)
2: Input. G = (V,A,E): graph of the index,
3: q: query vector, k: number of neighbours.
4: Output. Sq : k most related vertices of V with q, using similarity function d.
5: Select er ∈ E so that s(q, er) = max{s(q, ei)/ei ∈ E}.
6: dmax ← s(q, er) and Sq ← er . Most related pivot
7: repeat

8: N
′
G ← {vk ∈ NG(Sq)/s(q, vk) = max(s(q, vi)/vi ∈ NG(Sq))}

9: S
′
q ← {vk ∈ N

′
G(Sq)/s(q, vk) > dmax} . Depth-first strategy

10: if S
′
q 6= ∅ then dmax ← s(q, vk); Sq ← S

′
q

11: end if
12: until S

′
q = ∅

13: if k > 1 then
14: repeat

15: S
′
q ← Sq ; Sq ← Sq ∪NG(Sq) . Greedy strategy

16: Let L be a sorted list vi ∈ Sq , by decreasing value of s(vi, q)
17: Let NPq be the set of the first k elements of L
18: until |NPq | ≥ k
19: end if
20: return Sq

21: end function

We have tested our methods using different similarity functions. Some of
them do not satisfy the triangle inequality. We can then apply our method to
both metric and non-metric spaces, but in the second case we cannot exploit
this property to define a pruning rule. When we tried to exploit it on a text
document repositories with a very high dimensionality it did not work, as it
trimmed either all or none of the candidate vertices.

4 Parallel access method PMGraphs

In this section we describe the parallelization of the two main stages ofMGraphs.
The index construction is naturally parallelizable, as it is composed by multi-
ple graphs. In this case we only have to distribute the objects of the dataset
among the processors, so that each processor applies the sequential method
described in previous section to build its local graph. This parallel process can
be completed without any kind of communication or synchronization among
the processors. A possible problem of this parallel scheme is that the cost
of building each local graph can be quite different, thus producing an unbal-
anced computation. Besides, the objects included on each graph also affect the
efficiency of the subsequent parallel search process.

Regarding the parallelization of the k−NN search process we implemented
two parallel versions, each applying a classical parallelization scheme: a master-
slave algorithm and a pipeline scheme.

In the case of the master-slave algorithm, the master process broadcasts
every query or block of queries to all the processes. Then all processes, includ-
ing the master, compute the k − NN to the query in their local graphs by

Accessing very high dimensional spaces in parallel 7

applying the sequential search algorithm described in previous section. Next,
the local solutions of the queries are combined to obtain the global k − NN
objects to the query and store them in the master process. Every neighbor in
a graph is stored with its similarity to the query and the k−NN of the graph
are stored in decreasing order of similarity. Therefore, if we want to combine
the kNN neighbors of several graphs we can easily merge the local solutions
to obtain the global k nearest neighbors to the query.

Local solutions are gathered on the master, that combines them to obtain
the global solution. To reduce the cost of this process we have implemented
a binary tree communication scheme that parallelizes the combination of the
local solutions. On each of the O(logp) steps of the scheme pairs of processors
combine their local solutions in parallel, so that after the last step the master
process can obtain the global k − NN by combining only two groups of k
objects.

In the second version of the parallel search algorithm the processors are
organized as a pipeline. The first process of the pipeline obtains the k −NN
objects to the query on its local graph and sends them, and the query, to
the next process. Each of the following processes in the pipeline searches in
their local graph trying to improve the received neighbors. Then it sends the
resulting k candidates and the query to the next process. As we can see,
every process is applying a slightly modified version of Algorithm 2 to obtain
the local kNN to the received query. It does not need to compute always k
neighbors as it can stop if the first computed local neighbor is less similar to
the query than the last in the received list of candidates. As we are dealing
with a large flow of queries, this pipeline search method with p processes will
be evaluating in parallel p queries most of the time.

5 Experimental testbed

We will show experimental results of our parallel algorithms using two different
datasets. Images contains 120,000 vectors with dimension 20 generated from
a collection of NASA images. The index contains 80% of the objects and
the remaining 20% objects are used as queries. Euclidean distance is used to
measure the similarity between image vectors. Reuters corresponds to the
LYRL2004 partition of the ReutersCV1-v2 documents repository [16]. This
partition contains 23,149 training and 781,265 testing vectors. The training set
of this collection has a matrix representation space with 47,152 dimensions.
The matrix representation space of this collection is very sparse, including
99.83% of the elements equal to zero.
The following distance function based on the cosine similarity was used to
compare documents:

s(vi, vj) =
√

1− cos(vi, vj) (1)

8 F.J. Artigas-Fuentes, J.M. Bad́ıa

where the cosine of the angle between the two vectors is computed as follows:

cos(vi, vj) =

∑n
k=1(vik ∗ vjk)√∑n

k=1(v2ik) ∗
√∑n

k=1(v2jk)
(2)

The experimental results were obtained on two different parallel platforms:
hexa is a 16-node distributed memory cluster connected through a InfiniBand
network, each node equipped with two Intel Xeon E5645 (hexacore) processors
at 2.4 GHz and 24 GBytes of RAM. Therefore, we are using a total of 16 ×
2 × 6 = 192 cores. sun is a shared memory multiprocessor Sun X4470 with
32 cores (64 logical cores exploiting hyper-threading). It includes 4 Intel Xeon
X7550 processors at 20 GHz, each containing 8 cores and a total of 64 GBytes
of RAM.

6 Experimental analysis

We have compared three different distributions of the objects of the Reuters

repository among the graphs. First we distribute sequentially the objects of
the repository in equal-sized blocks keeping the order given by the repository.
Second, we distribute the objects in different-sized blocks but balancing the
total number of terms in the vectors assigned to each processor. Finally, we
distribute the objects cyclically among the processors in order to nullify any
kind of topic clustering included in the original repository.

6.1 Cost of the sequential access method

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 2 4 8 12 24 36 48 60 72 84 96 108 120 132 144 156 168 180 192

T
im

e
 (

s
.)

Number of graphs

sequential
balanced

cyclic

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 2 4 8 12 24 36 48 60 72 84 96 108 120 132 144 156 168 180 192

T
im

e
 (

m
s
.)

Number of graphs

sequential
balanced

cyclic

Fig. 1 Cost to build the indexes (left) and average time per search (right) varying the
number of graphs of the index with the three distributions of the objects among the graphs.

Our first set of experiments was performed in hexa with the sequential
version to evaluate the cost of building our index structure. Figure 1.a shows
the time required to generate the multiple graphs index with the Reuters

Accessing very high dimensional spaces in parallel 9

repository for a connectivity of δ = 5. The cost clearly decreases as we increase
the number of graphs and reduce the number of objects per graph. The cost
of building all the graphs decreases quadratically with the size of each graph
and only increases linearly with the number of graphs. The distribution of the
objects among the graphs affects only slightly the building cost.

Figure 1.b shows the average time required to obtain the 1 − NN of a
random set of 10,000 objects from the collection. As we increase the number
of graphs we have to explore globally more entry points and, once we choose
the nearest entry point to the query on each graph, we have to explore its
neighborhood. The time increases almost linearly with a few graphs, but it
clearly slows down as we distribute the object of the index in more graphs. We
can process sequentially hundreds of queries per second with our sequential
algorithm. However, we need to parallelize the search process to increase the
throughput and to be able to process efficiently larger flows of queries. This
figure also shows that the sequential distribution of the objects in the reposi-
tory produces faster searches. This happens because in the Reuters repository
the objects are sorted by topic. Therefore, most of the nearest neighbors to
every query are included in one or a few graphs and the stopping condition is
reached sooner in every other graph.

The spatial cost of our index structure allows us to deal with millions of
documents on the main memory of the processors, including both data and
index. For example, storing 80,000 documents of the Reuters collection and
building one graph takes 538 Mbytes, while building an index with 192 graphs
takes 802 Mbytes. Increasing the minimum connection degree from 5 to 20
only increases the size to 851 Mbytes. This cost scales with the number of
processes as we distribute the data and graphs among all of them.

Finally, table 1 shows the sequential search cost of three methods obtained
in a processor of sun with the two datasets to find the 8 kNN of every query.
Our sequential algorithm using one graph (nGraph) clearly outperforms the
brute force method (BF) and the method that uses an LC index, specially
with very high dimensional text documents.

BF LC nGraph

NASA images 66.68 47.19 23.64
Reuters text documents 542.99 502.81 86.56

Table 1 Sequential search time in seconds to process 23,381 image queries with an index
of size 95,202 and 10,000 document queries with an index containing 60,000 documents.

6.2 Quality of the search results

In order to analyze de quality of the search process we compute the precision
of our search results over the same set of 10,000 queries used on the previous
section and relate it with the percentage of objects of the index visited. We

10 F.J. Artigas-Fuentes, J.M. Bad́ıa

define the precision as the percentage of results of our method that correpond
to the exact results of the query. We obtain the exact results by means of an
exhaustive search that compares all the objects of the index with the query to
find its 1−NN .

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 2 4 8 12 24 36 48 60 72 84 96 108 120 132 144 156 168 180 192

P
re

c
is

io
n
 a

n
d
 V

is
it
e
d
 o

b
je

c
ts

 (
%

)

Number of graphs

Prec. seq
Prec. bal
Prec. cyc
Visi. seq
Visi. bal
Visi. cyc

Fig. 2 Percentage of visited objects and precision of the search results to find the 1-NN of
10,000 queries on Reuters repository.

Figure 2 shows the relationship between the precision of the results and
the portion of the repository visited during searches. As we can see we obtain
results with very high precision, i.e., it is always over 68% and tends to stabilize
over 90% as we increase the number of graphs, even when the value of minimum
connection degree of the graphs used is only 5. Besides, the quality of the
results does not depend on the distribution of the objects among the graphs.

We can also see that the percentage of visited objects grows with the
number of graphs included on the index structure. When use few graphs (less
than 24) most of the visited objects are entry points of the graphs, while more
internal points are visited as we increase the number of graphs. On the other
hand, a sequential distribution of the objects of the Reuters repository among
the graph reduces the percentage of visited objects, and accordingly the search
time (see Figure 1.b), as the pruning rule stops the search sooner in almost all
graphs

6.3 Parallel access method analysis

In this section we use hexa to analyze the cost and speedup of our parallel
methods for both the construction of index structure and search process using
Reuters dataset. The speedups of the parallel algorithms are always obtained
with respect to the sequential algorithm that uses the same index structure
and obtains the same search results. That is, we compute the speedup of the
parallel algorithms over p processors with respect to the sequential version
of the algorithm building or searching sequentially the same p graphs in one
processor.

Accessing very high dimensional spaces in parallel 11

 0

 20

 40

 60

 80

 100

 120

 140

 160

 2 4 8 12 24 36 48 60 72 84 96 108 120 132 144 156 168 180 192

S
p
e
e
d
u
p

Number of processors

sequential
balanced

cyclic

Fig. 3 Speedup of the parallel construction of the index structure.

Figure 3 shows that we obtain very good speedups with the parallel building
algorithm. Recall that we are dealing with an embarrassingly parallel process
that does not involve any kind of communication or synchronization among
the processors. We are not obtaining optimal speedups due to the different
cost of building each graph. The effect of this unbalanced cost is larger with a
sequential distribution of the objects of the repository.

 0

 20

 40

 60

 80

 100

 120

 2 4 8 12 24 36 48 60 72 84 96 108 120 132 144 156 168 180 192

S
p
e
e
d
u
p

Number of processors

sequential
balanced

cyclic

 0

 20

 40

 60

 80

 100

 120

 2 4 8 12 24 36 48 60 72 84 96 108 120 132 144 156 168 180 192

S
p
e
e
d
u
p

Number of processors

sequential
balanced

cyclic

Fig. 4 Speedup of the parallel search algorithms: master-slave (left) and pipeline (right).

Regarding the parallel search algorithms, Figure 4 lets us analyze and
compare the behavior of the master-slave and the pipeline schemes. Both al-
gorithms clearly reduce the cost of the sequential version. However, the pipeline
algorithm is much more efficient than the master-slave algorithm. Two main
factors define the speedup of both algorithms: the communication cost and
the load balance.

In the case of the master-slave algorithm we have to broadcast every query
object to all the processors, perform the parallel search of all k neighbors and
then gather and combine the local solutions on the master processor. Both
communication stages involve a high percentage of the total cost of processing
each query, thus reducing the speedup of the parallel process. Besides, as we
process a flow of queries, both stages force two synchronization points for
every query. As the processing time of each query is not perfectly balanced on

12 F.J. Artigas-Fuentes, J.M. Bad́ıa

the different processors, all processors have to wait to the slowest one before
processing the next query.

The pipeline scheme reduces the effect of the communication and unbalance
problems. In this case we are only sending point to point messages between
’adjacent’ pairs of processors and there are not synchronization points imposed
on all the processors by the communications. Therefore, as the queries flow
through the pipeline, the communications can be overlapped with the process-
ing of the queries, thus hiding part of the communication cost and reducing
the effect of the load unbalance. However, as it happens with the master-slave
scheme, in the case of the sequential distribution of the objects among the
graphs, the cost of every search is always larger in the processors containing
the documents of the same topic that the query, increasing the effect of the
unbalance and producing worse speedups.

In order to reduce even more the negative effect of the communication cost
and load balance we have analyzed the effect of processing blocks of queries
instead of individual queries. Grouping several queries increases the searching
cost and reduces the weight of the communications. Besides, including queries
with different search costs on each block usually balances the total cost of
processing the different blocks.

We compared our two parallel search algorithms with a parallel version of
the search method that uses the LC index implemented using OpenMP [9]
on shared memory multiprocessor sun. To assess the performance of the algo-
rithms we took as reference an OpenMP parallel implementation of the brute
force method. Both, the LC and brute force algorithms use a global index and
apply inter-query parallelism without any kind of communication or synchro-
nization among the threads. On the contrary, our two algorithms use a local
index distributed among the cores. The master-slave algorithm uses intra-
query parallelism applied to every query. The pipeline algorithm also applies
inter-query parallelism, but starting one query after the other.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 1 2 4 8 16 24 32 48 64

R
a
ti
o
 w

.r
.t
 B

ru
te

 F
o
rc

e

Number of cores

NASA images

Brute Force
LC

Master-Slave
Pipeline

 0

 1

 2

 3

 4

 5

 6

 7

 1 2 4 8 16 24 32 48 64

R
a
ti
o
 w

.r
.t
 B

ru
te

 F
o
rc

e

Number of cores

Reuters text documents

Brute Force
LC

Master-Slave
Pipeline

Fig. 5 Search time ratio of the parallel algorithms with respect to the parallel brute force
method with the two datasets.

Figure 5 compares the search time of the parallel algorithms with respect
to the brute force method using both datasets. In the case of the NASA images
with low dimensionality (D = 20), the best performances are obtained in most

Accessing very high dimensional spaces in parallel 13

cases with the LC algorithm. Our parallel algorithms only outperform the LC
algorithm when using a few threads. As we increase the number of threads and
graphs in the index, the selectivity of our algorithm decreases (see Figure 2)
while the communication cost increases.

When applied to very high dimensional text documents the curse of di-
mensionality greatly affects the LC algorithm. It cannot discard any cluster
while processing the queries and it has to compare every query with all the
documents. As a result it obtains even worse results than the brute force al-
gorithm. On the contrary, our parallel algorithms aren’t so affected by the
high dimensionality of the documents. The pipeline algorithm outperforms
the other parallel algorithms and equals the time of the brute force approach
with 64 processes and graphs when it has lost selectivity and is more affected
by the communications

7 Conclusions

This paper shows that it is possible to process efficiently large flows of queries
on very high-dimensional objects in parallel. We have implemented a new
access method based on the use of multiple graphs as an index whose con-
struction and search can be naturally parallelized on shared and distributed
memory multiprocessors. Besides, this new approximate access method pro-
duces high quality results with precisions larger than 90% when we increase
the number of graphs of the index.

Experimental results on real text document repositories show very large
speedups both during the index construction and during the search process.
A pipeline parallel scheme applied to the search process allows us to deal with
tens of thousands of queries per second.

When compared with a compact partitioning algorithm, we can see that
our algorithms are not so affected by the curse of dimensionality when applied
to very high dimensional documents. They clearly outperform other methods
in the sequential case and obtain the best results in the parallel case.

8 Acknowledgements

This research has been supported by the CICYT project TIN2014-53495-R of
the Ministerio de Economı́a y Competitividad.

References

1. Ares, L.G., Brisaboa, N.R., Pereira, A.O., Pedreira, O.: Efficient similarity search in
metric spaces with cluster reduction. In: Similarity Search and Applications - 5th Inter-
national Conference, SISAP 2012, Toronto, ON, Canada, August 9-10, 2012. Proceed-
ings, pp. 70–84 (2012)

14 F.J. Artigas-Fuentes, J.M. Bad́ıa

2. Artigas-Fuentes, F.J., Gil-Garćıa, R., Bad́ıa-Contelles, J.M.: A high-dimensional access
method for approximated similarity search in text mining. In: 20th International Con-
ference on Pattern Recognition, ICPR 2010, Istanbul, Turkey, 23-26 August 2010, pp.
3155–3158 (2010)

3. Artigas-Fuentes, F.J., Gil-Garćıa, R., Bad́ıa-Contelles, J.M., Pons-Porrata, A.: Fast k -nn
classifier for documents based on a graph structure. In: Progress in Pattern Recognition,
Image Analysis, Computer Vision, and Applications - 15th Iberoamerican Congress on
Pattern Recognition, CIARP 2010, Sao Paulo, Brazil, November 8-11, 2010. Proceed-
ings, pp. 228–235 (2010)

4. Aydin, B.: Parallel algorithms on nearest neighbor search. Survey paper. Georgia State
University (2014)

5. Baeza-Yates, R.A., Ribeiro-Neto, B.A.: Modern Information Retrieval - the concepts
and technology behind search, Second edition. Pearson Education Ltd., England (2011)

6. Barrientos, R.J., Gómez, J.I., Tenllado, C., Prieto-Mat́ıas, M., Maŕın, M.: knn query
processing in metric spaces using gpus. In: Euro-Par 2011 Parallel Processing - 17th
International Conference, Euro-Par 2011, Bordeaux, France, August 29 - September 2,
2011, Proceedings, Part I, pp. 380–392 (2011)

7. Barrientos, R.J., Gómez, J.I., Tenllado, C., Prieto-Mat́ıas, M., Maŕın, M.: Range query
processing on single and multi GPU environments. Computers & Electrical Engineering
39(8), 2656–2668 (2013)

8. Chávez, E., Navarro, G.: A compact space decomposition for effective metric indexing.
Pattern Recognition Letters 26(9), 1363–1376 (2005)

9. Costa, V.G., Barrientos, R.J., Maŕın, M., Bonacic, C.: Scheduling metric-space queries
processing on multi-core processors. In: Proceedings of the 18th Euromicro Conference
on Parallel, Distributed and Network-based Processing, PDP 2010, Pisa, Italy, February
17-19, 2010, pp. 187–194 (2010)

10. Costa, V.G., Maŕın, M.: Distributed sparse spatial selection indexes. In: 16th Euromicro
International Conference on Parallel, Distributed and Network-Based Processing (PDP
2008), 13-15 February 2008, Toulouse, France, pp. 440–444 (2008)

11. Costa, V.G., Maŕın, M., Reyes, N.: Parallel query processing on distributed clustering
indexes. J. Discrete Algorithms 7(1), 3–17 (2009)

12. Dashti, A.: Efficient computation of k-nearest neighbor graphs for large high-
dimensional data sets on gpu clusters. Master’s thesis, University of Wisconsin-
Milwaukee, Paper 280 (2013)

13. Dong, W.: High-dimensional similarity search for large datasets. Ph.D. thesis, Depart-
ment of Computer Science, Princeton University (2011)

14. Garcia, V., Nielsen, F.: Searching high-dimensional neighbours: CPU-based tailored
data-structures versus GPU-based brute-force method. In: MIRAGE. 4th Interna-
tional Conference on Computer Vision/Computer Graphics Collaboration Techniques,
pp. 425–436 (2009)

15. Kamble, A.: Survey of text categorization techniques. IJRCCT 3(7) (2014)
16. Lewis, D.D., Yang, Y., Rose, T.G., Li, F.: RCV1: A new benchmark collection for text

categorization research. Journal of Machine Learning Research 5, 361–397 (2004)
17. Maŕın, M., Reyes, N.: Efficient parallelization of spatial approximation trees. In: Com-

putational Science - ICCS 2005, 5th International Conference, Atlanta, GA, USA, May
22-25, 2005, Proceedings, Part I, pp. 1003–1010 (2005)

18. Maŕın, M., Uribe, R., Barrientos, R.J.: Searching and updating metric space databases
using the parallel EGNAT. In: Computational Science - ICCS 2007, 7th International
Conference Beijing, China, May 27-30, 2007, Proceedings, Part I, pp. 229–236 (2007)

19. Naidan, B., Boytsov, L., Nyberg, E.: Permutation search methods are efficient, yet faster
search is possible. PVLDB 8(12), 1618–1629 (2015)

20. Pan, J., Manocha, D.: Fast gpu-based locality sensitive hashing for k-nearest neighbor
computation. In: 19th ACM SIGSPATIAL International Symposium on Advances in
Geographic Information Systems, ACM-GIS 2011, November 1-4, 2011, Chicago, IL,
USA, Proceedings, pp. 211–220 (2011)

21. Paredes, R.: Graph for metric space searching. Ph.D. thesis, Universidad de Chile (2008)
22. Radovanovic, M., Nanopoulos, A., Ivanovic, M.: Hubs in space: Popular nearest neigh-

bors in high-dimensional data. J Mach Learn Res 11, 2487–2531 (2010)

	Introduction
	Related work
	Sequential access method MGraphs
	Parallel access method PMGraphs
	Experimental testbed
	Experimental analysis
	Conclusions
	Acknowledgements

