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 
Abstract— In this paper, a general formulation of a predictive 

and multi-rate reactive planning method for intelligent vehicles is 
introduced. The method tackles path planning and trajectory 
planning for intelligent vehicles in dynamic environments with 
uncertainty, where the kinodynamic vehicle constraints are also 
taken into account. It is based on the Potential Field Projection 
method (PFP), which combines the classical Potential Fields 
method with the Multi-rate Kalman filter (MR-KF) estimation. 
PFP takes into account the future object trajectories and their 
associated uncertainties, what makes it different from other look-
ahead approaches. Here, a new potential field is included in the 
Lagrange-Euler formulation in a natural way, accounting for the 
vehicle dynamics. The resulting accelerations are translated into 
control inputs that are considered in the estimation process. This 
leads to the generation of a local trajectory in real time that fully 
meets the constraints imposed by the kinematic and dynamic 
models of the intelligent vehicle. The properties of the method are 
demonstrated by simulation with Matlab and C++ applications. 
Very good performance and execution times are achieved, even in 
challenging situations. In a scenario with 100 obstacles a local 
trajectory is obtained in less than 1s, which is suitable for real 
time applications. 

Index Terms— Dynamics, intelligent vehicles, Kalman filter, 
potential fields, sensor-based planning, trajectory prediction, 
uncertainty. 

I. INTRODUCTION 

ENSOR-based planning for intelligent vehicles is an active 
research field. Although the planning problem was defined 

twenty years ago [1], there is still work to do in order to obtain 
the full autonomy for a vehicle in uncertain environments.  

Current trends are concerned with computing motion in 
unknown, dynamic and cluttered environments [2]. For this 
purpose, intelligent vehicles have to gather, process and use 
sensor information in real-time (RT). Under this conditions 
path planning is frequently carried out by reactive methods, 
such as Potential Fields (PF) [2, 3], VFH* [4], Nearness 
Diagram [5], Curvature-Velocity method (CVM) [6] and the 
Dynamic Window approach (DW) [7, 8], among others [2]. 
These methods compute collision-free local paths adapting to 
changes in the environment in RT. They are usually combined 
with a global planning technique to obtain a global collision-
free path [2]. Still, they do not always behave well in complex 
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situations, especially when high velocities are involved. This 
is due to any of these reasons: i) vehicle kinodynamic features 
are not considered; ii) objects’ movements are ignored; iii) 
uncertainty in measurements is not taken into account.  

Some methods, such as CVM and DW, consider the vehicle 
dynamics in the path generation while the majority transfers 
the problem to the control field [9-11]. However, they do not 
include motion prediction in their computation. 

Conversely, look-ahead approaches consider the objects’ 
movement. In [4] different robot trajectories are evaluated 
using the A* method and a cost function. However, neither the 
obstacles’ trajectories nor uncertainty are taken into account. 
In this sense, [12] use an evolutionary PF based on a relative 
threat coefficient, that computes relative velocities of target, 
robot and obstacles. Also [13] considers future obstacles’ 
trajectories but none of these last methods account for 
uncertainty or vehicle dynamics.  

Regarding to uncertainty in measurements, few methods 
[14-16] include it in the planning process. In [14] a 
probabilistic description of the environment is built based on 
the analogy of an electric current flowing in a conductor. 
Then, a harmonic potential field is used to compute the path. 
Nonetheless, the resulting holonomic path may not be feasible 
for non-holonomic vehicles as dynamics is not considered. In 
[15] an algorithm to solve the stochastic shortest path problem 
is proposed that, by adjusting suboptimal bounds on solutions 
and reusing previous searches, provides good performance. 
However, nothing is said about the dynamic properties of the 
robot and the resulting path may be unfeasible for a wheeled 
robot. [16] presents a sensor-based planning approach that 
accounts for uncertainty, motion prediction and computes a 
smooth navigation function using E*. Still, the vehicle 
dynamics is not considered. 

 In [17, 18] we presented a multi-rate (MR) predictive PF 
method for local planning that takes all the previous aspects 
into account, unlike other methods [2-16] that only consider 
some of them. The Potential Field Projection method (PFP) 
combines the PF method [3] with the multi-rate Kalman filter 
(MR-KF) estimation [19, 20], thus considering present and 
future vehicle and obstacles locations within the planning 
strategy. Moreover, the original concept of the PF method [3] 
for motion generation was reintroduced, in the sense that 
artificial forces determine the vehicle acceleration. 

In this paper, a new formulation of the method is presented 
using the Lagrange-Euler (LE) equations for solving the     
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 Fig. 1. (a) Generic deliberative software architecture for an intelligent vehicle, (b) Block diagram of the sensor-based method LE-PFP. 

forward dynamic problem. This formulation, named LE-PFP, 
provides a holistic framework that can be used for any kind of 
vehicle, with any kinematic and dynamic model. Also a key 
issue is tackled: the merging of the position uncertainty and 
the object volume for its consideration in the planning method. 

In order to show the capabilities of the methodology, a 
complete analysis for a unicycle vehicle with a dynamic model 
is developed as well as different simulation applications. 

The paper is organized as follows: section II introduces the 
path planning/trajectory generation problem within a 
deliberative architecture, section III describes the PFP method; 
section IV develops the integration of the LE formulation with 
the PFP method; section V presents a non-linear example; 
sections VI and VII show simulation results in different and 
challenging environments (Matlab & C++) while section VIII 
gives conclusions and future work. 

II.  SENSOR-BASED PLANNING BASED ON LE-PFP  

The LE-PFP method proposed here can be used in a typical 
deliberative architecture, as the one shown in Fig. 1, where all 
the software modules required for autonomous navigation 
have been included. A global planning module computes an 
initial collision-free path to be followed by the vehicle, in the 
form of a set of intermediate goals qgoal. Although a global 
planning technique computes a geometric free-collision path 
that guarantees global convergence, this is only true in known 
and static environments. If the scenario is uncertain and 
dynamic, this path has to be modified in RT to tackle 
uncertain situations. The success of the global trajectory will 
depend on the type of environment (cluttered or clear, partially 
known or unknown, slow or fast obstacles, etc.), the type of 
sensors used (accuracy, acquisition rate, etc.), the suitability of 
the models employed, etc. 

The on-line path modification is usually carried out by local 
methods as new sensor information is gathered. These 
methods provide a local path as a sequence of configurations 
q, which has to be converted into a reference trajectory in 
order to consider the vehicle kinematic constraints. 

One of the advantages of the LE-PFP method with respect 
to other local approaches is that it combines local path 
planning and trajectory generation within a single module, 

which performs both tasks simultaneously thereby saving 
computational time (Fig. 1(a)). Details regarding its internal 
structure are shown in Fig. 1(b) and explained next.  

On the one hand, the system can be considered affected by 
an artificial and conservative potential field Ui generated by 
the goal and the obstacles at the present (i=0) and future (i>0) 
instants of time (PFP method). Ui modifies the vehicle motion 
equations (and resulting accelerations qi ) if included in the 

LE formulation,  allowing a natural integration of the vehicle 
dynamics with the navigation using PF methods.  

On the other hand, we can highlight the presence of a 
feedback loop in a similar fashion as in a typical control 
structure. This feedback, along with the fact that a force 
derived from a potential field has the structure of a controller 
(see (17)), involves the extension of the classical philosophy 
for robot control to the field of planning. Indeed, the attractive 
force, on the structural aspect of its equations, can be 
considered as a P-control (proportional) on the vehicle 
position, in its simplest form, or as a PD-control (proportional-
derivative), if the attractive force is added to a friction force, 
thus also considering velocities [18].  

This implies that control inputs ui are derived from the 
accelerations iq  by kinematic relationships. These inputs are 

used in the trajectory prediction carried out by MR-KFs. 
As a result, a reference trajectory for the control is obtained, 

as it generates a path with a kinematic profile. This trajectory 
fully meets the kinodynamic vehicle constraints, for both 
holonomic and non-holonomic vehicles.  

The reference trajectory is updated through the correction 
cycle of the MR-KF/EKF whenever sensor measurements are 
available for the vehicle and/or the obstacles. It is a continuous 
replanning that quickly adapts to changes in the environment. 

III. POTENTIAL FIELD PROJECTION METHOD (PFP) 

Some of the most popular reactive methods are based on the 
artificial Potential Field method [2, 3]. These techniques 
compute a local path in an iterative way, re-computing it in 
RT as new sensor information is gathered. The path is 
determined assuming that obstacles generate repulsive forces 
while the goal generates attractive forces acting on the vehicle. 
These forces are derived from artificial potential functions. 
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The method is fast, mathematically elegant and simple. 
In the context of pedestrian modeling, social force models 

arise to model pedestrian motion in a similar way to that of PF 
methods [21-23]. The underlying concept is the same: the 
pedestrian behavior is driven by attractive and repulsive 
potential fields. The social force represents the motivation to 
act (or move) of the pedestrian [21].  

Nonetheless, path planning techniques based on PF 
typically generate holonomic paths and, therefore, don’t 
produce feasible solutions for vehicles. Besides, traditional PF 
techniques consider deterministic locations for the vehicle and 
the obstacles in a particular instant of time. This is not a 
realistic assumption due to the uncertainties in measurements 
and models. This inherent uncertainty implies that path 
planning must aim at maximizing the chances of reaching a 
goal without collision. In this sense, the objects future 
trajectories should be taken into account to achieve safer 
planning, mainly in high speed applications. 

 Finally, PF methods usually run at a determined frame 
period, Td=mT, different from the control period T, because of 
the diversity on sensor rates. This means that between two 
consecutive measurements there is an interval where the 
vehicle navigates with past information. 

 The Potential Field Projection method considers questions 
not addressed in other PF methods: i) position uncertainties; ii) 
different execution periods of control-estimation (T) and 
planning algorithms (Td=mT; m+) due to diverse sensor 
rates; iii) future objects locations during the prediction horizon 
(Th=N·T; N+) based on their kinematic models. 

PFP generates, on every execution and from the available 
sensor data, a set of forces that guide the vehicle to a set of 
positions in the present (i=0) and future (i=1,..,N) instants, 
differing from other PF methods [2, 3] that do not perform 
trajectory prediction.  

Pedestrian obstacles are modeled with second-order linear 
kinematic models, as in (1), where xnx1 is the state vector, 
umx1 is the control input vector, zRpx1 is the measurement 
vector, Anxn, Bnxm, Cpxn and Gnxp are the state 
space matrices and wpx1, vpx1 are the process and 
measurement noise, respectively.  

1             x A x B u G w z C x vi i i i i i i           (1) 

Vehicle obstacles and intelligent vehicles (IV) are modeled 
with second-order non-linear models, as in (2), that consider 
their kinematic restrictions, being f and h non-linear functions 
of the state and the input, respectively.  

   1 , ,                       x f x u w z h x vi i i i i i i     (2) 

Using these models, a set of predicted future positions and 
uncertainties ( ˆ ,x Pi i ) is obtained running the prediction cycle 

of the MR-KF/EKF (3) or (4) for every object in the 
environment during the prediction horizon Th. The absence of 
measurements in future instants of time (i>0) is modeled with 
delta functions [17, 19, 20], a MR technique for time-varying 
models that modifies the Kalman gain indicating the presence 
(i=I) or absence (i=0) of measurements in every estimation 

instant. The choice of the filter to be used depends on the 
kinematic model associated to the object. For linear models 
MR-KF (3) will be used while MR-EKF (4) is appropriate for 
non linear models. 

 
 

/ 1 1/ 1 1
T

/ 1 1/ 1 1 1 1
1T T

/ 1 / 1

/ / 1 / 1

/ / 1 / 1

ˆ ˆ

ˆ ˆ ˆ

x A x Β u
P A P A G Q G

K P C C P C R Δ
x x K z C x
P P K C P

i i i i i
T

i i i i i i i

i i i i i i

i i i i i i i i

i i i i i i i

Prediction
cycle

Correction
cycle

   

     


 

 

 

   
     

      
    
   

 
(3)

 

 
  

/ 1 1/ 1 1
T T

/ 1 1 1/ 1 1 11 1
1T T

/ 1 / 1

/ / 1 / 1

/ / 1 / 1

ˆ ˆ ,

ˆ ˆ ˆ

x f x u
P F P F W Q W

K P H H P H R Δ
x x K z x
P P K H P

i i i i i

i i i i i i ii i

i i i i i i i ii i

i i i i i i i i i

i i i i i i i i

Prediction
cycle

Correction
h

cycle

   

      


 

 

 


     

      
   
   

 (4)

     1/ 1 1 / 11/ 1 1
1 1

ˆ ˆ, ˆ ,
          

f x u h xf x u
F W H

x w x
i i i i ii i i

i i i
     

 
   

  
(5)

In the previous equations x̂ nx1 is the state estimation 
vector, Pnxn is the error estimation variance matrix, 
Knxp is the Kalman gain and Rpxp and Qpxp are the 
measurement noise and the process noise covariance matrices, 
respectively, that are considered constant matrices. R is 
computed based on sensor noise and transmission errors while 
Q is evaluated experimentally using ground truth 
measurements. Fnxn and Wnxp are the Jacobian of f(·) 
with respect to the state and to the process noise, respectively, 
while Hpxn is the Jacobian of h(·) with respect to the state. 
These matrices derive from the linearization of the non-linear 
model, as stated in (5). 

Remark that data regarding obstacles (type, intention and 
motion direction) have to be provided by a tracking module 
(see Fig. 1), which processes the sensor information. This 
module has to account for the dynamics of the obstacles. In 
the case of pedestrians, the social force model could be used 
as well as recently proposed local motion models such as 
human motion prediction model [24] or linear trajectory 
avoidance [25]. In the case of vehicles, tracking algorithms 
like [26] could be used. In this sense, the LE-PFP method 
makes a short-term prediction considering that, during Th, 
motion direction is not going to change significantly. These 
little changes can be modeled by the noise terms in (1) and (2).  

A. A Geometric Model for the Uncertainty 

The predicted trajectories are described as a sequence of 
states and uncertainty matrices ( ˆ ,x Pi i ) for each object. The 

evolution of P depends on the availability of measurements 
and the noise matrices Q and R. These matrices are highly 
related to the characteristics of the hardware used and have to 
be determined experimentally. Typical sensors of common use 
in mobile robotics are a) exteroceptive: ultrasonic sensors, 
laser rangefinders, cameras, GPS etc., b) proprioceptive: 
encoders, accelerometers, gyroscopes, etc., (see [27-29] for in-
depth descriptions and error computation). The specific 
sensors used have to be chosen attending to the environment 
and the velocities of vehicle and obstacles. 
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As the KF estimates the state xi through a Gaussian 
distribution, the confidence region of the estimate ˆ ix  can be 
described by a g-sigma ellipsoid [29] given in (6), where Xi is 
each of the points of the ellipsoid surface in the i-th prediction 
instant. Thus, each ( ˆ ,x Pi i ) tuple can be geometrically 

modeled by an ellipsoid. In path planning applications where 
RT computation is required, only the estimated positions and 
related uncertainties are used in the ellipsoid generation. Thus, 
the ellipsoid can be considered a forbidden navigation area. 

   T 1 2ˆ ˆ    X x P X xi i i ii g  (6)

The constant value g indicates the probability P for the 
mobile object to be inside the uncertainty ellipsoid and is 
obtained using the expression (7) for the Gaussian distribution 
[30, 31], which results in the simpler equation (8) for n=2. 

    
 2
2

T 21 2 1 2
2 0

ˆ ˆ         Γ
X x P X x nn

g
n t

i i i iiP P g t e dt  (7)

2

21
g

P e   (8)

For safety reasons, a probability of 98.9% has been selected 
(g=3) for planning, being (9) the new ellipsoid equation. 

   T 1ˆ ˆ 9    X x P X xi i i ii  (9)

As g is a scalar value, an equivalent equation can be 
obtained considering the increment within the matrix Pi, i.e., 
we can substitute Pi(98.9%)=9·Pi obtaining: 

     T 1ˆ ˆ 19     X x X xPi i i ii  (10)

Note that the more probability required the bigger the 
ellipsoid considered for planning. Any other desired P value 
implies analogous expressions: Pi(P%)=g2·Pi. 

In order to make planning feasible, a maximum limiting 
uncertainty matrix Pi should be established. The optimum 
value Poptim can be obtained off-line with (3) in the case of a 
linear system or in a previous test stage with (4) in the case of 
a non-linear system. This value is directly related to the 
maximum ellipsoid radius. Typically, this maximum radius 
must be one order of magnitude lower than the dimension of 
the setting where the vehicle is moving. Applying this idea the 
estimation quality index defined in [17] can be computed as in 
(11), being β a user adjustable distribution scaling factor.  

     2exp P PoptimJ trace trace     (11)

The J value is a measure of the prediction quality: a J value 
near 1 means that the estimation corresponds to a possible 
optimum while near 0 means the absence of measurements 
due to the multi-rate nature of the process or because the 
object is hidden. If J decreases under a threshold limit Jmin, 
(fixed by the user according to hardware features), it means a 
too long absence of object measurements and an excessive 
increase of the predicted trajectory uncertainty. This situation 
occurs when the obstacle has moved away from the vehicle 
and is not sensed any more. Thus, it is removed from the list 
of obstacles. In the case of the vehicle, planning becomes 
unfeasible and the vehicle stops until new information is 
gathered which enables restarting the navigation process.  

B. Considering the Object Volume  

The above mathematical description does not include the 
object volume. We consider the object volume in a very 
similar manner to the construction of C-obstacles.  

First, we express the object volume in an analogous 
formulation to that of the ellipsoid, that is, we model objects 
by means of spherical volumes introduced in [32]. This 
modeling technique represents an object as the convex hull of 
a finite set of spheres, which is the spherical extension of a 
polytope (s-tope). Given a set of spheres S={s0, s1,..., sn}, an s-
tope of order n is given by (12), where each sphere si is called 
spherical vertex and is described using two parameters 
s=(c; r), the center c3 and the radius r. The parameter  
identifies the intermediate spheres between two spherical 
vertices in the s-tope and the order n identifies the number of 
spherical vertices composing the s-tope. The geometric 
modeller in [33] can be used for s-tope model generation in 
the case of complex geometries for the vehicle and obstacles. 
Otherwise, simple enveloping spheres can be used. 

 0 0 0
S = s:  s= s , s S, 0,  1

n n
n i i i i ii i 

        (12)

A sphere is an ellipsoid with identical radii r in every 
direction and can be described with a matrix equation 
XT··X1 similar to (6), where =diag(1/r2).  

Second, we merge the object volume with the uncertainty 
ellipsoid. Let M be an uncertainty ellipsoid defined by (6) in 
n obtained from the trajectory prediction of a moving object 
On, where T  i i iiP E D E , Ei=(e1,i,…,en,i)n is an 
orthogonal matrix containing the eigenvectors that define the 
principal axes of the ellipsoid and  2 2

1, ,, , n n
i i n idiag r r  D   

is a diagonal matrix containing the ellipsoid radii. Let s be a 
sphere with radius r modeling the object O. We can define the 
ellipsoidal uncertainty bounding volume of the sphere s in the 
i-th projection instant as the set of points Xi that fulfils the 
inequality equation (13), where the new matrix 

T
, ,r i r i ii  P E D E  is obtained from the expressions of the 

ellipsoid M and the sphere s, being the expression of the  

diagonal matrix  Dr,i=( 1 2 1 2
i

D Λ )2=diag((r1,i+r)2,…,(rn,i+r)2). 

   T 1 2
,ˆ ˆX x P X xi i i ir i g      (13)

Consider, for instance, a vehicle modelled with a bounding 
sphere (Fig. 2(a)) and the uncertainty ellipsoid in its current 
position (Fig. 2(b)). The ellipsoidal uncertainty bounding 
volume (13) of the sphere in that instant of time is obtained 
sliding the ellipsoid around the object boundary (Fig. 2(c)), as 
done when computing C-obstacles. For complex objects, this 
is done for every spherical vertex in the s-tope. 

 
Fig. 2. (a) Sphere (object), (b) uncertainty volume and (c) ellipsoidal 
uncertainty bounding volume of the sphere. 
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C. Potential Field Computation 

The uncertainty volumes obtained from the trajectory 
prediction and described by ( ,ˆ ,i r ix P ) are considered in the 

calculation of a new artificial potential field Ui and its derived 
force Fi. Both are defined in (14) as functions of the vehicle 
configuration q for every projection instant i including future 
instants of time (i>0), therefore adopting a multi-rate scheme. 
The vehicle configuration q refers to its position and is usually 
different from its state x, which can also include velocities 
(see the vehicle example on section V for a specific case). 

, ,( ) ( ) ( )      ( )q q q F qi att i rep i i iU U U U     (14)

Uatt,i is an attractive field induced by the goal in i and Urep,i 
is a repulsive field generated by r obstacles in instant i. Their 
expressions are given in (15) and (16), where  and  are 
positive scaling factors, 0 represents the limit distance of the 
repulsive potential field influence, J[0, 1] is the estimation 
quality index, MTDi,k is the Minimum Translational Distance 
(MTD) between the vehicle and the obstacle k at instant i.  

   21
, , , ,2

1

( )        q q q q q
r

att i i goal rep i rep i k
k

U U U


        (15)

 
2

1
,2, , ,

,

1 1 ifwith 
0 if

q
i

i k 0
rep i k i k 0

i k 0

ηJ MTD ρU MTD ρ
MTD ρ

        
 

 (16)

The MTD is defined in [34] as the shortest relative 
translation of two objects to bring them in contact. It is the 
separation distance between them if MTD>0 or the penetration 
distance if MTD<0 (objects colliding). The complexity in the 
computation of the MTD depends on the model used. 

 The repulsive potential field generated by an obstacle k, 
Urep,i,k, takes into account the MTD between the ellipsoidal 
uncertainty bounding volumes of the obstacle and the vehicle 
obtained from the trajectory prediction, as they are areas 
where it is likely to find them. Specifically, only ellipsoids 
from the same projection instant are tested for collisions. 

Fig. 3 depicts the MTD between ellipsoids obtained from 
the trajectory prediction at different instants of time within the 
prediction horizon, for an omnidirectional vehicle and a 
pedestrian obstacle. In this case, where linear and decoupled 
kinematic models are used, MTD can be quickly computed by 
the method in [34], because the uncertainty ellipsoids turn into 
spheres and the uncertainty volumes are spherical volumes. 
Hence, the MTD computation is reduced to a Euclidean 
distance calculus between spheres. If non-linear kinematic 
models are used, uncertainty volumes are ellipsoids and 
distance computation between two ellipsoids leads to an 
algebraic problem of high degree [35] that can eventually be 
formulated as the problem of finding all roots of a polynomial 
of degree 24. In this case, the computation of the exact 
solution would significantly reduce the application of the 
method in RT and, therefore, a spherical approximation of the 
uncertainty volume is used for MTD computations. 

The potential field generated by (14) propagates in time and 
remains in the instants without measurements available. This 
fact greatly improves the planning as there is an anticipation 
of the future movements of the objects. 

 
Fig. 3. Uncertainty volumes obtained from the trajectory prediction for an 
omnidirectional vehicle and a pedestrian obstacle (linear kinematic models).  

As a result, at each execution cycle a set of attractive Fatt,i 
and repulsive forces Frep,i are obtained in the present (i=0) and 
future (i>0) instants of time. Their expressions are given by 
(17), where uMTDi,k is a unit vector in the direction of MTDi,k 
and opposite to the obstacle. Every obstacle k generates a 
repulsive force in every instant i, whose magnitude decreases 
as i and MTDi,k grow. It affects the vehicle motion only from a 
given security distance ρ0. 

       

  ,

, ,
1

, 02
, , 0 ,

, 0

            

1 1 1η if ρwith ρ
0       if ρ

F q q q F q F q

uF q i k

r

att i i goal rep,i rep,i k
k

i
MTD i k

rep,i k i k i k

i k

J MTD
MTD MTD

MTD


  

       
 


(17)

 

A thorough description of the new potential field and the 
influence of the parameters can be found in [18].  

D. Dealing with Local Minima 

The main disadvantage of the PF methods is the presence of 
local minima for specific obstacle locations that can lead to 
trap situations [36]. The LE-PFP method maintains this 
limitation. It may arise when the vehicle moves in the same 
direction but opposite to an obstacle. However, this problem is 
only serious when the geometry of the environment is non-
convex. In the LE-PFP this problem is not a source of concern 
since it models obstacles using ellipsoids and the geometry is 
convex, being the local equilibrium point unstable. Moreover, 
it can be solved locally with different methods [37, 38]. 

We use the method in [38] that provides the system with the 
ability to add repulsive fictitious charges that provoke the 
elevation of the potential field in local minima positions and 
compel the vehicle to move away from them. 

IV. INTEGRATING LAGRANGE-EULER & PFP (LE-PFP)  

The idea behind trajectory planning using PFP is to include 
the control actions generated by the conservative and artificial 
potential field Ui(q) in the trajectory prediction process that 
takes place in every planning cycle. This way, Ui(q) 
continuously affects the system and determines its motion as a 
function of the dynamics properties of the vehicle. 

In a configuration space C the general expression of the 
motion of a system in a configuration qC is given by the 
Lagrange-Euler (LE) equations of motion (18), where the 
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Lagrangian function L is given by      , ,L T U q q q q q  . The 

non-conservative generalized forces Qnc are the friction forces 
and torques opposing the movement of the vehicle. The first 
ones are opposite to the linear displacement and the second 
ones to the angular displacement or rotation. 

  ncQ
q q

d L L
dt

  
   (18)

The integration of Ui(q) in the potential term of the LE 
equations is not straightforward. It requires setting out (18) in 
terms of the i-th projection instant, as indicated in (19). 

  ncQ
q q i

i i

d L L
dt

  
   

(19)

Using the Euler approximation for the derivative in the first 
term of (19) and defining qq ii LL     , qq ii LL     

the LE formulation in discrete time is: 

11 ncQ
q q q

i i i
i

L L L
T

            
(20) 

where L and Qnc are considered at the i-th projection instant. 
The Lagrangian function is given by      ,q q q qii i TL T U   . 

The kinetic energy is   1
2

Tq q M qi iiT    , where the mass matrix 

M is constant because the coordinate frame is located at the 
vehicle center of gravity and moves with it.  

It is intended that the vehicle moves under the influence of 
Ui. Then the total potential energy UT,i is set out including (14) 
and the potential energy due to gravity Ug,i: 

 , ,( ) ( )q q qT i i g iU U U   (21)

If we derive the expression of Li with respect to the 
configuration and velocity vectors q, iq  we obtain (22). The 

conservative generalized forces at i, cQi , refer to the artificial 

force Fi, to forces derived from Ug,i and to torques produced 
by them all on the vehicle. 

cQ
q

i
i

L 
     

M q
q

i
i

L 


  
(22)

Substituting (22) in (20) we obtain (23), where the right 
term is the generalized force Qi and the left term is the 
approximation of the derivative of iq , i.e., the vector of 

accelerations iq . Finally (23) is simplified in (24). 

 1   q q c ncM Q Qi i
i iT

   

 (23)

1q M Qi i
  (24)

Equation (24) computes the acceleration of the vehicle 
knowing the forces and torques acting on it as well as its 
inertial properties in a straightforward manner (without need 
of numerical integration). It should be provided to the vehicle 
for it to be able to follow the path determined by Ui. 

LE equations produce the desired motion as a sequence of 
accelerations qi  (24) during Th, which have to be converted 

into the control inputs ui required to modify the vehicle 
motion. This is done by means of kinematic relationships of 
the type ui =f( iq ), where f depends on the particularities of 

the model (see Fig. 1b and section V for an example). 

 
Fig. 4. Flow chart of the LE-PFP method. 

 

The resulting control inputs are included in the prediction 
cycle of the appropriate MR-KF/EKF (3) or (4), thus altering 
the predicted trajectory based on the kinematic model by 
considering the goal, the obstacles and the system dynamics. 

Thereby we obtain the desired sequence of configurations 
that will act as a reference in the low-level control of the 
vehicle. They form a local trajectory that meets the constraints 
of the vehicle dynamics and adapts over time according to the 
obstacles in the environment. 

Notice that the LE equations of motion account for real 
physical effects on the vehicle that restrict its movement, such 
as mass, moment of inertia, friction, etc. They are considered 
in the conservative and no conservative generalized forces. 
The more realistic these effects are modeled, the better will the 
vehicle be able to follow the desired trajectory. 

A flow chart summarizing the implementation of the LE-
PFP method is shown in Fig. 4. Remark that the control input 
vector ui derived from the artificial potential field is 
considered in the trajectory prediction in a simple fashion. 

 
Fig. 5. Dynamic model for a vehicle robot.  
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V. EXAMPLE: VEHICLE MODEL 

Consider an intelligent vehicle of mass m, with an 
associated rod dynamic model moving in 2 with respect to a 
fixed frame OXYZ and a local frame GUVW moving with it 
(Fig. 5). The following simplifying hypotheses have been used 
for addressing this problem:  

1. The vehicle mass m is uniformly distributed along its 
length, being the transversal dimension negligible with respect 
to the longitudinal d for dynamic computations.  

2. A second order kinematic model of unicycle type (25) is 
used for trajectory prediction, where the vehicle is represented 
by point C, located in the middle of the robot chassis. Again, 
this model is more realistic that the first order model usually 
employed for robots. This is a stochastic discrete-time system 
of type (2) where the jerk is modeled as a Gaussian and white 
noise. The state of the vehicle at instant i is given by its 
position referred to C and its linear and angular velocities, i.e., 
xi =[xi yi i vi i]

T. The control vector is composed of linear 
and angular accelerations referred to C in i, i.e., ui=[ai i]

T. 
3
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vi
i

i

x
y

v

 
 

             
  

(25)

3. For the calculation of Urep,i, a circular model with center 
in G (gravity center) is used enlarged with the uncertainty 
ellipsoid in i (not shown in Fig. 5), which is approximated by 
a sphere for fast distance computation with [34].  
4. For the sake of simplicity, the forces derived from the 
potential field Ui are applied at the guidance point A. The 
geometric   relationships   between  C  and  A  are   given   by 
xAi=xi+ℓcosi, yAi=yi+ℓsini and Ai=i. 

Note that the general equation (24) refers to the acceleration 
of G, the vehicle center of gravity. Thus the configuration 
vector in i, qi=[xGi yGi i]

T, does not coincide with the first 
three state variables. Besides, the mass matrix is constant 
M = diag(m,m,IGw), where IGw=(1/12)·m·ℓ2 is the moment of 
inertia of the rod with respect to the local axis W. 

Let’s derive the vehicle equations of motion from (24). The 
generalized forces Qi are both forces F(·) and moments of 
forces computed with respect to G, MG(F(·)). Thus: 

        
   

, , G , ,

, ,,

c

nc

Q F q F q M F q F q

Q F q q M q
att i rep i att i rep ii

fric i fric ii

   
  

 (26)

The non conservative term includes a friction force Ffric,i 
and a friction moment Mfric,i. The friction force is formulated 
in (27) with the aim of avoiding oscillations near the goal and 
high velocities. As it is defined in the direction of the linear 
velocity of the vehicle, this force will not produce any moment 
with respect to G. Therefore, it does not affect the rotational 
movement of the robot. The friction moment Mfric,i, defined in 

(28), models friction during rotation, where i is the angular 
velocity vector of the vehicle in instant i. + is a scaling 
factor and M0+ is a constant which sets the minimum 
frictional moment when vi=0 and i 0, i.e, when the robot is 
rotating around its center of gravity. These friction terms 
prevent the acceleration to exceed the physical limits of the 
vehicle and have to be properly tuned in a real application, 
depending on the vehicle (car, forklift, etc.) and the terrain. 

   2

2

( - )

1

q q

F q,q q
i goal

bd
fric,i ie


         

(27)

   , 0M q ωfric i i iM v      (28)

Finally, the expression for the generalized acceleration 
vector iq  is given by (29), where we call 

Fi = Fatt,i+Frep,i+Ffric,i. Note that, for simplicity, we have 
avoided the dependence of q or q  and this convention will be 

considered from now on. 

  1
G ,F M F Mq M i i fric ii

    (29) 

Breaking down the above expression into components: 

        T
T G ,

G G G
G

cos sin
i i i

w

i fric ii ii i i i M MF F
x y

m m I
     

F   (30)

Since these accelerations are referred to G but the state and 
control vectors are referred to C (Fig. 5), the following 
transformation is required: 

G G G2 2
cos         sin         i i ii i i i ix x y y            (31)

Differentiating these equations twice with respect to time 
we obtain the relations between the accelerations of C and G: 
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cos sin
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i i i ii

i i i ii
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x x

y y

        

        
 





   
   
 

 (32)

Now, we can find an explicit expression of the control 
inputs just substituting these relationships in (33), where the 
sign of the linear acceleration sign(ai) depends on the δi angle: 

T
2 2( )·          

u  


i i i i
i

i i

a sign a x y , i 2 2  1   if ,
( )

1  otherwise

      
isign a (33)

Finally, we obtain the expression (34) which provides the 
control input at instant i as a function of the external forces 
and moments acting on the vehicle. This vector can be directly 
used in a MR-KF/EKF to generate a local reference trajectory 
(positions and velocities) over the prediction horizon in order 
to head the goal avoiding the obstacles detected by the sensors 
available in the vehicle. 

    
 

2 2
2 4 2

2

G ,

G

( ) cos sin cos 2
4

 
                  

  

u F

 

w

i
i i i i i ii i i

ii
i i fric i

Fsign a F
a mm

M M
I

(34)

With the equations obtained we can calculate the trajectory 
of any vehicle in a systematic way, if the relations between the 
vehicle velocity and the velocities of the wheels are known. 
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VI. VALIDATION OF RESULTS 

In the field of path planning there is no standard simulation 
platform for comparing different reactive planning techniques, 
although there have been benchmarking initiatives like [39-40] 
or [41-42] in the field of global motion planning.  

With this in mind, the validation of the LE-PFP method has 
been done in a dynamic environment developed in Matlab  
and based on some of the ideas in [39]. It is a 2D four-sided 
scenario that resembles a pool table, where we can find a 
configurable number of circular static and mobile obstacles, 
without collision avoidance of their own. The intelligent 
vehicle, also circular, travels through the table from an origin 
to a goal configuration, avoiding the obstacles. The mobile 
obstacles follow straight paths with constant velocities (from 
0.05 to 0.5 m/s) until they reach a table side, at which they 
change direction simulating a rebound. This environment 
produces challenging scenarios as the pool table can be 
cluttered with obstacles moving at high velocities.  

The inputs are: obstacles features (number, type, position, 
dimension, speed, motion direction, kinematic model); vehicle 
models (kinematic and dynamic); control period T, execution 
period of the LE-PFP algorithm Td and prediction horizon Th; 
origin and goal configurations. Distances to obstacles are 
provided contaminated with Gaussian white noise.  

The outputs are: the vehicle resulting trajectory; number of 
collisions, if any; velocity and acceleration profiles; execution 
time of the planning algorithm. 

The LE-PFP is compared against the PF method [3] using a 
depth-first planning strategy, where the total force indicates 
the most promising motion direction and the vehicle moves 
forward into segments of equal length in each period. It is 
assumed that a tracking module provides obstacle information 
and linear kinematic models given by (35) are associated to 
them, simulating pedestrians or omnidirectional vehicles. 

2
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      v
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                                             

w  (35) 

A real navigation application requires data acquisition and 
sensor fusion as well as auto-localization and map building, 
operations that introduce accumulative delays that result in a 
late latency of the planning method that may end in collision. 
For that reason, a situation with a 3s lack-of-measurements 
has been simulated assuming a laser rangefinder and a post-
processing stage (range 1-3m, 180º,  10 Hz, 5cm accuracy).   

Fig.6 represents three simulation instants for the PF method 
[3] implemented as explained previously. The vehicle (blue 
circle) should reach the goal (red point) without colliding with 
any of the 3 mobile obstacles (pink circles). Fig. 6(a) shows 
the vehicle and the obstacle 1 dangerously close. The vehicle 
has not yet begun the avoidance, since there were no 
measurements available in the last 3s. In Fig. 6(b, c) the 
vehicle performs an avoidance maneuver but it is certainly too 
late since it ends up colliding with obstacle 1. 

The situation has been replicated using the LE-PFP method 
(T=0.3s, Td=3s, Th=4s) and the model explained in Section V 

 
Fig. 6. PF simulation (T=0.3s, Td=3s): (a) vehicle approaching obs. 1, (b) (c) 
vehicle beginning the avoidance & ending in a collision, (d) kinematic profile. 

depicted (Fig. 7 (a,b)) as well as the trajectory generated to 
reach the goal (Fig. 7(c)) and the profiles for linear and 
angular velocities and accelerations (Fig. 7(d)).  Uncertainties 
in vehicle and obstacles positions are not depicted for clarity. 
In Fig. 7(a) the vehicle and the obstacle 1 are close but do not 
collide, as the vehicle has made a turn. It simultaneously 
performs a deceleration and a sudden turn to avoid obstacles 2 
& 3, with success (Fig. 7(b)). Fig. 7(c) represents the path 
followed by the vehicle, which leads it to the goal without 
colliding with any of the three obstacles (see enclosed video 
“video1_Mtlb.mov” at http://ieeexplore.ieee.org). 

Note that LE-PFP uses the kinematic and dynamic models 
of the vehicle to compute the reference velocities for the 
control. This is evident in the representation of the velocity 
(Fig. 7(d)) and the trajectory (Fig.7(c)). The vehicle starts with 
zero velocity at position (0, 3.7) and soon reaches a nearly 
constant velocity because it is far from any obstacle. From 
about 12s it begins to slow down and turn anticipating the

 
Fig. 7. LE-PFP simulation (T=0.3s, Td=3s, Th=4s, R=diag(0.007)m2): (a) obs. 
1 avoidance, (b) obs. 2&3 avoidance, (c) trajectory, (d) kinematic profile. 
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avoidance of obstacle 1. Next, the vehicle accelerates again to 
overcome obstacle 3 (at 14s). Around the 20s the vehicle 
makes an effort in order to turn toward the goal and finally 
breaks reaching zero velocity at the end of the simulation, 
stopping at the goal. This behavior is not seen in the PF 
method (Fig. 6(d)), which always provides a constant velocity 
reference, as the obstacle is too fast to be detected on time.  

To demonstrate the performance of the LE-PFP in cluttered 
and challenging environments, a new scenario with 20 
obstacles is included (see video “video2_Mtlb.mov”), where 
the vehicle has to reach two sequential goals and obstacles 
perform sudden changes, as pedestrians or omnidirectional 
robots would do. This kind of uncertain behavior is considered 
in the noise terms of the kinematic models. In those instants, 
although the MR-KF prediction is poor, the filter is able to 
reduce the predicted trajectory uncertainty after a few new 
measurements are taken. The setting and kinematic profiles of 
the resulting trajectory are depicted in Fig. 8 

Remark that parameters , , , , db, , 0 have to be tuned 
to fit the features of the system (see [18] for further 
information). In very uncertain environments due to non 
accurate measurements and high estimation errors the vehicle 
may stop, if there is no clear path to follow, or even collide, if 
sensors are not fast or accurate enough.    

VII. HIGH SPEED SIMULATION APPLICATION 

In this section, a high speed simulation scenario, presented 
in [43], has been used for the LE-PFP testing. It is part of a 
simulation environment for testing planning algorithms, very 
useful as a previous step in the implementation of navigation 
algorithms on real platforms and already used in [44, 45].  

The modeling and programming of the simulation 
environment has been developed entirely in C++, using the 
Dark GDK library [46]. The LE-PFP method has been 
implemented using the Newmat mathematical library [47], 
which facilitates its subsequent integration into different 
experimental platforms (Windows-based, Linux-based…). 
The simulation code has been designed to include algorithms 
as independent functions within a library. Thus, the LE-PFP 
method has been implemented as an independent module. 

The scenario is a four-lane highway where vehicles travel 
both ways (Fig. 9). A motorbike represents the intelligent 
vehicle and different car models simulate the obstacles. Linear 
kinematic models (35) are used for the obstacles and a vehicle 

  
Fig. 8. LE-PFP simulation (T=0.3s, Td=3s, Th=4s, R ranging from diag(3·10-4) 
m2 to diag(0.01) m2) with 20 obstacles modeled by linear models. Setting 
(left) and kinematic profiles (right). 

 
Fig. 9. High-speed simulation environment showing a motorcycle avoiding a 
car in different snapshots. 

model (25) is used for the intelligent vehicle. The method uses 
spherical models for the objects, along with their uncertainties. 

 The case of a vehicle following a predefined straight-line 
trajectory is shown. When a car occludes its trajectory or is 
approaching from the rear side, the LE-PFP method computes 
a new trajectory to avoid it. This trajectory fully meets the 
kino-dynamic requirements of the vehicle.  

This is a challenging scenario where safety is a key concern. 
As the environment represents an Intelligent Highway System, 
the generated trajectory is always a lane changing maneuver, 
being the goal located at a constant distance ahead from the 
vehicle. The different periods of the algorithm are Td=2s, 
Th=3s and T=0.1s. R ranges from diag(3·10-4)m2 to 
diag(0.01)m2 and the values of parameters related to the 
potential field and friction forces are =103, = 8·107, =100, 
=200, db=300, =500, 0=400, J=0,95. Finally, the mass of 
the robot is m=1000 kg and the length considered is ℓ=4 m. 

An example of avoidance is displayed in the sequence of 
images in Fig. 9 and in the video “video3_Highway.mov”.  

The method achieves very good performance and execution 
time in Matlab and C++ applications. The execution time is 
O(n) with n the number of obstacles. The mean time for 
detected obstacle is around 9 ms in a Pentium IV, 3 GHz, 1GB 
RAM. Hence, in a scenario with 100 obstacles the algorithm 
would obtain a local trajectory in less than 1s, which is very 
suitable for RT applications.  

VIII. CONCLUSIONS AND FUTURE WORK 

This paper presents a new formulation of a predictive and 
multi-rate reactive planning method for dynamic and uncertain 
environments. It is based on potential fields and has some 
advantages when compared to other methods:  

• Path planning and trajectory planning are combined in a 
single method with an integral formulation. 

• It incorporates the uncertainty in measurements and the 
predicted trajectories of the obstacles and the vehicle in the 
potential field computation. 

• Its formulation provides a holistic framework: it can be 
used for any kind of vehicle, governed by any kinematic and 
dynamic model. Kinematics is considered in the prediction 
process and dynamics is introduced via the LE formulation. 
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• Trajectories for holonomic and non-holonomic vehicles 
are generated using the same formulation. 

As a result, a local trajectory is naturally obtained that fully 
meets the kinodynamic vehicle constraints and adapts over 
time according to the obstacles in the environment. 

Future extensions of this work include the development of a 
systematic methodology to tune the terms in the method; the 
introduction of rules; the simulation of mixed traffic scenarios 
with complex situations (like head-on scenarios) and different 
obstacle models, cooperative planning, real implementations, 
other estimation filters (like particle filters), and the 
application to mobile manipulators or vehicles with trailers. 
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