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SPATIO-TEMPORAL PATTERN MINING FROM GLOBAL POSITIONING 

SYSTEMS (GPS) TRAJECTORIES DATASET  

ABSTRACT  
 

The increasing frequency of use location-acquisition technology like the Global Positioning 

System is leading to the collection of large spatio-temporal datasets. The prospect of discovering 

usable knowledge about movement behavior, which encourages for the discovery of interesting 

relationships and characteristics users that may exist implicitly in spatial databases.  Therefore 

spatial data mining is emerging as a novel area of research. 

 

In this study, the experiments were conducted following the Knowledge Discovery in Database 

process model. The Knowledge Discovery in Database process model starts from selection of the 

datasets. The GPS trajectory dataset for this research collected from Microsoft Research Asia 

Geolife project. After taking the data, it has been preprocessed. The major preprocessing 

activities include: 

 Fill in missed values and remove outliers;  

 Resolve inconsistencies, integration of data that contains both labeled and unlabeled 

datasets, 

  Dimensionality reduction, size reduction and data transformation activity like 

discretization tasks were done for this study.  

A total of 4,273 trajectory dataset are used for training the models. For validating the 

performance of the selected model a separate 1,018 records are used as a testing set. For building 

a spatiotemporal model of this study the K-nearest Neighbors (KNN), decision tree and Bayes 

algorithms have been tasted as supervised approach.  

 

The model that was created using 10-fold cross validation with K value 11 and other default 

parameter values showed the best classification accuracy. The model has a prediction accuracy 

of 98.5% on the training datasets and 93.12% on the test dataset to classify the new instances as 

bike, bus, car, subway, train and walk classes. The findings of this study have shown that the 

spatiotemporal data mining methods help to classify user mobility transportation modes. Future 

research directions are forwarded to come up an applicable system in the area of the study. 
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CHAPTER 1                                           

INTRODUCTION 

1.1. Background 
 

Geographic and temporal properties are a key aspect of many data analysis problems in business, 

government, and science. Through the availability of cheap sensor devices we have witnessed an 

exponential growth of geo-tagged data in the last few years resulting in the availability of fine-

grained geographic data at small temporal sampling intervals [1]. Therefore, the actual challenge 

in geo-temporal analysis is moving from acquiring the right data towards large-scale analysis of 

the available data. 

 

Many data mining techniques were originally targeted towards simple structured datasets such as 

relational databases or structured data warehouses. More importantly these algorithms were used 

to classify data that occur in the same time period or in other words, those datasets that are not 

expected to change much over time. However, technological improvements and the internet have 

led to more sophisticated data collection methods thus resulting in more complex data systems 

such as multimedia, spatial and temporal databases which unstructured or semi-structured [30]. 

 

Spatio-temporal data mining is a process of generating new patterns from the existed data based 

on the spatial and temporal information [1]. As discussed by [1] Spatio-temporal data mining is  

a subfield of data mining which gained high popularity especially in geographic information 

sciences due to the pervasiveness of all kinds of location-based or environmental devices that 

record position, time or/and environmental properties of an object or set of objects in real-time. 

 

The increasing availability of large-scale trajectory data provides us great opportunity to explore 

them for knowledge discovery in transportation systems using advanced data mining techniques 

[9]. As a consequence, different types and large amounts of spatio-temporal data became 

available those introduce new challenges to data analysis and require novel approaches to 

knowledge discovery [6].  
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1.2.  Statement of the Problem  
 

With the help of various positioning tools, individuals’ mobility behaviors are being 

continuously captured from mobile phones, wireless networking devices and Global positioning 

system (GPS) appliances [6]. These mobility data serve as an important foundation for 

understanding individuals’ mobility behaviors. As discussed by [6] the dissimilarity in the 

mobility areas covered by individuals, there is high regularity in the human mobility behaviors, 

suggesting that most individuals follow a simple and reproducible pattern.  

 
 

In the current technology users are used to navigate using different GPS technologies.  But it is 

challenging to uncover mobility patterns from GPS datasets. It is important predicting the future 

moves, detecting modes of transport, mining trajectory patterns and recognizing location based 

activities. 

 

Using the GPS trajectory dataset it is possible to monitor the behavior of traffic. For example we 

can use GPS data from cars or other transportation modes to monitor the emergence of 

unexpected behavior in the given region. Knowing the pattern has the potential to estimate and 

improve traffic conditions in advance and will reduce emerging anomalous.   
 

 

This research intends to get answers for the following research questions: 

 What are the patterns to categorize users’ transportation modes behavior form GPS logs? 

 What are the ways used for detecting mode of transport for user navigation using GPS?  

 Which machine learning algorithm will achieve a better result in the supervised approach 

for GPS trajectories? 

1.3.    Objective of the Study 

                  1.3.1. General Objective 

The general objective of this study is to develop Spatio-temporal model for user transportation 

mode from the GPS trajectories data.  

1.3.2. Specific Objectives 

The specific objectives of this study are the following:  

 to classify users depending on their transportation mode.  
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 to develop supervised model for user mobility modes. 

 to detect modes of transport based on machine learning Algorithms.  

 to select the better machine leaning algorithm for Spatio-temporal trajectory dataset.  

 

1.4. Methodology of the Study 
   

 1.4.1. Data Collection  
 

The GPS trajectory dataset for this research collected from Microsoft Research Asia Geolife 

project by a group of users in a period of over three years (from April 2007 to August 2012) [2] 

[3] [4] [5]. A GPS trajectory of this dataset is represented by a sequence of time-stamped points, 

each of which contains the information of latitude, longitude and altitude.  

1.4.2. System Design and Data Preprocessing    
 

For this study a combination of data mining tasks and spatial data representation were applied. 

For identifying users’ behavior data mining tasks like supervised algorithms were applied.  

Data processing, a critical initial step in data mining work, is often used to improve the quality of 

training data set. To do so data cleaning and preparation is the core task of data mining which is 

dependent on software chosen and algorithms used [8].  

The data mining model used in this study is the Knowledge discovery in Database (KDD) 

process. The KDD process refers to the whole process of changing low level data into high level 

knowledge which is automated discovery of patterns and relationships in large databases and 

data mining is one of the core steps in the KDD process. The goal of KDD and Data Mining 

(DM) is to find interesting patterns and/or models that exist in databases but are hidden among 

the volumes of data [7]. The KDD process as described by [7] consists of five major phases. 

Data will collect then using appropriate algorithms then mined patterns will be modeled. Figure 

1 shows the KDD process model that used in this study. 

 



4 
 

 

    Figure 1.1:  An overview of the steps that compose the KDD process [7]. 

1.4.3. Implementation tool 
 

The research was conducted using DM software packages (Weak tool and Tanagra) and other 

necessary tools (like Microsoft excel) to identify the transportation modes pattern. Disk 

Operating System (DOS) and Java Command line interface used for testing the model using 

unlabeled datasets.    

1.5. Organization of the thesis  
 

This thesis is structured into five chapters.  The first chapter discusses background to the study 

problem area, statement of the problem, objective of the study and research methodology. 

The second chapter discusses about DM and knowledge discovery technology, DM Processes, 

DM models, application of DM in general and in particular in the area of Spatio-temporal data 

mining for transportation modes.  

The third chapter deals with understanding the data and dataset preparation, Data transformation 

and experimentations 

The fourth chapter provides a comprehensive results and discussion of the experiential results.   

The last chapter presents the conclusions and future works. 
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CHAPTER 2 

LITERATURE REVIEW 
 

The researcher has reviewed different related literatures (books, journal articles, conference 

proceeding papers, and the Internet) in order to have detailed understanding on the present 

research.  
 

2.1. Spatio-temporal Data Mining and Knowledge Discovery 
 

Spatial data records information regarding the location, shape and its effect on features (e.g. 

geographical features). When such a data is time variant, it is called spatiotemporal data. Spatio-

temporal data mining is an upcoming research topic which focuses on studying and 

implementing novel computational techniques for large scale spatiotemporal data [31]. Progress 

in hardware technologies such as portable display devices, wireless devices has enabled an 

increase in availability of location-based services. In addition, GPS data is becoming 

increasingly available and accurate. These developments pave way to a range of new spatio-

temporal applications such as distributed systems, location based advertising, disease 

monitoring, real estate process etc. Having explored temporal data mining, the next step is to 

extend data mining techniques to spatiotemporal data. This is because in most cases, the spatial 

and temporal information is implicitly present in the databases; it might be either metric-based 

(e.g. size) or non-metric based (e.g. terrain, storm path) or both. It is therefore necessary to 

acknowledge it before carrying out data mining processes that target developing real time 

models. The spatial and temporal dependencies are inherently present in any spatio-temporal 

databases. Spatio-temporal data mining can thus be defined as identifying the interesting and 

non-trivial knowledge from large amounts of spatio-temporal data. Spatio-temporal data mining 

applications range from transportation, remote sensing, satellite telemetry, monitoring 

environmental resources and geographic information systems (GISs) [31] 
 

2.2. Spatial Data Mining Models 
 

Temporal data mining is often carried out with one of the following intentions; predictions, 

classification, clustering, search and pattern identification [34]. Early predictive models assumed 

a linear combination of the sample values [32] [33]. But later, neural networks [12] and artificial 
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intelligence (AI) modeling were employed to develop non linear temporal modeling. Clustering 

in time series data provides an opportunity to understand it at a higher level of abstraction by 

studying the characteristics of the grouped data. Temporal data clustering has numerous 

applications ranging from understanding protein structure to learn and characterize financial 

transactions. The interest for pattern identification in large time series data is comparatively 

recent and was originated from data mining itself [35]. The sequential pattern analysis was then 

used to identify the features after which they are input into classifiers (like Nave Bayes 

Classifier) for data processing [13]. The spatial dimension describes whether the objects 

considered are associated to a fixed location (e.g., the information collected by sensors fixed to 

the ground) or they can move, i.e., their location is dynamic and can change in time.  
 

 2.2.1. The KDD Process Model  
 

The goal is to provide an overview of the variety of activities in the multidisciplinary field of 

DM and how they fit together. KDD Process defined by [10], the nontrivial process of 

identifying valid, novel, potentially useful, and ultimately understandable patterns in data. The 

term pattern goes beyond its traditional sense to include models or structure in data. In this 

definition, data comprises a set of facts (e.g., cases in a database), and pattern is an expression in 

some language describing a subset of the data (or a model applicable to that subset). The term 

process implies there are many steps involving data preparation; search for patterns, knowledge 

evaluation, and refinement all repeated in multiple iterations. The process is assumed to be 

nontrivial in that it goes beyond computing closed-form quantities; that is, it must involve search 

for structure, models, patterns, or parameters. The discovered patterns should be valid for new 

data with some degree of certainty.  
 

As showed in figure 2.1 the DM process consists of five steps [10]: 

 data selection – having two subcomponents: (a) developing an understanding of the 

application domain and (b) creating a target dataset from the universe of available data; 

 preprocessing – including data cleaning (such as dealing with missing data or errors) and 

deciding on methods for modeling information, accounting for noise, or dealing with change 

over time; 

 transformation – using methods such as dimensionality reduction to reduce data complexity 

by reducing the effective number of variables under consideration; 
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 data mining – having three subcomponents: (a) choosing the data mining task (e.g., 

classification, clustering, summarization), (b) choosing the algorithms to be used in searching 

for patterns, (c) and the actual search for patterns (applying the algorithms); 

 interpretation/evaluation – having two subcomponents: (a) interpretation of mined patterns 

(potentially leading to a repeat of earlier steps), and (b) consolidating discovered knowledge, 

which can include summarization and reporting as well as incorporating the knowledge in a 

performance system. 

data

Target
data

Processed
data

Transformed
data Patterns

Knowledge

Selection

Preprocessing
& cleaning

Transformation
& feature
selection

Data Mining

Interpretation
Evaluation

Figure 2.1: KDD process: “From Knowledge Discovery to Data Mining” [10] 
 

2.2.2. The CRISP- DM Process  
 

Cross Industry Standard Process for Data Mining (CRISP-DM) is the most used methodology for 

developing DM projects [14]. Analyzing the problems of DM and KD projects, a group of 

prominent enterprises (Teradata, SPSS – ISL, Daimler-Chrysler and OHRA) developing DM 

projects, proposed a reference guide to develop DM and KD projects. This guide is called 

CRISP-DM [14]. CRISP-DM is vendor-independent so it can be used with any DM tool and it 

can be applied to solve any DM problem. CRISP-DM defines the phases to be carried out in a 

DM project. CRISP-DM also defines for each phase the tasks and the deliverables for each task 

(Figure 2.2).  
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Figure 2.2:  CRISP-DM process model [14] 

 

The CRISP-DM is divided into six phases: 
 

 Business understanding: This phase focuses on understanding the project objectives and 

requirements from a business perspective, then converting this knowledge into a DM 

problem definition and a preliminary plan designed to achieve the objectives. 

 Data understanding: The data understanding phase starts with an initial data collection and 

proceeds with activities in order to get familiar with the data, to identify data quality 

problems, to discover first insights into the data or to detect interesting subsets to form 

hypotheses for hidden information. 

 Data preparation: The data preparation phase covers all the activities required to construct 

the final dataset from the initial raw data. Data preparation tasks are likely to be performed 

repeatedly and not in any prescribed order. 

  Modeling: In this phase, various modeling techniques are selected and applied and their 

parameters are calibrated to optimal values. Typically, there are several techniques for the 

same DM problem type. Some techniques have specific requirements on the form of data. 

Therefore, it is often necessary to step back to the data preparation phase. 

  Evaluation: What are, from a data analysis perspective, seemingly high quality models will 

have been built by this stage. Before proceeding to final model deployment, it is important 

to evaluate the model more thoroughly and review the steps taken to build it to be certain 

that it properly achieves the business objectives. At the end of this phase, a decision should 

be reached on how to use of the DM results. 



9 
 

  Deployment: Model construction is generally not the end of the project. Even if the 

purpose of the model is to increase knowledge of the data, the knowledge gained will need 

to be organized and presented in a way that the customer can use it. 
 

2.2.3. Comparison of Different Spatial Data Mining Models 
 

In the early 1990s, when the KDD process term was first coined by [15], there was a rush to 

develop DM algorithms that were capable of solving all problems of searching for knowledge in 

data. The KDD process [15] [10] has a process model component because it establishes all the 

steps to be taken to develop a DM project, but it is not a methodology because its definition does 

not set out how to do each of the proposed tasks. It is also a life cycle. The 5 A’s [16] is a 

process model that proposes the tasks that should be performed to develop a DM project and was 

one of CRISP-DM forerunners. Therefore, they share the same philosophy: 5 A’s proposes the 

tasks but does not suggest how they should be performed. Its life cycle is similar to the one 

proposed in CRISP-DM. 
 

Different DM models have different steps for conducting a given study. Table 2.1 compares the 

phases into which the DM and KD process is decomposed according some of the above scheme. 

As showed in table 2.1, most of the scheme cover all the tasks in CRISP-DM, although they do 

not all decompose the KDD process into the same phases or attaches the same importance to the 

same tasks. However, some steps described above are omitted the study by [17], like 5 A’s and 

DMIE, propose additional phases not covered by CRISP-DM that are potentially very useful in 

KD and DM projects. 5 A’s proposes the “Automate” phase. This phase entails more than just 

using the model. It focuses on generating a tool to help non-experts in the area to perform DM 

and KD tasks. On the other hand, DMIE proposes the “On-going support” phase. It is very 

important to take this phase into account, as DM and KD projects require a support and 

maintenance phase. This maintenance ranges from creating and maintaining backups of the data 

used in the project to the regular reconstruction of DM models. The reason is that the behavior of 

the DM models may change as new data emerge, and they may not work properly. Similarly, if 

other tools have been used to implement the DM models, the created programs may need 

maintenance, e.g. to upgrade the behavior of the user application models. 
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Table 2.1: Comparison of DM and KD process models and methodologies [17] 
 

2.3. Spatio-temporal Data Mining Tasks 
 

As discussed by [26] regular structures in space and time, in particular, repeating structures are 

often called patterns. Patterns that describe changes in space and time are referred to as 

spatiotemporal patterns. Spatiotemporal data mining tasks are aimed at discovering various kinds 

of potentially useful and unknown patterns and trends from spatiotemporal databases. These 

patterns and trends can be used for understanding spatiotemporal phenomena and decision 

making or preprocessing step for further analysis and mining. The tasks of data mining can be 

modeled as either Predictive or Descriptive in nature [18]. A Predictive model makes a 

prediction about values of data using known results found from different data while the 

Descriptive model identifies patterns or relationships in data. Unlike the predictive model, a 

descriptive model serves as a way to explore the properties of the data examined, not to predict 

new properties. Predictive model data mining tasks include classification, prediction, and 

regression. The Descriptive task encompasses methods such as Clustering, Association Rules, 

and Sequence analysis. 
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2.3.1. Descriptive Model 
 

Descriptive data mining is normally used to generate frequency, cross tabulation and correlation. 

Descriptive method can be defined to discover interesting regularities in the data, to uncover 

patterns and find interesting subgroups in the bulk of data [19]. In education, studies [19] used 

descriptive to determine the demographic influence on particular factors. Summarization maps 

data into subsets with associated simple descriptions [18]. Basic statistics such as Mean, 

Standard Deviation, Variance, Mode and Median can be used as Summarization approach. 

2.3.1.1. Clustering  
 

Clustering is a data mining technique where data points are clustered together based on their 

feature values and a similarity metric. Researcher [20] breaks clustering techniques into five 

areas: hierarchical, statistical, exemplar, distance, and conceptual clustering, each of which has 

different ways of determining cluster membership and representation.  

 

In clustering, a set of data items is partitioned into a set of classes such that items with similar 

characteristics are grouped together. Clustering is best used for finding groups of items that are 

similar. For example, given a data set of customers, subgroups of customers that have a similar 

buying behavior can be identified. Clustering is an unsupervised learning process. Clustering is 

the process of grouping a set of physical or abstract objects into classes of similar objects, so that 

objects within the same cluster must be similar to some extent, also they should be dissimilar to 

those objects in other clusters. In classification which record belongs which class is predefined, 

while in clustering there is no predefined classes. In clustering, objects are grouped together 

based on their similarities. Similarities between objects are defined by similarity functions, 

usually similarities are quantitatively specified as distance or other measures by corresponding 

domain experts. 

 
 

Clustering provides some significant advantages over the classification techniques, in that it does 

not require the use of a labeled data set for training. For example [22] have applied fixed-width 

and k-nearest neighbor clustering techniques to connection logs looking for outliers, which 

represent anomalies in the network traffic. [21] also use a similar approach utilizing learning 

vector quantization (LVQ), which is designed to find the Bayes Optimal boundary between 

classes, using k-means clustering to determine initial vector positioning.  
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K-means clustering:  is a data mining/machine learning algorithm used to cluster observations 

into groups of related observations without any prior knowledge of those relationships [40]. The 

k-means algorithm is one of the simplest clustering techniques and it is commonly used in 

medical imaging, biometrics and related fields. The k-means algorithm is an evolutionary 

algorithm that gains its name from its method of operation. The algorithm clusters observations 

into k groups, where k is provided as an input parameter. It then assigns each observation to 

clusters based upon the observation’s proximity to the mean of the cluster. The cluster’s mean is 

then recomputed and the process begins again. Here’s how the algorithm works [40]:  

I.  The algorithm arbitrarily selects k points as the initial cluster centers (“means”).  

II. Each point in the dataset is assigned to the closed cluster, based upon the Euclidean 

distance between each point and each cluster center.  

III.  Each cluster center is recomputed as the average of the points in that cluster.  

IV. Steps II and III repeat until the clusters converge. Convergence may be defined 

differently depending upon the implementation, but it normally means that either no 

observations change clusters when steps II and III are repeated or that the changes do not 

make a material difference in the definition of the clusters. 

2.3.1.2. Association Rules  
 

Associations or Link Analysis are used to discover relationships between attributes and items 

such as the presence of one pattern implies the presence of another pattern. That is to what extent 

one item is related to another in terms of cause-and-effect. This is common in establishing a form 

of statistical relationships among different interdependent variables of a model. These relations 

may be associations between attributes within the same data item like (‘Out of the shoppers who 

bought milk, 64% also purchased bread’) or associations between different data items like 

(‘Every time a certain stock drops 5%, it causes a resultant 13% in another stock between 2 and 6 

weeks later’).  
 

2.3.1.3. Sequence Analysis 
[ 

The investigation of relationships between items over a period of time is also often referred to as 

Sequence Analysis. Sequence Analysis is used to determine sequential patterns in data [18]. The 

patterns in the dataset are based on time sequence of actions, and they are similar to association 

data, however the relationship is based on time. In Market Basket analysis, the items are to be 
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purchased at the same time, on the other hand, for Sequence Analysis the items are purchased 

over time in some order. 

2.3.2. Predictive Model  
 

The goal of the predictive models is to construct a model by using the results of the known data 

and is to predict the results of unknown data sets by using the constructed model. For instance a 

bank might have the necessary data about the loans given in the previous terms. In this data, 

independent variables are the characteristics of the loan granted clients and the dependent 

variable is whether the loan is paid back or not [22]. The model constructed by this data is used 

in the prediction of whether the loan will be paid back by client in the next loan applications. 
 

2.3.2.1. Classification and regression  
 

Classification and regression are two data analyzing family of methods which determine 

important data classes or may construct models which can predict future data trends. The 

classification model predicts the categorical values; the regression is used in the prediction of 

values showing continuity. For instance while the classification model is constructed to 

categorize whether the bank loan applications are safe or risky, the regression model may be 

constructed to predict the spending of clients buying computer products whose income and 

occupation are given  [22][23] .  

 

In the classification models the following techniques are mainly used [22]: Decision Trees, 

Artificial Neural Networks and Naive-Bayes. 

2.3.2.1.1 Decision Trees 
 

A decision tree is a classifier expressed as a recursive partition of the instance space [23]. 

Classification trees are frequently used in applied fields such as finance, marketing, engineering 

and medicine. The classification tree is useful as an exploratory technique. A decision tree may 

incorporate nominal or numeric or even both of attributes types. As discussed by [23] the 

decision tree consists of nodes that form a rooted tree, meaning it is a directed tree with a node 

called “root” that has no incoming edges. All other nodes have exactly one incoming edge. Test 

nodes are those which have outgoing edges and the remaining nodes are the leaf nodes which are 

also referred to as the decision nodes. For each new sample (i.e., feature vector x), the 
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classification algorithm will search for the region along a path of nodes of the tree to which the 

feature vector x will be assigned. Each of the internal nodes splits the instance space into two or 

more sub-divisions. The split is based on a certain discrete function used as input. In the simplest 

and most frequent case, each test considers a single attribute, such that the instance space is 

partitioned according to the attribute’s value. There are two possible types of divisions or 

partitions: Nominal partitions: a nominal attribute may lead to a split with as many branches as 

values there are for the attribute. Numerical partitions: typically, they allow partitions in ranges 

like ‘greater than’ or ‘less than’ or ‘in between’. Each leaf is assigned to one class representing 

the most appropriate target value. In some case, the leaf nodes may also the probability vector 

that represents the probability of the target attribute having a certain value. Typically, internal 

nodes are represented as circles and the leaf node as triangles. Each node is labeled with the 

attribute it tests, and its branches are labeled with its corresponding values. So depending on the 

values, the final response can be predicted by iteratively traversing through the appropriate node 

down the tree and understand the behavioral characteristics of the entire dataset as a whole. The 

termination/stop criteria or the pruning method determine the complexity of the tree.  

Complexity is given as a measure of any one of the following: 

 Total number of nodes in the tree. 

  Total number of leaves in the tree. 

  Height of the tree and the number of attributes used. 

Ideally, each non-leaf node should correspond to the most applicable input attribute from the set 

of all attributes already traversed in the path from the root node to that node i.e.it should be the 

most descriptive node so that when it comes to prediction, the number divisions made or nodes 

traversed from the root is kept to a minimum. Decision trees were frequently used in the 90s by 

artificial intelligence experts because they can be easily implemented and they provide an 

explanation of the result. A decision tree is a tree with the following properties [19]: 

 Each internal node tests an attribute. 

  Each branch corresponds to the value of the attribute. 

  Each leaf assigns a classification. 

 

ID3 [37] was the first devised decision tree algorithm. It is a greedy algorithm that uses 

information gain as splitting criteria. The tree is designed to stop when all the instances belong to 

a single value of a target feature. The tree is first initialized with the original set S as the root 
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node. The algorithm iteratively computes the entropy of each of the attribute in the set S and 

selects the one with minimum entropy. Entropy is defined as the degree of disorderliness. When 

pertaining to the definition of information, the higher the entropy of the data (model), the more is 

the amount of information required to better describe the data. So when building the decision 

tree, it is ideally desired to minimize the entropy while reaching the leaf nodes. As upon reaching 

the leaf nodes there in no more information required (therefore a zero entropy) and all instances 

have the values assigned to the target label 

2.3.2.1.2. Artificial Neural networks 

 

Neural network is a mathematical model developed in an effort to mimic the human brain [38]. 

The neural network consists of the layered interconnected set of nodes/processors which are 

analogous to the neurons in the human brain. Each of these nodes has weighted connection to the 

nodes in the adjacent layers where the information is received from one node, and weighted 

functions are used to compute the output values. As the model learns, the weights changes while 

the set of inputs is repeatedly passed through the network. Once the model has completed the 

learning phase (with the training dataset), the test data is passed through the network and 

classified according to the values in the output layer. Once trained, an unknown instance passing 

through the network is classified according to the values seen at the output layer. Artificial neural 

networks (ANN), being a non-parametric model is very well suited for applications like large 

databases, remote sensing, weather forecasting etc. Various studies have been carried out to 

demonstrate the performance improvement over traditional classifier model. Also since it does 

not rely on any assumptions concerning the underlying density function, it is very well capable 

of handling multi source data. The perceptron model proposed by [39] is a single layer neural 

network whose weights and biases are trained to produce a correct target vector when presented 

with the corresponding input vector. 

 

The training technique used is called the perceptron learning rule. The perceptron was new inits 

ability to learn with the training data and randomly distributed data. The perceptrons were very 

well suited for the classification problems where data can be completely separated along a 

hyperplane. 
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Figure 2.3: Schematic representation of the neural network model [39] 
 

2.3.2.1.3. Bayesian Network (BN) 

 

A popular supervised learning technique is the Bayesian statistical methods which allow taking 

into account prior knowledge when analyzing data [36]. Its popularity can be attributed to 

several reasons. It is fairly easy to understand and design the model; it does not employ 

complicated iterative parameter estimation schemes. It simplicity makes it easier to extend it to 

large scale datasets. Another reason is that it is also easy to interpret the results. The end users do 

not require prior expert knowledge in the field which is how it derived the name Na¨ıve Bayes 

classifier. In the Bayesian approach, the objective is to find the most probable set of class labels 

given the data (feature) vector and a priori or prior probabilities for each class. It essentially 

reduces an n-dimensional multivariate problem to n-dimensional univariate estimation.  

 

A BN is a graphical model for probability relationships among a set of variables features as 

shown in figure 2.4. The BN structure S is a directed acyclic graph (DAG) and the nodes in S are 

in one-to-one correspondence with the features X. The arcs represent casual influences among 

the features while the lack of possible arcs in S encodes conditional independencies. Moreover, a 

feature (node) is conditionally independent from its non-descendants given its parents (X1 is 

conditionally independent from X2 given X3 if P (X1|X2, X3) =P (X1|X3) for all possible values 

of X1, X2, X3) 
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Figure 2.4: The structure of Bayes network [19] 

 

Typically, the task of learning a BN can be divided into two subtasks: initially, the learning of 

the DAG structure of the network, and then the determination of its parameters. Probabilistic 

parameters are encoded into a set of tables, one for each variable, in the form of local conditional 

distributions of a variable given its parents. Given the independences encoded into the network, 

the joint distribution can be reconstructed by simply multiplying these tables. Within the general 

framework of inducing Bayesian networks, there are two scenarios: known structure and 

unknown structure. 
 

2.3.2.1.4. Support vector machine (SVM)   

 

One of the most powerful classification algorithm and it is developed based on statistical 

learning theory. Statistical learning theory is a system that is derived from statistical and function 

analysis, used to create a predicative function based on input (training) data. The current form of 

SVM was initially introduced by Boser, I.M.Guyon and V.N.Vapnik with a paper at the 

conference workshop on Computational Learning Theory in 1992 [43]. 

 

The SVM model is based on two fundamental concepts that are hyperplane classifiers for 

linearly separable patterns and kernel function for non- linearly separable patterns (Noble, 2006). 

As indicated earlier, the SVM is based on mathematical function; however, the idea can be 

expressed without any mathematical equation, and is illustrated below. 

 

The first major concept of SVM is the Hyperplane classifier, where it is the process of drawing a 

separation line in between different objects in order to distinguish by their features. These 

separation lines are decision planes to delineate decision boundaries between the objects. A 

descriptive example using a Figure 2.5 contains two different classes where one is red and the 

other is green dot points. These dot points are separated by a line according to their classes, 

where the red spots are located on the left hand side and the green spots are located on the right 
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hand side. Thus, the separating line defines a boundary between the two different classes. This 

example is a typical example for linear classifier, where a line separates objects into different 

classes. 

 

 
Figure 2.5:  Simple example of SVM [44] 

 

 

2.3.2.1.5. Lazy classifiers    

 

Lazy learners store the training instances and do no real work until classification time. IB1 is a 

basic instance-based learner which finds the training instance closest in Euclidean distance to the 

given test instance and predicts the same class as this training instance (Aha et al., 1991). IBk is 

a k-nearest-neighbor classifier that uses the same distance metric. The number of nearest 

neighbors (default k¼1) can be specified explicitly in the object editor or determined 

automatically using leave-one-out cross-validation, subject to an upper limit given by the 

specified value. KStar is a nearest neighbor algorithm with a generalized distance function based 

on transformations [49]. LWL is a general algorithm for Locally Weighted Learning, and it 

assigns weights using an instance-based method and builds a classifier from the weighted 

instances. 

 

KNN (k-nearest-neighbor) [29] has been widely used in classification problems. KNN is based 

on a distance function that measures the difference or similarity between two instances. The 

standard Euclidean distance d(x, y) between two instance x and y is often used as the distance 

function, defined as follows. 
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As discussed by [29] the KNN algorthim is a method for classifying objects based on closest 

training examples in the feature space. It is a type of instance-based learning, or lazy learning 

where the function is only approximated locally and all computation is delayed until 

classification. A majority vote of an object’s neighbors is used for classification, with the object 

being assigned to the class most common amongst its k (positive integer, typically small) nearest 

neighbors. If k is set to 1, then the object is simply assigned to the class of its nearest neighbor. 

The kNN algorithm can also be applied for regression in the same way by simply assigning the 

property value for the object to be the average of the values of its k nearest neighbors. It can be 

useful to weight the contributions of the neighbors, so that the nearer neighbors contribute more 

to the average than the more distant ones. No explicit training step is required since training 

consists of just storing training instance feature vectors and corresponding class labels. In order 

to identify neighbors, the objects are represented by position vectors in a multidimensional 

feature space. It is usual to use the Euclidean distance, but also further distance measures, such 

as the Manhattan distance could be used instead. In the classification/testing phase, the test 

sample is represented as a vector in the feature space. Distances from this vector to all stored 

vectors are computed and the k closest samples are selected to determine the class/real- value of 

the test instance. 
 

  2.4. Application of Spatial Data Mining 
 
 

As discussed by [26] the significance of spatiotemporal data analysis and mining is growing with 

the increasing availability and awareness of huge amount of geographic and spatiotemporal 

datasets in many important application domains like: 

 Meteorology: all kinds of weather data, moving storms, tornados, developments of high 

pressure areas, movement of precipitation areas, changes in freezing level, droughts. 

 Biology: animal movements, mating behavior, species relocation and extinction. 

 Crop sciences: harvesting, soil quality changes, land usage management, seasonal 

grasshopper infestation. 

 Forestry: forest growth, forest fires, hydrology patterns, canopy development, planning tree 

cutting, planning tree planting. 

  Medicine: patients’ cancer developments, supervising developments in embryology. 

 Geophysics: earthquake histories, volcanic activities and prediction. 

 Ecology: causal relationships in environmental changes, tracking down pollution incidents. 
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 Transportation: traffic monitoring, control, tracking vehicle movement, traffic planning, 

vehicle navigation, fuel efficient routes. 

 

Databases today can range in size into the terabytes — more than 1,000,000,000,000 bytes of 

data [24]. Within these masses of data lies hidden information of strategic importance. But when 

there are so many trees, how do you draw meaningful conclusions about the exact location of 

each kind of forest? According to [24] the newest answer is spatial data mining, which is being 

used both to increase revenues and to reduce costs.  

 

As discussed by [10] in business, main KDD application areas includes marketing, finance 

(especially investment), fraud detection, and manufacturing, telecommunications, and Internet 

agents. 

 

Marketing: In marketing, the primary application is database marketing systems, which analyze 

customer databases to identify different customer groups and forecast their behavior.  

 

Fraud detection: HNC Falcon and Nestor PRISM systems are used for monitoring credit card 

fraud, watching over millions of accounts. The FAIS system [25], from the U.S. Treasury 

Financial Crimes Enforcement Network, is used to identify financial transactions that might 

indicate money laundering activity. 
 

Manufacturing: The CASSIOPEE troubleshooting system, developed as part of a joint venture 

between General Electric and SNECMA, was applied by three major European airlines to 

diagnose and predict problems for the Boeing 737. To derive families of faults, clustering 

methods are used.  

Telecommunications: The telecommunications alarm-sequence analyzer (TASA) was built in 

cooperation with a manufacturer of telecommunications equipment and three telephone networks 

[25]. The system uses a novel framework for locating frequently occurring alarm episodes from 

the alarm stream and presenting them as rules. Large sets of discovered rules can be explored 

with flexible information- retrieval tools supporting interactivity and iteration. In this way, 

TASA offers pruning, grouping, and ordering tools to refine the results of a basic brute-force 

search for rules. 
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2.5. Related Works on Spatial-temporal pattern mining for transportation modes 

discovery from GPS trajectories  

 
 

Data mining technique, which is a process of extracting useful hidden knowledge from large 

volumes of data, can be used to discover spatio-temporal regularities in trajectories [3]. The 

existing travel mode inference procedure shares the following general principle. At first, the 

classification models developed based on historical data of mobility patterns upon either 

supervised or unsupervised learning method. These methods are from machine learning methods 

that use algorithms to classify the dataset accordingly. Supervised learning method creates a 

general hypothesis from known dataset which then used to predict the unknown dataset. On the 

contrary, unsupervised learning uses the input dataset to develop particular patterns or models by 

using statistical mechanisms; this learning method builds models from dataset without 

predefined classes. 

 

Different methods have been developed and tested, which derive travel modes as reliably as 

possible by combining the x and y coordinates and timestamps in the GPS logs without 

respondent involvement [27]. Of course, average speed and maximum speed can be determined 

from the location and time data in the GPS logs. However, none of the travel modes can be 

distinguished with full certainty without additional information. For example, a train and a car 

trip may deliver the same average and maximum speed as can occur with a car trip in a jammed 

city and a cycling trip. To be able to distinguish between different modes with the same speed, 

methods have been developed that combine GPS data with IS maps. 
 

As described by [41] probability matrix uses a method for determining travel mode. Trip 

characteristics such as the average speed, the maximum speed and the speed recorded most often 

and bicycle ownership define whether a trip is assigned as on foot, by bicycle or by motorized 

vehicle. Subsequently, street and public transportation maps are used in GIS for specifying the 

type of the motorized vehicles. 

 
 

 

As addressed by [42] a hierarchical inference model to infer a user’s destination and mode of 

transport through traveler’s daily activities is developed. The research has demonstrated an 

efficient way to infer traveler’s activities based on unsupervised learning algorithms. The model 
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developed in the form of hierarchical predicative approach. This model uses GPS raw data and 

map information like road networks and bus stops. 

 

This study is divided into two steps, the first step is the learning procedure and the other one is 

the inference of the travel mode. The first step is to automatically considering the complete 

labeled GPS data; it is provided in some parts of the Geo-life datasets. Then classification 

features are derived from the labeled data to be used as a training data. This classification 

training data is used as input data for the algorithms to form classification systems for the second 

step based on the features. This classification system predicts the travel modes in the same travel 

modes.  The main contribution of this study is to consider both labeled and unlabeled records 

which solved the problem of both supervised and unsupervised approaches. 
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CHAPTER 3 

METHODOLOGY AND EXPERIMENTAL DESIGN 
 

This chapter showed the data preparation and experimental setups. As showed in chapter one, 

under the methodology section of this thesis, the spatial data mining process model selected is 

KDD. KDD model is selected because it is the best method for the classification of data where 

their business is clearly mentioned. In KDD there is no need of understanding the business. The 

researcher has taken a readymade dataset from Microsoft Research Asia Geolife project by a 

group of users in a period of over three years (from April 2007 to August 2012) [2] [3] [4] [5].  

3.1. Data Description 

 

This GPS trajectory dataset was collected from (Microsoft Research Asia) Geolife project by 182 

users in a period of over five years (from April 2007 to August 2012) [2] [3] [4] [5]. A GPS 

trajectory of this dataset is represented by a sequence of time-stamped points, each of which 

contains the information of latitude, longitude and altitude. This dataset recoded a broad range of 

users’ outdoor movements, including not only life routines like go home and go to work but also 

some entertainments and sports activities, such as shopping, sightseeing, dining, hiking, and 

cycling.  Although this dataset is wildly distributed in over 30 cities of China and even in some 

cities located in the USA and Europe, the majority of the data was created in Beijing, China. The 

dataset has two parts: the GPS points and the labeled transport mode. The GPS points are 

collected by means of different GPS loggers and mobile phones. This data contains coordinates 

information for each GPS points in the form of latitude, longitude and altitude where the 

coordinates are in the form of decimal degrees. Information of time and date is also available for 

each point in the data set.  
 

 

 

73 users have labeled their trajectories with transportation mode (walk, bike, bus, car, train, and 

other) and this stored individually.  

 

All users’ GPS log files are available in the PLT format.  The following are the fields  

Field 1: Latitude in decimal degrees.  

Field 2: Longitude in decimal degrees.  

Field 3: Altitude in feet (-777 if not valid).  
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Field 4: Date - number of days.  

Field 5: Date as a string.  

Field 6: Time as a string. 

Field 7: Transportation mode. 

Depending on the above list of features, the researcher has formulated other features that would 

be important for the experiment. Depending on the latitude and longitude it is possible to 

calculate the distance between two points.  

Calculations of distances based on latitude/longitude points are on the basis of a spherical earth 

(ignoring ellipsoidal effects) – which is accurate enough
 
for most purpose, in fact, the earth is 

very slightly ellipsoidal; using a spherical model gives errors typically up to 0.3% [48].  

This uses the ‘haversine’ formula to calculate the great-circle distance between two points – that 

is, the shortest distance over the earth’s surface – giving an ‘as-the-crow-flies’ distance between 

the points (ignoring any hills they fly over, of course). The Euclidean distance used as a metric 

for distance measurement.  

Haversine 

formula: 

a = sin²(Δφ/2) + cos φ1 ⋅ cos φ2 ⋅ sin²(Δλ/2) 

c = 2 ⋅ atan2( √a, √(1−a) ) 

d = R ⋅ c 

where φ is latitude, λ is longitude, R is earth’s radius (mean radius = 6,371km); 

Therefore, the distance between two points can be calculated using the following formula [48]:  

 

=a*COS( SIN(lat1)*SIN(lat2) + COS(lat1)*COS(lat2)*COS(lon2-lon1) ) * 6371 

                                   Or  

 

=  a*COS( SIN(lat1*PI()/180)*SIN(lat2*PI()/180) + COS(lat1*PI()/180) *COS(lat2*PI()/180) 

* COS(lon2*PI()/180-lon1*PI()/180) ) * 6371 

3.2. Initial Data Selection  
 

Before generating a pattern the data should be ready in the way that is easily understandable. 

Using random selection method the researcher has taken 5,291 records. The researcher has taken 

only 5,291 records because of the process selecting records from the collection of trajectories 

were time taken plus those 5,291 records have similar characteristics and were taken from near 

Beijing square.  
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 Some of the datasets transportation mode is labeled and some of them not.  From these, 5,291 

data sets 4,273 records were labeled and 1,018 records were not labeled.  Those unlabeled 

records (1,018) used as validation records. The model would be validated using those records. 

Those records were selected based on the distribution of unlabeled records from five users. The 

distribution of labeled records and unlabeled records for 5 years almost ration of ¼. From every 

5 records 4 of them are labeled and 1 is unlabeled record.  The datasets have both quantitative 

and qualitative features which are in total 6 features. The distributions of datasets which include 

both labeled and unlabeled are shown in Table 3.1: 

 

 

 

 

 

 

 

 

Table 3.1: Distribution of datasets 

  3.3. Data Cleaning and preprocessing 
 

Before data is fed into a spatial data mining algorithm, it must be collected, inspected, cleaned 

and selected. Since even the best predictor will fail on bad data, data quality and preparation is 

crucial. Also, since a predictor can exploit only certain data features, it is important to detect 

which data preprocessing works best [28]. For this study preprocessing of the KDD dataset 

contains the following processes: 
 

 Assigning transportation mode names in to one of the six classes- bike, bus, car, subway, 

train and walk 

 To identify and label each transportation mode depending on user documentation of the 

GeoLife datasets and 

 Microsoft Excel helps to filter and name easily using fill handle. 

 There are records which don’t have attributes and these are removed from the dataset. 

Labeled dataset-Transportation-mode Number of Records Collected 

Bike 463 

Bus 437 

Car 727 

Subway 232 

Train 928 

Walk 1468 

Unlabeled records 1018 
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 The Geolife dataset is available in text format; so to be read by the spatial data mining too it 

has to be changed into CSV (comma separated value) or Attribute-Relation 

File Format (ARFF). 
 

3.4. Evaluation Metrics 
 

General performance of spatial data mining systems is measured in terms of numbers of selected 

features and the classification accuracies of the machine learning algorithms giving the best 

classification results. 

3.4.1. Error Rate 
 

The error rate, which is only an estimate of the true error rate and is expressed to be a good 

estimate, if the number of test data is large and representative of the population, is defined as 

[46]:  

 Error Rate= [(Total Test samples- Total Correctly Classified Samples)*100%] / 

    Total Test Samples ……. 3.3 

3.4.2. Accuracy  
 

Overall Classification accuracy (OCA) is the most essential measure of the performance of a 

classifier. It determines the proportion of correctly classified examples in relation to the total 

number of examples of the test set i.e. the ratio of true positives and true negatives to the total 

number of examples. From the confusion matrix, we can say that accuracy is the percentage of 

correctly classified instances over the total number of instances in total test dataset, namely the 

situation TP and TN, thus accuracy can be defined as follows [47]:      

                Accuracy = ((TP+TN)*100%)/(TP+TN+FP+FN) …….3.4 

3.4.3: Precision and Recall 

 

The parameters are evaluated based on recall accuracy; the definition of precision accuracy and 

recall are defined below. 
 

 

Precision 
 

Precision is defined as the proportion of correctly classified of the specific travel mode (like car, 

bus, walk…) in the set to that of all similar travel mode returned by the classification model. 

Thus, to determine the precision prediction for travel mode A as shown in the table 3.2, the 
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precision is the proportion of true positive to that of the total number of true and false positive 

prediction for travel mode A. It is computed as shown in equation 3.5; 

 ---3.5  

  

Predicted Class 

 

 

Unknown Class 

Travel Mode A B 

A tp fn 

B fp tn 

                                             Table 3.2:  Exemplifier to compute recall and precision accuracy 

Where; 

tpA- true positive prediction for class A;                                                                                       

fnA- false negative prediction for class A;                                                                                     

fpA- false positive prediction for class A;                                                                                      

tnA- true negative prediction for class A. 

Recall 

Recall is defined as the ability of a prediction model to predict instances travel mode correctly 

(like walk, car, bus, bike…) Thus, to determine the recall prediction for travel mode A as shown 

in the Table 3.2, the recall is the proportion of true positive to that of the total number of true 

positive and false negative prediction for travel mode A. It is computed as shown in equation 3.6; 

  ---3.6 

3.5. Experimentation  
 

This section describes experimental study of the algorithms and procedures, which are described 

in the previous chapters. In this research both labeled and unlabeled records are used.  Data 

mining tool used is Weka and Microsoft Excel used for labeling the datasets and for other 

mathematical operations. .   

3.5.1. Experimentation Design  
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The following are the steps used for the experimentation approach:   

I. In the beginning, in order to build the experiment, the researcher selected WEKA as the 

spatial data mining software used for developing the model; Java command line interface 

and DOS interface used for validation the model. Both labeled and unlabeled records were 

chosen. All the records considered for this study were taken from five users. All these five 

users were navigating in the same region, near Beijing square. At the same time all the 

records are consecutives.    

II. The selected records are changed from text format into Microsoft excel format. The 

Microsoft excel portion of the records contain both labeled and unlabeled records. 

III. To come up with cleaned datasets preprocessing tasks are undertaken for underling 

missing values, outliers and other issues. 

IV. Using the latitude and longitude of every trajectories distance has been calculated from 

one point to another point.  After calculating the distance between each points, the speed 

of travelers from one point to another point can be calculated since time of travelers at 

each trajectory point is given.   

V. Construct the model using the spatial data mining software packages. The KNN, decision 

tree and Navi bayes supervised approach have been selected since the aim of the research 

is to classify similar trajectories according to their modes of transportation.    

VI. The last step is validating the model using previously unseen records. Speed used as a 

major variable for classifying users’ navigation with respect to their transportation mode. 

The speed is calculated using the distance between consecutive points and the time taken 

travel from one point to the next point. Distance is the result of latitude and longitude as 

discussed in the beginning of this chapter. And speed is the major variable for the learning 

algorithm.     

3.5.2. Train the classifier using KNN Algorithm  
 

To train the classifier the researcher applied the classification technique of KNN algorithm. In 

the KNN classification algorithm the default value for the k is 1. In the following section, the 

researcher has tried to show different results based on the value of K and using speed as 

classification criteria. The K value was selected based on the KNN algorithm principle of which 

the minimum value of K is 1 and the maximum k value is positive infinitive number. Then 
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algorithm was tested using different k values. K values from smallest to increasing order were 

considered for the sake of comparisons. After comparing the result for consecutive k-values then 

k values with random numbers were tested to select the best classifier with given k-value.    

3.5.2.1. Experimentation 1:  with K value 1  

In k-NN classification, the output is a class membership. An object is classified by a majority 

vote of its neighbors, with the object being assigned to the class most common among 

its k nearest neighbors (k is a positive integer typically small). If k = 1, then the object is simply 

assigned to the class of that single nearest neighbor. The first experimentation is performed with 

the default parameter that is the value of k is 1.  Also the 10-fold cross validation test option is 

employed for training the classification model. Table 3.3 depicts the resulting confusion matrix 

of this model.  

Total number of instances  

(training sets) 

Correctly classified 

Instances 

Incorrectly Classified 

Instances        

4,273 3,882 (90.85 %) 391 (9.15%) 

Table 3.3: Classification accuracy using K value 1  
 

The detailed classification accuracy for each transportation mode is showed in the table 3.4 

 TP Rate FP Rate Precision Recall F-Measure ROC Area Class 

0.915      0.016       0.922      0.915   0.919       0.951     Car 

0.854      0.017       0.85       0.854      0.852       0.924     Bus 

0.863      0.04        0.857      0.863      0.86        0.918     Train  

0.708      0.033       0.721      0.708      0.715       0.844     Bike 

1 0 1 1 1 1 Walk 

0.987      0.002       0.966      0.987      0.977       0.991     Subway 

Weighted 

Average  

0.908      0.017       0.908      0.908      0.908       0.949 

 

 

        Table 3.4:  Classification accuracy for each modes of transportation with k=1 

As shown in the resulting confusion matrix, the KNN classification algorithm with value of K=1 

scored an accuracy of 90.85 %. This result shows that out of the total training datasets 4,273 

(90.85 %) records are correctly classified, while 391 (9.15%) of the records are incorrectly 

classified. Resulting confusion matrix is presented in Appendix A. 
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3.5.2.2. Experimentation 2:  with K value 2  
 

The Second experimentation is performed with value of k is 2.  Also the 10-fold cross validation 

test option is employed for training the classification model.   Table 3.5 depicts the resulting 

confusion matrix of this model. 

Total number of instances  

(training sets) 

Correctly classified 

Instances 

Incorrectly Classified 

Instances        

4,273 3,933(92.04%) 340(7.96%) 

Table 3.5: Classification accuracy using K value 2  
 

 

The detailed classification accuracy for each transportation mode is showed in the table 3.6 

 TP Rate FP Rate Precision Recall F-Measure ROC Area Class 

0.966 0.025       0.889      0.966      0.926       0.979     Car 

0.785      0.009       0.905      0.785      0.841       0.969     Bus 

0.97       0.054       0.832      0.97       0.896       0.973     Train  

0.605      0.007       0.909      0.605      0.726       0.932     Bike 

1 0 1 1 1 1 Walk 

0.957 0.001 0.974 0.957 0.965 0.997 Subway 

Weighted 

Average  

0.92 0.018 0.924 0.92 0.917 0.98  

        Table 3.6:  Classification accuracy for each modes of transportation with k=2 

As shown in the resulting confusion matrix, the KNN classification algorithm with value of K=2 

scored an accuracy of 92.04 %. This result shows that out of the total training datasets 4,273 

(92.04 %) records are correctly classified, while 340 (7.96 %) of the records are incorrectly 

classified. Resulting confusion matrix is presented in Appendix B.  

3.5.2.3. Experimentation 3:  with K value 5  
 

The third experimentation is performed with the default parameter that is the value of k is 5.  

Also the 10-fold cross validation test option is employed for training the classification model.   

Table 3.7 depicts the resulting confusion matrix of this model. 

Total number of instances  

(training sets) 

Correctly classified 

Instances 

Incorrectly Classified 

Instances        

4,273 4,150(97.12%) 123(2.88%) 

Table 3.7: Classification accuracy using K value 5  
 

The detailed classification accuracy for each transportation mode is showed in the table 3.8 
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 TP Rate FP Rate Precision Recall F-Measure ROC Area Class 
0.975      0.005       0.975      0.975      0.975       0.996     Car 

0.945      0.006       0.949      0.945      0.947       0.989     Bus 

0.968      0.014       0.95       0.968      0.959       0.997     Train  

0.898      0.008       0.933      0.898      0.915       0.994     Bike 

1 0 1 1 1 1 Walk 

0.983      0.001       0.974      0.983      0.979       1 Subway 

Weighted 

Average  

0.971      0.005       0.971      0.971      0.971      0.971       

        Table 3.8:  Classification accuracy for each modes of transportation with k=5 

As shown in the resulting confusion matrix, the KNN classification algorithm with value of K=5 

scored an accuracy of 97.12%. This result shows that out of the total training datasets 4,150(97.12 

%) records are correctly classified, while 123(2.88%) of the records are incorrectly classified. 

Resulting confusion matrix is presented in Appendix C.  

3.5.2.4. Experimentation 4:  with K value 10  
 

The fourth experimentation is performed with the default parameter that is the value of k is 10.  

Also the 10-fold cross validation test option is employed for training the classification model.   

Table 3.9 depicts the resulting confusion matrix of this model. 

Total number of instances  

(training sets) 

Correctly classified 

Instances 

Incorrectly Classified 

Instances        

4,273 4,206 (98.43%) 67 (1.57%) 

Table 3.9: Classification accuracy using K value 10 
 

The detailed classification accuracy for each transportation mode is showed in the table 3.10 

 TP Rate FP Rate Precision Recall F-Measure ROC Area Class 

0.988      0.003       0.986      0.988      0.987       0.998     Car 

0.961      0.005       0.959      0.961      0.96        0.996     Bus 

0.994      0.008       0.973      0.994      0.983       0.999     Train  

0.944      0.002       0.986      0.944      0.965       0.998     Bike 

1 0 1 1 1 1 Walk 

0.961      0.002       0.97       0.961      0.965       1 Subway 

Weighted 

Average  
0.984      0.003       0.984      0.984      0.984       0.999  

        Table 3.10:  Classification accuracy for each modes of transportation with k=10 

As shown in the resulting confusion matrix, the KNN classification algorithm with value of 

K=10 scored an accuracy of 98.43%. This result shows that out of the total training datasets 
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4,206(98.43%) records are correctly classified, while 67(1.57%) of the records are incorrectly 

classified. Resulting confusion matrix is presented in Appendix D.  

3.5.2.5. Experimentation 5:  with K value 11  
 

The fifth experimentation is performed with the default parameter that is the value of k is 11.  

Also the 10-fold cross validation test option is employed for training the classification model.   

Table 3.11 depicts the resulting confusion matrix of this model. 

Total number of instances  

(training sets) 

Correctly classified 

Instances 

Incorrectly Classified 

Instances        

4,273 4,209 (98.5%) 64 (1.5%) 

Table 3.11: Classification accuracy using K value 11 

 

The detailed classification accuracy for each transportation mode is showed in the table 3.12 

 TP Rate FP Rate Precision Recall F-Measure ROC Area Class 

0.985 0.002 0.99 0.985 0.988 0.998 Car 

0.959 0.005 0.957 0.959 0.958 0.997 Bus 

0.992 0.006 0.979 0.992 0.986 1 Train  

0.957 0.002 0.984 0.957 0.97 0.999 Bike 

1 0 1 1 1 1 Walk 

0.966 0.003 0.953 0.966 0.959 1 Subway 

Weighted 

Average  
0.985      0.002 0.985      0.985      0.985      0.999  

        Table 3.12:  Classification accuracy for each modes of transportation with k=10 

As shown in the resulting confusion matrix, the KNN classification algorithm with value of 

K=11 scored an accuracy of 98.5%. This result shows that out of the total training datasets 

4,209(98.5%) records are correctly classified, while 64(1.5%) of the records are incorrectly 

classified. Resulting confusion matrix is presented in Appendix E.  

3.5.2.6. Experimentation 6:  with K value 12 
 

The sixth experimentation is performed with the default parameter that is the value of k is 12.  

Also the 10-fold cross validation test option is employed for training the classification model.   

Table 3.13 depicts the resulting confusion matrix of this model. 

Total number of instances  

(training sets) 

Correctly classified 

Instances 

Incorrectly Classified 

Instances        

4,273 4,201 (98.32%) 72 (1.68%) 

Table 3.13: Classification accuracy using K value 12 
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As shown in the resulting confusion matrix, the KNN classification algorithm with value of 

K=12 scored an accuracy of 98.32%. This result shows that out of the total training datasets 

4,201(98.32%) records are correctly classified, while 72(1.68%) of the records are incorrectly 

classified. The detailed classification accuracy is shown at appendix F. 

3.5.2.7. Experimentation 7:  with K value 15 
 

The seventh experimentation is performed with the default parameter that is the value of k is 15.  

Also the 10-fold cross validation test option is employed for training the classification model.   

Table 3.14 depicts the resulting confusion matrix of this model. 

Total number of instances  

(training sets) 

Correctly classified 

Instances 

Incorrectly Classified 

Instances        

4,273 4,195 (98.17%) 78 (1.83%) 

Table 3.14: Classification accuracy using K value 15 

As shown in the resulting confusion matrix, the KNN classification algorithm with value of 

K=15 scored an accuracy of 98.17%. This result shows that out of the total training datasets 

4,195(98.17%) records are correctly classified, while 78(1.83%) of the records are incorrectly 

classified. The detailed classification accuracy is shown at appendix G.  

3.5.2.8. Experimentation 8:  with K value 20 
 

The eighth experimentation is performed with the default parameter that is the value of k is 20.  

Also the 10-fold cross validation test option is employed for training the classification model.   

Table 3.15 depicts the resulting confusion matrix of this model. 

Total number of instances  

(training sets) 

Correctly classified 

Instances 

Incorrectly Classified 

Instances        

4,273 4,187 (97.99%) 86 (1.01%) 

Table 3.15: Classification accuracy using K value 20 

As shown in the resulting confusion matrix, the KNN classification algorithm with value of 

K=20 scored an accuracy of 97.99%. This result shows that out of the total training datasets 

4,187(97.99%) records are correctly classified, while 86(1.01%) of the records are incorrectly 

classified. The detailed classification accuracy is shown at appendix H. 
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3.5.2.9. Experimentation 9:  with K value 30 
 

The ninth experimentation is performed with the value of k is 30.  Also the 10-fold cross 

validation test option is employed for training the classification model.   Table 3.16 depicts the 

resulting confusion matrix of this model. 

Total number of instances  

(training sets) 

Correctly classified 

Instances 

Incorrectly Classified 

Instances        

4,273 4,185 (97.94%) 88 (2.06%) 

Table 3.16: Classification accuracy using K value 30 

As shown in the resulting confusion matrix, the KNN classification algorithm with value of 

K=30 scored an accuracy of 97.94%. This result shows that out of the total training datasets 

4,185(97.94%) records are correctly classified, while 88(2.06%) of the records are incorrectly 

classified. 

3.5.2.10. Experimentation 10:  with K value 60, 100, 150, 200 
 

Other experimentations are performed with the value of k= 60, 100, 150, 200.  Also the 10-fold 

cross validation test option is employed for training the classification model.   Table 3.17 depicts 

the resulting confusion matrix of this model. 

K Value  Total number of instances  

(training sets) 

Correctly classified 

Instances 

Incorrectly 

Classified Instances        

60 4,273 4,131 (96.68%) 142(3.32%) 

100 4,273 4,031 (94.34%) 242(5.66%) 

150 4,273 3978(93.1%) 295(6.9%) 

200 4,273 3,744(87.62%) 529(12.38%) 

Table 3.17: Classification accuracy using K value 30 

As shown in the resulting confusion matrix, the KNN classification algorithm with value of 

K=60 scored an accuracy of 96.68%, with k=200 scored an accuracy of 87.62%. The detailed 

classification accuracy for K value 100 is shown at appendix I.  
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3.5.3. Train the classifier using J48 decision tree modeling  
 

As described earlier, the J48 algorithm is used for building the decision tree model. The training 

of the decision tree classification models of the experimentation is done by employing the 10-

fold cross validation and the percentage split classification models.  

J48 algorithm contains some parameters that can be changed to further improve classification 

accuracy. Initially the classification model is built with the default parameter values of the J48 

algorithm.  Table 3.18 summarizes the default parameters with their values for the J48 decision 

tree algorithm. 

parameter Description Default Value 

ConfidenecFactor The confidence factor used for pruning (smaller values 

incur more pruning) 

0.25 

minNumObj The minimum number of instances per leaf  2 

Unpruned  Weather pruning is performed False 

Subtreeraising Weather sub tree information is hidden or expanded True 

Table 3.18: Some of the J48 algorithm parameters and their default values 

As described before, the J48 algorithm is used for building the decision tree model. The training 

of the decision tree classification models of the experimentation is done by employing the 10-

fold cross validation. Table 3.19 depicts the resulting confusion matrix of this model.  

 

Total number of instances  

(training sets) 

Correctly classified 

Instances 

Incorrectly Classified 

Instances        

4,273 4,124 (96.5%) 149 (3.5%) 

Table 3.19: Using J48 algorithm parameters with 10-fold cross validation 

           

As shown in the resulting confusion matrix, the J48 learning algorithm scored an accuracy of 

96.5%. This result shows that out of the total training datasets 4,124 (96.5%). records are 

correctly classified, while 149 (3.5%) of the records are incorrectly classified. 
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3.5.4. Train the classifier using Naive Bayes modeling 
 

The other classification data mining technique employed for the classification sub phase of this 

research is the Naïve Bayes.  To build the Naïve Bayes model, WEKA software package is used 

and it employs the Naïve Bayes Simple algorithm in developing the model. The 10-fold cross 

validation, which is set by default for training and testing the model test options are employed.   

Naive Bayes is one of the Probabilistic learning algorithm that Calculate explicit probabilities for 

hypothesis. In Naïve Bayes learning algorithm prior knowledge and observed data can be 

combined. It is also an incremental learning algorithm that each training example can 

incrementally increase/decrease the probability that a hypothesis is correct.  It predicts multiple 

hypotheses, weighted by their probabilities. 

Table 3.20 showed the resulting confusion matrix of the model developed using the Naive Bayes 

Simple algorithm with the default 10-fold cross validation test option.  

Total number of instances  

(training sets) 

Correctly classified 

Instances 

Incorrectly Classified 

Instances        

4,273 3,518 (82.3%) 755 (17.3%) 

Table 3.20:  Classification accuracy using Naïve Bayes algorithm  

As shown in the above confusion matrix the Naïve Bayes Simple Algorithm scored an accuracy 

of 82.3%. This means out of the total 4,273 records 3,518 (82.3%) of the records are correctly 

classified, while 755(17.3 %) of the records are misclassified. 

3.5.4:  Comparison of Supervised Approaches: J48 decision tree, Naive Bayes model and 

KNN  
 

Comparing different classification techniques and selecting the best model for predicting the 

transportation mode is one of the aims of this study. Summary of experimental result for the 

three two classification algorithms is presented in table 3.21 below: 

Classifier/ Model Correctly Classified Incorrectly Classified 

J-48 decision tree 96.5% 3.5% 

Navi-Bayes  82.3 % 17.3% 
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KNN-  with K value 11 98.5% 1.5% 

Table 3.21: Comparison of Supervised Approaches  

In this thesis the three algorithms performed different prediction accuracy.  Accordingly the 

KNN algorithm with k value 11 scored better classification accuracy showed in table 3.11.  

The reason for the KNN performing better than others is because of absence of linearity nature of 

the dataset.  This means there is no a comprehensible segregation point that can be defined by the 

algorithm to predict the class of a particular transportation modes. 
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CHAPTER 4 

RESULTS AND DISCUSSION 

 

Comparing different results based on the value of K and selecting the best model for predicting 

the transportation mode is the major aims of this study. The total numbers of instances 

considered for the classification were 4,273. Summary of experimental result for some selected 

K values is presented in table 4.1 below 

K-Value Correctly classified 

Instances (Accuracy)  

Incorrectly 

Classified Instances 

1 3,882 (90.85 %) 391 (9.15%) 

2 3,933(92.04%) 340(7.96%) 

5 4,150(97.12%) 123(2.88%) 

10 4,206 (98.43%) 67 (1.57%) 

11 4,209 (98.5%) 64 (1.5%) 

12 4,201 (98.32%) 72 (1.68%) 

15 4,195 (98.17%) 78 (1.83%) 

20 4,187 (97.99%) 86 (1.01%) 

30 4,185 (97.94%) 88 (2.06%) 

60 4,131 (96.68%) 142(3.32%) 

100 4,031 (94.34%) 242(5.66%) 

150 3978(93.1%) 295(6.9%) 

200 3,744(87.62%) 529(12.38%) 

Table 4.1: Results of classification accuracy with different K values  

Accordingly the K-nearest neighbor classification with k value 11 scores the best classification 

accuracy. As shown in the table with smallest value of K the classification result is very low and 

as K increases the classification Accuracy increases. The problem happens when the value of K 

is getting larger. Therefore the highest classification result is at some point in this case at K= 11. 

Graphically is looks like the following:  
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    Fig: 4.1:  Results of classification accuracy with different K values 

As showed in figure 4.1, when k-value (blue line) increases the accuracy value (red line) 

decreases.  

As shown in the graph as K increases, the classification accuracy goes up, then stabilizes, and 

then down again. The average TP and FP rates for all experiments conducted in this study 

showed in table 4.2. 

K-Values TP FP 

1 0.908 0.017 

2 0.92 0.018 

5 0.971 0.005 

10 0.984 0.003 

11 0.985 0.002 

12 0.983 0.003 

15 0.982 0.003 

20 0.98 0.004 

30 0.979 0.003 

60 0.967 0.005 

100 0.943 0.011 

150 0.931 0.015 

200 0.876 0.029 

                                Table 4.2: Average TP and FP Rates 
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As shown in the above table for the best classification accuracy there should be the highest the 

True Positive value. In this case for K= 11, the TP value is the highest one. The following figure 

shows that the variation of the TP at different K values.  

 

Figure 4.2:  True Positive (TP) rate comparison of different K values  

As shown in figure 4.2 at the lower k –values the TP values increasing but after a while the result 

is decreasing. This indicates the highest accuracy values means the TP value is highest too.   

 

Figure 4.3:  False Positive (FP) rate comparison of different K – Values  

For a good a good classification algorithm the FP rate should be low. As shown in figure 4.3 the 

FP rate of the KNN classification result is lowest is at K=11  
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The selected model for this study is validated by unlabeled datasets which means records without 

having transportation modes. The prediction performance of this model is tested using a java 

code by using either Disk Operating System (DOS) or Simple Command line Interface (SCLI) 

on WEKA.   

The command used for training purpose of the KNN algorithm is the following: 

>Java weka.classifiers.lazy.IBk –[ConditionsForK][PATH]\Training_data_Name.arff -d 

 [destination path]\Model_Name.model 

>weka.classifiers.lazy.IBk -K 11 -W 0 -A C:\Users\Mr.Tigabu\Desktop 

 \UnlabeledDatasets.arff –d C: \Users\Mr.Tigabu\Desktop\selectedmodel.model 

The command used for testing purpose of the KNN algorithm is the following: 

Java weka.classifiers.lazy.IBk –p [path]\Model_Name.model -T [destination path] 

\Testing_data_Name.csv  

>Java weka.classifiers.lazy.IBk –p:\Users\Mr.Tigabu\Desktop \selectedmodel.model -T C: 

\Users\Mr. Tigabu\Desktop\ real_life_data.csv 

Using the selected model the unlabeled 1,018 datasets were classified as shown in the table 4.3. 

The validation records were taken from the same area near Beijing city square.  

 

  

 

 

 

Table 4.3: Classification result of unlabeled datasets based on the selected model  

The performance of the selected model is tested with the separately prepared 1,018 validating 

datasets as shown in the table 4.4: 

 

Labeled dataset-Transportation-mode Number of Records Collected 

Bike 187 

Bus 171 

Car 174 

Subway 98 

Train 119 

Walk 269 
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Total number of instances  

(Validating tests) 

Correctly classified 

Instances 

Incorrectly Classified 

Instances        

1,018 948 (93.12%) 70 (6.88%) 

Table 4.4:  Validating the selected model with real life  

 

The performance of the model on the test set was 93.12% to classify the new instances as bike, 

bus, car, subway, train and walk classes. This result showed that out of the 1.018 testing datasets, 

the developed KNN classification model predicted around 948 (93.12%) records correctly. The 

model has a prediction accuracy of 98.5% on the training datasets when the value of K is 11. 

There may different reasons why the performance of the model was lower during the testing 

phases.  According to [51] the errors committed by a classification model are generally divided 

into two types: training errors and generalization errors. Training error is the number of 

misclassification error committed on training records, whereas generalization error is the 

expected error of the model on previously unseen records. Here, the training error which is the 

FP rate was high for the training phase of the model in this study.  The lower performance 

registered also due to lack of representative Samples in the model training.  
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CHAPTER 5 

CONCLUSION AND FUTURE WORKS 

5.1. CONCLUSION  
 

Nowadays, a vast amount of spatio-temporal data are being generated by devices like cell 

phones, GPS and remote sensing devices and therefore discovering interesting patterns in such 

data became an interesting topics for researchers. One of the research area is discovering the 

transportation modes from GPS generated information. 

 

The increasing frequency of location-acquisition technology like the Global Positioning System 

is leading to the collection of large spatio-temporal datasets and to the prospect of discovering 

usable knowledge about movement behavior, which encourages for the discovery of interesting 

relationships and characteristics users that may exist implicitly in spatial databases.  Therefore 

spatial data mining is emerging as a novel area of research. 

 

In this study, attempts have been made to use spatial data mining technology for identifying 

users travel mode depending on their travel behaviors. The KDD process model designed by [10] 

has been followed during undertaking the experimentation and discussion. A series of 

chronologically ordered points, e.g., p1p2… pn, where each point consists of a geospatial 

coordinate set and a timestamp such as p = (x;y; t) were considered for the study. Using serious 

points and timestamp, speed was calculated. And speed used as classification criteria.  

 

The KDD process model designed by [7] has been followed during undertaking the 

experimentation and discussion. The dataset used in this study has been taken from Microsoft 

Research Asia Geolife project. After taking the data, it has been preprocessed and prepared in a 

format suitable for the DM tasks.  

A total of 4,273 trajectory dataset are used for training the models. For validating the 

performance of the selected model a separate 1,018 records are used as a testing set. For building 

a spatiotemporal model of this study the K-nearest Neighbors (KNN) algorithm has been tasted 

as supervised approach. The k-nearest neighbor determines the predicted label by asking the k-

nearest neighbor points in the training set to “vote” for the label. 
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The model that was created using 10-fold cross validation with K value 11 and other default 

parameter values showed the best classification accuracy. The model has a prediction accuracy 

of 98.5% on the training datasets and 93.12% on the test dataset to classify the new instances as 

bike, bus, car, subway, train and walk classes.  

 

5.2. FUTURE WORKS 
 

The result of the study has shown that the KNN supervised with cross-validation test mode and 

K-value 11 is appropriate for predicting transportation mode. Hence, based on the findings of 

this study, the following are recommended as future research directions: 

 This study was carried out using KNN supervised algorithm. So further investigation 

needs to be done using other supervised algorithms such as Decision Tree, Neural 

Networks and Support Vector Machine. 

 This study was conducted on a limited datasets. So applying the KNN algorithm with the 

whole records and compare the results how it could be. 

 This study considers consecutive points with the given time interval. Taking a common 

time interval for the whole datasets and testing the algorithm. 

 Reclassifying the classified results and comparing the result. 

 Cross validation used as a validation techniques for this study. Considering other 

validation mechanism and comparing the result is also other future study area.  
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APPENDIXES 

Appendix A: Resulting confusion matrix 
 

Classified as Car Bus Train Bike Walk Subway  

Car 665 62 0 0 0 0 

Bus 56 373 0 0 0 8 

Train 0 0 801 127 0 0 

Bike 0 1 134 328 0 0 

Walk 0 0 0 0 1486 0 

Subway 0 3 0 0 0 229 

Table A-1: Confusion Matrix using k value of 1 

Appendix B: Resulting confusion matrix 
 

Classified as Car Bus Train Bike Walk Subway  

Car 702 25 0 0 0 0 

Bus 88 343 0 0 0 6 

Train 0 0 900 28 0 0 

Bike 0 1 182 280 0 0 

Walk 0 0 0 0 1486 0 

Subway 0 10 0 0 0 222 

Table B-1: Confusion Matrix using k value of 2 

Appendix C: Resulting confusion matrix 
 

Classified as Car Bus Train Bike Walk Subway  

Car 709 18 0 0 0 0 

Bus 18 413 0 0 0 6 

Train 0 0 898 30 0 0 

Bike 0 0 47 416 0 0 

Walk 0 0 0 0 1486 0 

Subway 0 4 0 0 0 228 

Table C-1: Confusion Matrix using k value of 5 

Appendix D: Resulting confusion matrix 
 

Classified as Car Bus Train Bike Walk Subway  

Car 718 9 0 0 0 0 

Bus 10 420 0 0 0 7 

Train 0 0 922 6 0 0 

Bike 0 0 26 437 0 0 

Walk 0 0 0 0 1468 0 

Subway 0 9 0 0 0 223 

   Table D-1: Confusion Matrix using k value of 10 
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Appendix E: Resulting confusion matrix 
 

Classified as Car Bus Train Bike Walk Subway  

Car 716 11 0 0 0 0 

Bus 7 419 0 0 0 11 

Train 0 0 921 7 0 0 

Bike 0 0 20 443 0 0 

Walk 0 0 0 0 1486 0 

Subway 0 8 0 0 0 224 

   Table E-1: Confusion Matrix using k value of 11 

Appendix F: Detailed classification accuracy for K value 12  

 TP Rate FP Rate Precision Recall F-Measure ROC Area Class 
0.985      0.002       0.99 0.985      0.988       0.998     Car 

0.959      0.006       0.95       0.959      0.954       0.998     Bus 

0.994      0.008       0.973      0.994      0.983       1 Train  

0.944      0.002       0.986      0.994      0.965       0.999 Bike 

1 0 1 1 1 1 Walk 

0.953      0.003       0.953      0.953      0.953       1     Subway 

Weighted 

Average  

0.983      0.003       0.983      0.983      0.983       0.999  

        Table F.1:  Classification accuracy for each modes of transportation with k=12 

Appendix G: Detailed classification accuracy for K value 15  

 

 TP Rate FP Rate Precision Recall F-Measure ROC Area Class 
0.982     0.002       0.992 0.982    0.987       0.998     Car 

0.934      0.005    0.958       0.934      0.946       0.998     Bus 

0.992      0.007       0.975      0.992      0.983       1 Train  

0.948      0.002       0.984      0.948      0.966       0.999 Bike 

1 0 1 1 1 1 Walk 

0.978      0.006       0.908      0.978      0.942       1     Subway 

Weighted 

Average  

0.982      0.003       0.982      0.982      0.982       0.999  

        Table G.1:  Classification accuracy for each modes of transportation with k=15 

Appendix H: Detailed classification accuracy for K value 20   

 

 TP Rate FP Rate Precision Recall F-Measure ROC Area Class 
0.978 0.002       0.992 0.978    0.985      0.999    Car 

0.936      0.004   0.962     0.936      0.949       0.999     Bus 

0.998      0.012       0.959   0.998      0.978       0.999 Train  

0.914      0.002       0.995      0.914      0.953       0.998 Bike 

1 0 1 1 1 1 Walk 

1      0.005       0.913    1      0.955       0.999 Subway 

Weighted 
Average  

0.98      0.004       0.981      0.98      0.98       0.999  

        Table H.1:  Classification accuracy for each modes of transportation with k=20 
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Appendix I: Detailed classification accuracy for K value 200   

 

 TP Rate FP Rate Precision Recall F-Measure ROC Area Class 
0.816 0      1 0.816   0.898    0.998    Car 

0.744      0.035   0.708     0.744      0.725       0.982     Bus 

0.939      0.068       0.794   0.939      0.86       0.985 Train  

0.512      0.015       0.806      0.512      0.626       0.973 Bike 

1 0.023 0.958 1 0.979 1 Walk 

1      0.012       0.832    1      0.908       0.998 Subway 

Weighted 

Average  

0.876   0.029       0.881      0.876   0.871    0.992  

        Table I.1:  Classification accuracy for each modes of transportation with k=200 

 

 

 

 

 


