
Treball de Final de Grau/Màster  / Trabajo de Final de Grado/Màster

TÍTOL /  TÍTULO/ TITLE

Classifiers ensemble in remote sensing: a 
comparative analysis

Autor/a  / Autor/a/ Author: 

Hernán Cortés Rodríguez

Director/a / Director/a/ Supervisor: 

Pr. Reyes Rengel

Tutor/a o supervisor/a / Tutor/a o supervisor/a/ Co-supervisors:

Pr. Mario Caetano
Pr. Roberto Henriques

Data de lectura   / Fecha de lectura/ Date of Thesis Defense:

06/04/2014



Resum / Resumen/ Abstract:

Land Cover and Land Use (LCLU) maps are very important tools for understanding the 

relationships between human activities and the natural environment. Defining accurately 

all the features over the Earth's surface is essential to assure their management properly. 

The basic data which are being used to derive those maps are remote sensing imagery 

(RSI), and concretely, satellite images. Hence, new techniques and methods able to deal 

with those data and at the same time, do it accurately, have been demanded.

In this work, our goal was to have a brief review over some of the currently approaches in 

the  scientific  community  to  face  this  challenge,  to  get  higher  accuracy  in  LCLU  maps. 

Although,  we will  be focus on the study of  the classifiers ensembles  and the different 

strategies  that  those  ensembles  present  in  the  literature.  We  have  proposed  different 

ensembles  strategies  based  in  our  data  and  previous  work,  in  order  to  increase  the 

accuracy of previous LCLU maps made by using the same data and single classifiers.

Finally, only one of the ensembles proposed have got significantly higher accuracy, in the 

classification of LCLU map, than the better single classifier performance with the same 

data. Also, it was proved that diversity did not play an important role in the success of this 

ensemble.

Paraules clau / Palabras clave/ Key words:

Accuracy, Bagging, Boosting, CART, Classifiers Ensemble, Diversity, Feature Selection, Land 

Cover and Land Use Maps, Linear Discriminant Classifier, Majority Voting, Neural 

Networks, Random Forest, Regularized Discriminant Classifier, Remote Sensing Imagery, 

Stacked Description, Single Classifiers, Support Vector Machine



Classifiers ensemble in 
remote sensing: a 

comparative analysis

Dissertation Document

Erasmus Mundus Master Program in Geospatial 
Technologies

Hernán Cortés Rodríguez

i



Erasmus Mundus Master Program 
in Geospatial Technologies

Dissertation Title: 

Classifiers ensemble in remote 
sensing: a comparative analysis

Dissertation supervised by:

− Dr. Mario Caetano
− Dr. Roberto Henriques
− Dr. Reyes Rengel

Hernán Cortés Rodríguez

 

Castellón, March 2014

ii



Acknowledges

I would like to greet all my supervisors: Professor Mario Caetano, Professor Roberto 

Henriques and Professor Reyes Rengel, who were always available to guide and 

help me during the process of elaborating this dissertation. I would like to thanks 

especially to the PhD student and researcher Joel Silva, who was the most 

inexhaustible support at any time. I would like to thank Professor Marco Painho and 

the Doctor Alan Glenn for their guideline and ideas during the thesis follow-up 

meetings.

As always, an special mention to my family, my friends and my flatmates in Lisbon, 

who had always a good feeling and a smile to share.

iii



Dissertation Title: 

Classifiers ensemble in remote sensing: a 

comparative analysis

Abstract

Land Cover and Land Use (LCLU) maps are very important tools for understanding 

the relationships between human activities and the natural environment. Defining 

accurately  all  the  features  over  the  Earth's  surface  is  essential  to  assure  their 

management properly. The basic data which are being used to derive those maps are 

remote  sensing  imagery  (RSI),  and  concretely,  satellite  images.  Hence,  new 

techniques and methods able to deal with those data and at the same time, do it 

accurately, have been demanded.

In  this  work,  our  goal  was  to  have  a  brief  review over  some of  the  currently 

approaches in the scientific community to face this challenge, to get higher accuracy 

in LCLU maps. Although, we will be focus on the study of the classifiers ensembles 

and the different strategies that those ensembles present in the literature.  We have 

proposed different  ensembles strategies based in our  data and previous work,  in 

order to increase the accuracy of previous LCLU maps made by using the same data 

and single classifiers.

Finally, only one of the ensembles proposed have got significantly higher accuracy, 

in the classification of LCLU map, than the better single classifier performance with 

the same data. Also, it was proved that diversity did not play an important role in the 

success of this ensemble.

iv



Keywords

Accuracy

Bagging

Boosting

CART

Classifiers Ensemble

Diversity

Feature Selection

Land Cover and Land Use Maps

Linear Discriminant Classifier

Majority Voting

Neural Networks

Random Forest

Regularized Discriminant Classifier

Remote Sensing Imagery

Stacked Description

Single Classifiers

Support Vector Machine

v



Acronyms

ANN – Artificial Neural Network

AL – Active Learning

CART - Classification And Regression Tree 

CLC – CORINE Land Cover Cartography

CORINE - Coordination of Information on the Environment 

COS - Carta de Ocupaçao/Uso do Solo de Portugal

DT – Decision Tree

FAO – Food and Agriculture Organization

GIS – Geographic Information Systems

IF - Forestry Inventory of Portugal

KNN – K Nearest Neighbour

LANDAU  - 

LANDSAT  – Land use Satellite

LCLU – Land Cover and Land Use

LDC – Linear Discriminant Classifier

MCS – Multiple Classifier System

ME – Mixture of Expert

ML – Maximum Likelihood

NDVI - Normalized Difference Vegetation Index 

NN – Neural Network

PCA – Principal Component Analysis

RDC – Regularized Discriminant Classifier

RSI – Remote Sensing Imagery

SVM – Support Vector Machine

vi



Index of Text

Acknowledges............................................................................................................iii
Abstract.......................................................................................................................iv
Keywords.....................................................................................................................v
Acronyms....................................................................................................................vi
Index of tables..........................................................................................................viii
Index of figures...........................................................................................................ix
1 Introduction...............................................................................................................1

1.1 Why LCLU maps are important?.................................................................... .1
1.2 LCLU classification ........................................................................................ .3
1.3 Research Question........................................................................................... .4

2 Improving accuracy: factors influencing LCLU mapping accuracy.........................6
2.1 Initial Steps..................................................................................................7
2.2 Feature extraction and selection...................................................................8
2.3 Suitable Classification Method....................................................................9

2.3.1 Single Classifiers Methods:..................................................................9
2.3.2 Ensemble Classifiers Methods............................................................12

         2.4 Accuracy Assessment.................................................................................19
3 Methodology...........................................................................................................20

3.1 Study Area and Data Selection....................................................................... 20
3.1.1 Study Area...............................................................................................20
3.1.2 Data set....................................................................................................20
3.1.3 Nomenclature..........................................................................................22
3.1.4 Software..................................................................................................22

3.2 Methodological Procedure.............................................................................. 23
3.2.1 Training and Testing Set and Validation.................................................23
3.2.2 Ensemble methods description................................................................24
3.2.3 Difference between proportions..............................................................27
3.2.4 Diversity between Classifiers outputs.....................................................27

4 Discussion and Results...........................................................................................29
4.1 Data analysis and processing.......................................................................... 29
4.2 Ensemble results and significance.................................................................. 31
4.3 Diversity measures......................................................................................... 35

5 Conclusions.............................................................................................................37
Bibliographic References:..........................................................................................41
Annex I - Confusion Matrix of the Classifiers Ensembles  ......................................46
Annex II - Ensembles implementation Code, an example.........................................52

vii



Index of tables

Table 1. User's accuracy of LCLU maps of more representative single classifiers 

(built from LANDAU project data)...........................................................................30

Table 2. Producer's accuracy of LCLU maps of more representative single classifiers 

(built from LANDAU project data)...........................................................................31

Table 3. Legend of colour in the error matrices.........................................................31

Table 4. Summarize of the ensembles better results..................................................32

Table 5. McNemar test between all the ensembles and the best single classifier......35

Table 6. Double-Fault diversity measures results......................................................37

Table 7. Global accuracy of LCLU maps of more representative single classifiers 

(built from LANDAU project data)...........................................................................47

Table 8. Error matrix of LCLU map get from Bagging Discriminant ensemble .....48

Table 9. Error matrix of LCLU map get from Boosting Discriminant ensemble......49

Table 10. Error matrix of LCLU map get from Boosting Trees ensemble................50

Table 11. Error matrix of LCLU map get from Random Forest ensemble................51

Table 12. Error matrix of LCLU map get from RDC ensemble................................52

viii



Index of figures

Figure 1. CORINE land cover: Portugal 2006.............................................................1

Figure 2. Neural Network classifier structure............................................................11

Figure 3. SVM strategy..............................................................................................11

Figure 4. Classifier ensemble notion.........................................................................13

Figure 5. Summary of the measures of diversity.......................................................19

Figure 6. Location of the study area..........................................................................21

Figure 7. Landsat image from the study area.............................................................22

Figure 8. Boosting tree diagram.................................................................................26

Figure 9. Random Forest diagram.............................................................................26

Figure 10. Regularized Discriminant Classifier (RDC) diagram...............................27

Figure 11. Global Accuracy of Classifiers used in LANDAU and Ensembles used in 

this dissertation..........................................................................................................33

Figure 12. LCLU map, from Landsat image classified by RDC ensemble...............34

Figure 13. LCLU maps, from Landsat image classified by all ensembles analysed 

and google map image...............................................................................................41

ix



1 Introduction

1.1 Why LCLU maps are important?

Land  cover  is  the  physical  material  on  the  Earth's  surface,  as  a  result  of  the 

expression of human activities and changes (Di Gregorio and Jansen, 2000). Land 

cover comprises trees, asphalt, water, etc. Consequently, land cover is a geographical 

feature  that  can  form  a  reference  base  for  applications  ranging  from  forest 

management and monitoring, agriculture, urban planning, investment, biodiversity, 

climate change, to desertification control, and so on (Di Gregorio and Jansen, 1997). 

In the other hand, land use could be explained as the use that humans give to the 

features on the surface, in this sense, a tree (unique land cover feature) could be a 

interpreted as forest, urban park, rain-fed agriculture, etc. Figure 1 is an example of 

land cover map of Portugal done under the CORINE project's umbrella in 2006.

Figure 1. CORINE land cover: Portugal 2006  
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There is a higher demand for precisely define the Earth's surface due to an increase 

need for defining and classify accurately the land cover, in order to offer the best 

tools to the decision-makers.  In  this sense,  the CORINE report  (1995) from the 

European  Environmental  Commission,  also  states  that if  our  environment  and 

natural heritage have to be properly managed, decision-makers need to be provided 

with both an overview of existing knowledge, and information which is as complete 

and up-to-date as possible on changes in certain features of the biosphere. In this 

sense, the term LCLU Change (LCLUC), also known as land change, is adopted to 

point out to any modification of the Earth's surface. From a conceptual perspective, 

study of land-cover changes permits identification of long-term trends in time and 

space and the formation of policy in anticipation of the problems that go with the 

changes in land-cover (Jensen, 1996).

Land-cover of the Earth's land surface has been changing since time immemorial at 

a range of spatial scales from local to global and at temporal frequencies of days to 

millennia an is likely to change in the future (Townshend, J., et al., 1991). LCLU 

features have the particularity to show spatial and structural changes as a reaction to 

changes in physical, economic and cultural circumstances.

It  is  a  fact  that  humans  have  continually  reshaped  the  Earth,  but  the  present 

magnitude and rate are unprecedented (Di Gregorio and Jansen, 1997). Nowadays, 

administrations and organizations have realized that it is very important to know 

how land cover has changed over time, in order to make assessments of the changes 

one could expect in the (near) future and the impact of these changes will have on 

peoples'  lives  (FAO,  1996a).  Changes  in  land  cover  and  land use affect  global 

systems (e.g. atmosphere, climate and sea level) or occur in a localized fashion in 

enough places to have a significant effect (Meyer and Turner, 1992).

Due to the influence of land-cover change on many of the environmental issues both 

direct and indirect, such as loss of biodiversity, changes in hydrological, carbon and 

nitrogen cycles, and climatic change, it is important that these areas under intense 

change needs to be better understood for adapting suitable management strategies 

(Schilling et al.,  2010).   As an example of this importance, could be shown the 

article of Sala et al. (2000), which calculates that along the coast, land-cover change 

has been reported to be the prime cause of biodiversity loss, accounting for over 

50% of the global  biodiversity loss,  and thus gained global  attention in the last 
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decade. Also in the context of the management of the natural resources, LCLU has 

become an important tool, in the sense that an increasing number of socio-economic 

activities are taking place on those areas.

1.2 LCLU classification

The recent availability of geospatial information technologies with satellite data (in 

the last four decades) helps us for better understanding of the land-cover change and 

its effect on human environment. Change detection could be defined as the process 

of identifying differences in the state of an object or phenomenon by observing it at 

different time. This process is usually applied to earth surface changes at two or 

more times (Coppin et al., 2004).

Information describing current land cover is an important input for planning and 

modelling,  but  the  quality  of  such  data  defines  the reliability  of  the  simulation 

outputs (Townshend, 1992). In addition to a high demand for improved land cover 

data  sets,  in  the  middle  ninety's  there  was  also  a  need for  standardization  and 

compatibility between data sets and for the possibility to map, evaluate and monitor 

wide areas in a consistent manner, which technical advances, like the vast amount of 

remote sensing data  that  has  become available  from earth  observation satellites, 

made that increasingly possible (Di Gregorio, 1995).

Remote sensing imagery and, specifically, satellite imagery is the main source for 

creating LCLU maps. This is due to the following reasons:

• The large amount  of  data  available  and produced every day in  different 

spatial and spectral resolution.

• The high temporal  resolution which allows a large availability of  images 

from the same area.

• The elevated variability of  computational  methods to analyse the satellite 

imagery.

• High  availability  of  images,  some  of  them  free  of  charge,  like  Landsat 

images.
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Techniques  to  deal  with  this  increasingly  large  amount  of  data  had  been  also 

improved through these years. We will face this evolution in the following chapter 

(chapter 2), but as an introduction, we can say that several attempts have been done 

with different classifiers. More recently different researchers have been trying to 

combine classifiers in different manners. In this dissertation, we explores a specific 

possibility,  classifiers  ensemble  and it  consists  on a  machine learning paradigm 

where multiple algorithms are trained to solve the same problem and combined to 

use and to get a best solution (Zhou, 2004).

Present work is a modest attempt to prove that most of the time, ensemble methods 

improve the accuracy of LCLU maps. In this dissertation, we have built different 

ensemble methods following the evolution they have followed through the last two 

decades.

1.3 Research Question

Does a Multiple Classifiers System (MCS) or a Classifiers Ensemble (CE) perform 

better than a single classifier?

In this dissertation, our purpose is to build different ensemble methods to compare 

and to analyse the results of accuracy obtained (on their classification of satellite 

images to create LCLU maps) with those results obtained in the LANDAU project, 

where only single classifiers were used to classify satellite images.

The study area is close to the mouth of the river Tejo and the reason of our choice is 

that this area was already taken in a previous project (LANDAU), providing results 

for comparison. In this project different simple classifiers were used to build LCLU 

maps. Hence, in order to assess the success of our maps, we need to compare the 

accuracy obtained with the different ensemble methodologies adopted for us and the 

accuracy achieved in the algorithms used in LANDAU.

Our first step, it will be to study the LANDAU project conclusions and to analyse 

their outputs, which could be a guide for our first stage. Then, once we are familiar 

with data and the variables we have to deal with, we should consider if adding more 

variables  (bands,  in  our  case)  to  the  classification  procedure,  will  enlarge  our 

possibilities of success. The more straightforward way to add features (variables) in 
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this case, is the creation of artificial bands (vegetation index for instance, NDVI), 

since the majority of the landscape of our study area is natural and include different 

types of vegetation.

After that, the main task of the whole process will be to build an ensemble (or a set 

of them) of classifiers which allow us to get better accuracies in our map, in relation 

with the accuracies obtained in the LANDAU project. The issue that underlie this 

approach is the possibility of building a straightforward combination of algorithms 

to classify a satellite image rather than using a single classifier which should be fine-

tuned, in order to get higher accuracies, and probably over-fitted.

We will develop that using as guidance the article from Du et al. (2012), on which a 

review of the classifiers ensemble is done and some new combinations are proposed. 

Hence,  we will  build  some of  the most  used ensemble taking into  account  this 

review and then, we will try to build our own hypothesis, by using the same simple 

classifiers that were compared in the LANDAU project.

Finally,  we  will  try  to  demonstrate  the  diversity  hypothesis,  by  testing  if  the 

ensembles with better  global  accuracy results are those which also show higher 

diversity value. There is a kind of intuition about diversity which say that the more 

different are the outputs of the classifiers the wider the range of features that could 

be classified, and this entails an accurate classification. In this sense, when all the 

algorithms classify on the same way,  the  diversity is  minimum and,  when they 

classify  in  a  completely  opposite  way,  it  could  be  said,  that  the  diversity  is 

maximum. Neither of these extremes is helpful to classify remote sensing imagery. 

Hence, the issue is to know where the threshold, in which the diversity influence is 

positive, is.

The remainder of this paper is organized as follows. In Section 2, we introduce some 

common approaches  of  RSI  classification,  summarizing  the  factors  that  play  a 

important role in the accuracy of the final map. In Section 3, it is explained the 

methodology followed in this work, including a brief explanation of the single and 

classifiers  ensemble  used in  it.  Experimental  results  are  presented  in  Section 4. 

Section 5 includes the conclusion of this paper.
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2 Improving  accuracy:  factors  influencing  LCLU  mapping 

accuracy

The main goal of the scientific community when dealing with the classification of 

remote  sensing  images  to  create  LCLU  maps,  is  to  get  as  higher  accuracy  as 

possible. There are many approaches, which have been followed historically, to face 

this  problem since the  first  images were obtained.  Many of  these methods  and 

algorithms are derive from classical statistic, as Linear Discriminant Classifiers or 

K-Nearest Neighbour, but also those that come from the Machine Learning and Data 

Mining field are being widely used, as Neural Network, Decision Trees and Support 

Vector Machine.

Building a LCLU map from remote sensing imagery is basically to assign a class to 

an object. In remote sensing images those objects are pixel with an intensity value, 

which represents the measured solar radiance in a given wavelength band reflected 

from the ground (Liew, 2001). This process to assign a class to any pixel is also a 

prediction. So, using a group of pixels which class have been already classified and 

checked in the field, training sample (in the case of supervised classification) we 

predict the behaviour of the rest of the pixels in the image and provide a class to 

each of them.

The process of classifying remote sensing images involves many factors, as user's 

needs, data available, skills of the analyst, the design of the procedure and so on.

The more important  steps in  the remote sensing classification  process  are:  data 

selection, classification system and training data selection (in the case of supervised 

classification,  which  otherwise  used to  be the most popular  methodology),  data 

preprocessing, feature extraction and selection, suitable classification method choice 

and accuracy classification assessments (Lu and Weng, 2007). All of these steps are 

dramatically important to ensure the higher accuracy possible of the final product of 

the process, which is the LCLU map.

In the following sub-sections, we will  try to summarize the main properties and 

particularities of these steps and how important they are under the accuracy point of 

view. We will pay special attention to those factors that play an important role in this 

dissertation.
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2.1 Initial steps

Remote sensing images selection is the first step it is followed in the process and it 

will determine the quality of the final map. The type of image will be depending on 

the scale and dimensions of the study area, the user's needs and the kind of images 

available. Economics resources play also an important role, since the price of the 

images vary dramatically from images free of charge, like Landsat, to images very 

expensive. Figure 2 is an example of Landsat image of the study area used in this 

work.

Secondly,  defining  land  cover  classification  units  is  also  an  important  task  to 

implement.  These units’ choice is very related with the spatial  resolution of the 

image and have to be environmentally and ecologically meaningful (Cingolani et al. 

2004).

Remote sensing classification is mostly supervised, which entails the existence of a 

training  set.  Traditionally,  for  a  wide  range  of  classifiers  have  been  defined  a 

positive relation between the size of the training set and the classification accuracy 

(Foody, and Mathur, 2004). But the acquisition of a large training set is very costly 

in terms of financial  and time resources. Indeed, some studies like Foody et al. 

(2006), claim that size is just an attribute of the training set and considerations about 

the way the classifiers perform can help when selecting the samples of the training 

set in a small and less costly way.

Other tentative to build smart training sample is Active Learning (AL), an algorithm 

widely used in  Machine Learning,  which is  being introduced in  remote sensing 

classification lately.  Rajan et  al.  (2008)  propose an active learning approach for 

hyper-spectral  images classification, and they get  a better accuracy classification 

than  just  choosing  traditional  random  samples.  Under  the  philosophy  of  these 

methods, lie the acquisition of “smarter” samples which better defines the classes or 

the border between them (some AL algorithms are built upon the Support Vector 

Machines -SVM- where the samples are chosen in the margin between different 

classes).  Regarding to Tuia et al. (2011) “Active Learning aims at building efficient 

training set  by improving iteratively the performance of the model”.  AL models 

return the pixel with more uncertainty to be classified, which are accurate labelled 

by the user and reincorporated to the model to reinforce and optimize it.

hen, the preprocessing step includes geometric rectification or image registration, 
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radiometric  calibration,  atmospheric  and topographic  corrections  (Lu  and Weng, 

2007). Atmospheric corrections are not needed when dealing with an single-date 

image  (Song et al.  2001). If  ancillary data is used, conversion between different 

sources or formats will be included in this preprocessing stage. We do not go further 

in describing this issue, since many articles and books have illustrated it in detail 

(Jensen 1996, Toutin 2004).

2.2 Feature extraction and selection

Many different features could be used in remote sensing image classification. The 

most common are spectral bands from one or more dates and vegetation indices; but 

others kind of data are becoming popular in the pursuing of accuracy improvement, 

like transformed images, contextual and textural information, multi-sensor images 

and ancillary data.

Using  many  variables  in  the  classification  procedure  could  decrease  the 

classification accuracy (Hughes 1968, Price et al. 2002). Thus, selecting those which 

result more useful to define the classes becomes a must. PCA, discriminant analysis 

and decision boundary feature extraction are some of the most used methodologies 

for that.

A special notation should be done about the multi-source imagery analysis, which is 

still  being a trending topic today.  Pohl  and Genderen (1998),  in a review about 

multi-sensor image fusion, listed the benefits of this “relatively new research field at 

the leading edge of the available technology”:

• Increase spatial resolution, sharpen images.

• Improve geometric corrections.

• Enhance certain features not visible in either of the single data alone.

• Complement data sets for improved classification.

• Replace defective data and missing information.

Twelve  years  later,  Zhang  (2010)  stated  that  “developing  effective  methods  for 

multi-source fusion and interpretation is still a challenging activity”. The high-speed 

of new sensor technologies development, new multi-source fusion techniques and 
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some remains problems in computation effectiveness and efficiency, make the field 

very dynamic.

Finally, the other strategy to get higher accuracy of the maps at this level, is to use 

contextual  classifiers,  where  the  spatial  neighbouring  pixel  information  is  used. 

They were developed to  cope with  the  of  intraclass spectral  variations  (Lu  and 

Weng, 2007). The Markov random field-based contextual classifiers, such as iterated 

conditional  modes,  are  the  most  frequently  used  approaches  in  contextual 

classification  (Magnussen  et  al.  2004).  By  now,  computationally  is  much  more 

expensive than other methods (process become 20% more computing consuming in 

a 4000 pixel image) and the increase of accuracy is not enough to justify their use, in 

most of the cases.

2.3 Suitable Classification Method

2.3.1 Single Classifiers Methods

The earlier classical statistics methods for RSI classification have been shifted in to 

derived methods from Machine Learning and Data Mining fields. Hence, methods 

like  K-Nearest  Neighbour  (kNN),  Linear  Discriminant Classifier  (LDC)  and 

Maximum Likelihood (ML) were partially, replaced by others like Neural Networks 

(NN),  Decision  Trees  (DT)  and Support  Vector  Machine  (SVM).  Although,  the 

classical methods are widely used.

Regarding with this pursuing of accuracy and the availability of higher computing 

resources, many different classifiers have being used to classify satellite imagery. 

These methods could be classify (Lu and Weng, 2007), in different ways. 

If training set is needed, then the methods may be classified as:

• Supervised, they need some samples known by the user in order to predict 

the  rest  of  objects  (pixels):  Maximum  Likelihood  Classification,  k-NN 

Means, Support Vector Machine, Artificial Neural Networks, etc.

• Unsupervised,  there  are  no  need  for  training  samples:  Simple  One-Pass 

Clustering, Isodata Classification , Self-Organization.
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If covers methods which rely or not on assumptions that the data are following a 

given distribution, then the methods may be classified as:

• Parametric, data come from a probability distribution and make inferences 

with  parameters,  such  as  mean  vector  and  covariance matrix:  Linear 

Discriminant Classifier, Maximum likelihood.

• Non  Parametric,  no  assumptions  about  data  distribution  are  given  (and 

needed): k-NN Means, Parzen Windows, Artificial Neural Networks.

If it is taken in account different unit of analysis, then the methods may be classified 

as:

• Pixel-based: each pixel has assigned a class, most of the classifiers: such as

maximum likelihood, minimum distance, artificial neural network, decision 

tree and support vector machine.

• Sub-Pixel-based:  each  pixel  is  a  combination  of  classes:  Fuzzy-set 

classifiers, sub-pixel classifier, spectral mixture analysis.

• Object-oriented: pixel are merged into objects: OBIA (e-Cognition)

• Per-fields: integrating vector and raster data (GIS), the image is divided in 

parcels: GIS-based classification approaches.

For RSI classification, there is no classifier that could always perform well (Roli et 

al., 1997). This assumption is known also as the "no free lunch theorem" (Wolpert 

and Macready, 1997), where it is exposed that every classifier could have a weak 

performance  when  facing  a  classification  problem.  Based  on  that,  the  common 

strategy followed by many researchers is to compare different  methods  (Lu and 

Weng, 2007) and choosing the one which offers better results (accuracy).

One the most used algorithms in the decade of  1980 were the Artificial  Neural 

Networks (ANNs), that include Back-propagation network, fuzzy neural network, 

Kohonen self-organizing featured map, Hybrid learning vector hierarchical network 

and so on. An artificial neural network is an interconnected group of nodes, which 

represents an artificial neuron (the idea of the system come from animal neurons and

theirs connections) and an arrow that represents a connection from the output of one 

xix



neuron  to  the  input  of  another  (figure  2).  The  success  of  the  ANNs  in  RSI 

classification is based in the size and quality of the training set (Zhang et al., 2013).

Figure 2. Neural Network classifier structure 1.  

In  the  early  ninety's,  one  the  most  novel  and  accurate  algorithm  used  in  RSI 

classification was Support Vector Machine (SVM). This method is based in looking 

for the optimal separating hyperplane in a multidimensional feature (figure 3). 

Figure 3. SVM strategy 2.

1   http://codebase.mql4.com/5738   

2  http://nlp.stanford.edu 
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It  has  been used so much,  because its  stability,  convenience and high  precision 

(Zhang et al., 2013). It also does not need a big training set to be effective. It is very 

used and combined with other methods or techniques.

We will also consider in this section those single classifiers which were used in both 

projects,  LANDAU  and  this  dissertation.  These  are  LDC,  QDC  (or  Maximum 

Likelihood), Classification and Regression Tree (CART) and SVM (was analysed 

above).

• LDC  is  a  method  used  to  find  a  linear  combination  of  features  which 

describe  or  divided two or  more classes  of  objects  (pixels).  It  could  be 

thought  as  the  minimum-error  (Bayes)  classifier  for normal  distributed 

classes  with  equal  covariance  matrices,  although  the  results  can  be 

surprisingly  good  even  when  the  classes  have  no  normal  distribution 

(Kuncheva, 2004). LDC is related with Principal Component Analysis and 

Factor Analysis, in the sense that all of them look for a linear combination of 

variables which best explains the data (Martínez and Avinash, 2001).

• ML (special case of Quadratic Discriminant Classifier), as in the LDC we 

assume a normal distribution of the classes but in this cases the covariance 

matrix of every class is different (Kuncheva, 2004), which entails that allows 

to separate objects of different classes by a quadric surface. I t could be seen 

as a generalization of the LDC, justified by the ambition of classifying more 

complex separating surfaces.

• CART uses a decision tree as a predictive model where the decision process 

can be traced as a sequence of simple decisions (Kuncheva, 2004). In the tree 

structure, leaves represent class labels and branches represent combinations 

of features that guide to these labels. In our case, we will do classification 

tree analysis, so the predicted outcome is the class to which the data belongs.

2.3.2 Classifiers Ensemble Methods

Multiple Classifier System, Classifier Ensemble or Multiple Combination Methods 

are a machine learning paradigm where multiple learners are trained to solve the 

same problem, in others words, are a combination of different single classifiers in 

order to increase the accuracy of the classification (figure 4).
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Ensemble  learning  methodologies,  in  contrast  to  ordinary  machine  learning 

approaches which try to learn one hypothesis from training data, try to construct a 

set of hypotheses and combine them to use (Zhou, 2004).

Figure 4. Classifier ensemble notion (Du, 2012).

The evolution of the classifiers ensemble could be described as follow (Polikar, 

2006).  Firstly,  Hansen  and  Salomon  (Hansen  and  Salomon,  1990)  showed  that 

performance of a neural network can be improved by using an ensemble of similarly 

configured neural networks. But it was the Boosting theory (Schapire 1990) which 

puts the ensemble systems at the centre of machine learning research, with the idea 

that a combination of weak classifiers could perform as strong classifier. After a few 

years,  Boosting was improved by creating the AdaBoost  algorithm (Freund and 

Schapire,  1996)  which  became  one  of  the  most  popular  ensemble  learning 

algorithms. The others "big names" in classifiers ensemble are Bagging (Breiman, 

1996) and Stacked generalization (Wolpert, 1992).

According to  Polikar (2006),  there many approaches and models  of  building an 

ensemble learning algorithm, but they usually differ basically in two ways:

xxii



• Specific procedure used for generating individual classifiers, which includes 

Bagging, Boosting, Stacked Generalization and Mixture of Expert.

• AdaBoost  (Adaptive Boosting):  It  is  one of  the best  known of  all 

ensemble-based  algorithms, extends  boosting  to  multi-class  and 

regression  problems  (Freund  and  Schapire  1996).  AdaBoost  is 

adaptive in the way that classifiers built are modified, by taking into 

account those instances misclassified by previous classifiers, and is 

boosting,  because  is  an  algorithm  for  constructing  a  ”strong” 

classifier  as  linear  combination  of  simple  “weak”  classifiers. 

Allocates  weight  to  a  set  of  classifiers,  as  probability  of  best 

predicting the label, which will be updated after every training in the 

data set, the most successful ones gain weight.

• Random Forest  (Bagging):  Bagging  or  bootstrap  aggregating  is an 

ensembling method which trains independent and unstable classifiers, 

by using bootstrap replicate of the training set (bags). Random Forest 

(Breiman, 2001) operate by constructing a multitude of decision trees 

at training time and outputting the class that is the mode (most often 

value) of the classes output by individual trees.

• Stacked Description: an ensemble of classifiers is first trained using 

bootstrapped samples of  the training data,  creating Tier 1  or  first 

class  classifiers,  whose  outputs  are  then used to  train  a Tier  2  or 

second class classifier or meta-classifier (Wolpert, 1992).

• Mixture of Expert:  it is a similar concept than  Stacked Description,  

where  a  first  level  of  classifiers  are  trained  using  bootstrapped 

samples of the training data, but the combination of the outputs is 

made by simple combination rules, as random selection or weighted 

majority. In here, a second level classifier or gating network (usually 

a neural network) is trained using the raw training data to determine 

the weight  distribution of  each classifier. The original  Mixture  of 

Experts (ME) model was introduced by Jacobs et al. in 1991.

• The strategy employed for combining the classifiers, in particular, the way in 

which the output of each classifier are combined. They includes Majority 
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Voting,  Weighted  Majority  Voting,  Naives  Bayes  Combination  and 

Multinomial Methods. The classification could be divided in two depending 

if the combination rules apply to class labels or to class-specific continuous 

outputs.

• Combining class label:

• Majority voting: it is technique (Kuncheva, 2004) where the 

ensemble  choose  the  class  on  which,  all  classifiers agree 

(unanimous  voting),  at  least,  one  more  than  half  of the 

classifiers are agree (simple majority) more classifiers agree 

(plurality voting).

• Weighted  majority  voting:it  is  used when  we  imagine  than 

some classifier  perform better  than  other,  in  that  case,  we 

weighted  heavily  those  classifiers  in  order  to  improve  our 

general performance (Kuncheva, 2004). There are two basic 

approaches  to  know  which  weight  should  be  give  to  any 

classifier, by using a validation data set or the training data set 

(as AdaBoost), and estimate classifiers' future performance.

• Behaviour Knowledge Space (BKS),  (Huang and Suen, 1993) 

developed it firstly, and the procedure consists on keep track 

of all the labelling combination of the ensemble to finally the 

class which more times appear on the combination.

• Borda count:  each classifier vote each class by rankings. At 

the end , the most voted class is the chosen in the ensemble 

decision.  It  was  first  developed  by  Jean  Charles  Borda  in 

1770.

• Combining continuous outputs

• Algebraic combiners: the support for a class is obtained by a 

simple function which includes all  the support  from all  the 

classifiers.  Includes:  Mean  Rule,  Weighted  Average, 

Minimum-Maximum-Median Rule, Product Rule and so on.

• Decision templates: (Kuncheva, 2004) measure the similarity 
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(Euclidean distance)  between every ensemble  output  and a 

template, created as averaged of decision profile observed in 

each class throughout the training.

• Dempster-Shafer based combination:  the final value is linear 

combination of values of belief, instead of probability, which 

is measured in proximity instead of distances. The theory was 

first introduced by Arthur Dempster and Glenn Shafer (Shafer, 

1976).

Ensemble strategies could be also classified (Kuncheva, 2004) on: 

• Classifier selection, each classifier is trained in a part of the data set, having 

a good knowledge of it. The combination of the classifiers is then, based on 

the vicinity of  the instance,  according to  some distance metric,  then, the 

closet classifier obtain the highest credit, in order to be chosen to make the 

decision.

• Classifier fusion, all classifiers are trained over the entire feature space. The 

combination involves merging the individual  classifiers output (which are 

normally  normalized  to  the  [0,  1]  interval  and entail  the  support  of  the 

classifiers  to  posterior  prediction)  to  obtain a superior  performance.  This 

strategy based the combination in algebraic rules (mean rule, median rule, 

maximum rule,  etc),  majority voting or weighted majority voting  ,  fuzzy 

integral or the Dempster-Shafer based fusion.

Traditionally the ensembles have followed three kind of structures:

• Parallel:  the  classifiers  train  the  data  set  (modified  -bagging-  or  not) 

independently and their output are combined.

• Cascade or sequential:  where the output of a classifier is the input of the 

subsequent. 

• Mixed or Hierarchical:  is an ensemble which is a mix of both structures 

above.
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The  key of  the  success  of  ensemble  learning  is  the  diversity  of  the  classifiers 

(Kuncheva and Whitaker, 2003). There is not a strict definition of diversity, but an 

intuition.  The  intuition  is  that  if  each  classifier makes  different  errors,  then  a 

strategic combination of these classifiers can reduce the total error, a concept not too 

dissimilar  to low pass filtering of  the noise (Polikar,  2009).  When dealing with 

diversity, the different authors refer to the difference of values obtained in the output 

of the classifiers that form the ensemble.

Still,  the  relation  between  diversity  and  ensemble  accuracy  is  ambiguous. 

Nevertheless, many authors have tried to relate them and to generate more diverse 

ensembles, by:

• Using different training datasets to train individual classifiers. Bootstrapping 

or bagging  is a technique of re-sampling data sets. Real different data sets is 

very expensive, also in terms of time.

• Uses  of  weak  or  more  unstable  classifiers  could  allow  to  get  different 

decision boundaries. 

• Use  different  training  parameters  for  different  classifiers,  tuning  the 

classifiers in dissimilar way.

• Using completely different types of classifiers.

• Choosing feature  selection methods, where each classifier  is  trained in  a 

separate part of the training set.

Finally, there are many different ways to measure this diversity. Measuring diversity 

is about measuring distance (Euclidean) between points (Kuncheva and Whitaker, 

2003). Hence, when less correlated are the outputs of the classifiers the better the 

ensemble. In this sense, when the classifiers results are positively correlated the lack 

of  accuracy  is  slightly  reduced,  when  the  correlation  is  small  or  negative  the 

accuracy of the ensemble could be better (Turner and Gosh, 1996).

Diversity measures assess the degree of agreement between classifiers (Faria et al. 

2013). They can be pairwise, between two classifiers or non-pairwise, the measure 

takes into account all the classifiers in the ensemble.
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Some of the most used measures are (Kuncheva, 2004):

• Pairwise:

• Double-Fault  Measure: the ratio of the number of observations on 

which two classifier classify equally but wrong, to the total number of 

observations.

• Q-Statistic:  measure the ratio of the number of observations where 

the classifiers perform equally minus when they perform differently 

to the total number of observations.

• Interrater Agreement, k: Defined by Kuncheva (2004) as the degree 

of agreement while correcting by chance. 

• Disagreement  Measure:  Defined also  by  Kuncheva (2004),  as  the 

ratio of the number of observations on which two classifiers classify 

differently to the total number of observations.

• Correlation Coefficient: the diversity of two classifiers is inversely 

proportional to the correlation between them (Duta, 2009).

• Non-Pairwise:

• Entropy Measure, E: makes the assumption that the diversity is higher 

if half of the classifiers are correct and the remaining wrong.

• Kohavi-Wolpert Variance: is derived a decomposition formula for the 

error rate of the classifier.

• Measurement  of  Interrater Agreement,  k:  which is  similar  but  not 

equal to the average pairwise Kappa.

• Measure of Difficulty: related with the difficulty that classifiers meet 

when trying to define the class of the data set and its distribution, for 

instance,  the  same problem with  the  same data  all  the  classifiers 

entails low diversity of the ensemble.

• Generalized  Diversity:  related  with  the  probability  of  failure  of  a 

randomly chosen classifier.

In  the figure below (figure 5)  it  can be seen a summarize of  different  diversity 

measures, in which is defined the correlation of the value itself with the measure 

(low value entail low or high diversity?), if it is pairwise or not and the reference.
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Figure 5. Summary of the measures of diversity (Kuncheva and Whitaker, 2003).

2.4 Accuracy assessment

The quality of LCLU map produced from the classification of a satellite image is 

estimated by measuring the accuracy between the classification of the land-cover 

made by any method and the reality. It is obvious that it is impossible to check the 

behaviour of every method at any surface unit (pixel), hence in our case; we do the 

validation using the testing sample. The most common way to do this comparison is 

by using a confusion/error matrix (Foody, 2002). In this method, the classification 

obtained by the methods at one place is compared with the class defined in the 

testing observation. If  both classify in the same way, we could say that there is 

concordance, if not there is discordance. At the end, we sum up all the concordances 

divided by the number of testing observations and we have the Global Accuracy of 

the method.

There are other measure of validation derived from the confusion/error matrix, i.e. 

Producer's Accuracy and User's Accuracy. The Producer's Accuracy is defined as 

probability of finding in the map the same class that it is been checking in the field. 

The User's Accuracy is the probability to find in the ground the same class that it is 

been pointed out in the map. As an example to better understand both accuracies, let 

us use a class, like water bodies, which could have a value of hundred percent user's 

accuracy and eighty percent producer's accuracy, hence every water body in the map 

is in the ground, but only eighty percent of the water bodies in the reality are in the 

map. There is an error of omission (in the map). If the producer's accuracy is higher 

than the user's the error is of commission.
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 Methodology

3.1 Study Area and Data Selection

3.1.1 Study Area

he study area is located in the centre of continental Portugal, in the administration 

area of Alentejo, close to the mouth of the river Tejo (figure 6). The reasons why this 

area was selected are mainly, because is a flat area which facilitate the preprocessing 

stage,  there  are  a  wide variety of  features  (in  this  case,  land  use types)  and it 

coincides with one of the study areas that were used in the LANDAU project, which 

is essential to establish comparison between results.

Figure 6. Location of the study area (Google Earth).

3.1.2 Data set

All the data needed is a Landsat 5 image from 2007 (July). This image has an spatial 

resolution  of  30  meters  and  7  spectral  bands,  although  the  sixth  is  not  used 

commonly in these kind of analysis. Instead, we have added a synthetic band, a 
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vegetation index band (NDVI), which is very helpful to identify the vegetation. The 

idea of taking a summer image is because the atmosphere should be clean of clouds 

and the differences between the rain-fed and the irrigated agricultural fields should 

be significantly noticeable.

We have chosen just one kind of satellite imagery, Landsat (figure 7), being aware of 

our limitations of time, although it will be more recommended to try different spatial 

resolution images, which allow us to get better conclusions of our work.

The image is available on-line and can be downloaded from the following web 

address: http://landsatlook.usgs.gov/.

Figure 7. Landsat image from the study area

Other kind of ancillary data were used to determine the training and the testing set to 

train the algorithms, those data are:

• Aerial imagery (orto-rectified) with a spatial resolution of 0,05 meters and a 

spectral resolution of four bands, from the following years (1995, 2005 and 

2007).

• Forestry Inventory of Portugal, IF (2005).
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• CORINE Land Cover Cartography, CLC (2000, 2006).

• Carta de Ocupaçao/Uso do Solo de Portugal, COS (2007).

3.1.3 Nomenclature

The nomenclature of the features that appear in our LCLU maps were proposed in 

the LANDAU project (Dinis et al. 2012). Only 11 out of 15 categories defined were 

used in this work, due to the inapplicability of them in this area. Hence, the final 

categories in this work are keeping the same names and codes than in LANDAU:

• 1.1 - Discontinuous Artificial Areas.

• 2.1 - Irrigated Agriculture.

• 2.2 - Non-Irrigated Agriculture.

• 2.3 - Rice crops.

• 3.1 - Broadleaved Forest.

• 3.2 - Coniferous Forest.

• 3.4 - Grassland.

• 3.5 - Shrubs-land.

• 4    - Bare-land.

• 6    - Wetlands.

• 7    - Water bodies.

     3.1.4 Software

In this work, we have used different software. Matlab was the software where the 

image  was  treated  as  a  matrix  of  data  and  where  all the  algorithms  were 

implemented and the outputs, presented as values of accuracy or LCLU maps were 

obtained.  PrTool  and  Libsvm libraries  were  used  in  the  implementation  of  the 

algorithms in Matlab.

We have also used Excel to analyse the results and present some table and graphics. 

Finally, the maps were displayed in ArcGIS.
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3.2 Methodological procedure

Following  the  theoretical  evolution  of  the  classifiers  ensemble  methodologies 

(Polikar  -2009-  and  Du  -2012-)  and  their  using  in  remote  sensing  imagery 

classification, we have try to implement in Matlab the most used and well known of 

these methods. Also, taking into consideration the analysis of the data and results of 

the LANDAU project, we choose some other ensembles that we thought could fit 

the analysis of the previous work.

The methods we have implemented are: Boosting Trees, Random Forest, Boosting 

Discriminant,  Bagging  Discriminant,  Regularized  Discriminant  Classifier  and  a 

SVM Ensemble Strategy. Below, we will  describe briefly their  structure and our 

motivation to include them in our dissertation (section 3.2.2).

Firstly, it is necessary to explain that all of these methods are supervised, which 

entails to have a training data set to fit a model (in our case, the ensembles) that can 

be used to predict the not known values. And, also, it is required to have a testing set 

to validate the accuracy of our prediction (in our case, classification).

3.2.1 Training and Testing Set and Validation

The training set is made up of 10980 sample points, deterministically extracted from 

the  satellite  image  by  using  the CORINE Land  Cover  Cartography (2006)  and 

ancillary data (Dinis et al, 2012b).

The  testing  set  was  recollected  directly  in  the  study  area.  An  amount  of  550 

observations taken in a random way and covering approximately equally all  the 

classes (Dinis et al, 2012b).

The quality of LCLU map produced from the classification of a satellite image is 

estimated by measuring the accuracy between the classification of the land-cover 

made by any method and the reality. It is obvious that it is impossible to check the 

behaviour of every method at any surface unit (pixel), hence in our case; we do the 

validation using the testing sample. The most common way to do this comparison is 

by using a confusion/error matrix. In this method, the classification obtained by the 

methods at one place is compared with the class defined in the testing observation. If 

both classify in the same way, we could say that there is concordance, if not there is 
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discordance. At the end, we sum up all the concordances divided by the number of 

testing observations and we have the Global Accuracy of the method.

There are other measure of validation derived from the confusion/error matrix, i.e. 

Producer's Accuracy and User's Accuracy. The Producer's Accuracy is defined as 

probability of finding in the map the same class that it is been checking in the field. 

The User's Accuracy is the probability to find in the ground the same class that it is 

been pointed out in the map. As an example to better understand both accuracies, let 

us use a class, like water bodies, which could have a value of hundred percent user's 

accuracy and eighty percent producer's accuracy, hence every water body in the map 

is in the ground, but only eighty percent of the water bodies in the reality are in the 

map. There is an error of omission (in the map). If the producer's accuracy is higher 

than the user's the error is of commission.

3.2.2 Ensemble methods description

As we assess in the beginning of chapter 3.2, in this section we are going to describe 

all the methods that were used in this work. Those are: Boosting Trees, Random 

Forest,  Boosting  Discriminant,  Bagging  Discriminant,  Regularized  Discriminant 

Classifier and SVM Ensemble Strategy.

• Boosting Trees:  Classification tree analysis provides an effective collection 

of algorithms for classifying remotely sensed data, but has the limitations of 

not searching for the optimal tree structure or being adversely affected by 

outliers, inaccurate training data, and unbalanced data sets (Lawrence et al., 

2004). Boosting is a technique developed to increase classification accuracy 

by  forcing  the  learning  algorithm  to  concentrate  on those  training 

observations that are most difficult to classify (Frield et al., 1999). Boosting 

which is an adaptive and iterative training technique allows the combination 

of trees to find the best structure and being insensitive to noise (Shapire, 

1990).  Boosting  is  one  of  the  most  important  strategies  in  constructing 

ensemble (figure 8). This ensemble construction is also used in Du's work 

(Du, 2012).
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Figure 8. Boosting tree diagram3.

• Boosting  Discriminant:  The  structure  of  this  ensemble  is  similar  to  the 

previous,  but  instead  of  classification  Trees,  there  are  a  combination  of 

Linear Discriminant Classifiers (LDC), which had the best single classifiers 

performance in the LANDAU project. The reasons to choose this ensemble 

are the same that the exposed in the ensemble above. Also, to include the 

most successful single classifier in the LANDAU project (LDC).

• Random Forest: It  is one the most known classifiers ensemble and it was 

introduced by Breiman in 2001. The idea in this ensemble is the using of 

bagging to improve the performance of  the combination of  classification 

Trees. What bagging offers is a  bootstrap replicate of the training set with 

replacement (kind of "bags"), (I,x) in the figure 9, in which the different

Trees are trained, in order to get more diversity in the outputs.

Figure 9. Random Forest diagram4.

3   http://www.iis.ee.ic.ac.uk/icvl/iccv09_tutorial.html   

4  http://www.iis.ee.ic.ac.uk/icvl/iccv09_tutorial.html 
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• Bagging Discriminant: The strategy of the ensemble is to create determined 

number of bootstrap replicate of the training set and to train them with (in 

our case) LDC. Bagging is the other great ensemble strategy together with 

boosting. Again, the most successful classifier in LANDAU (LDC) is used in 

this ensemble.

• Regularized Discriminant Classifier: This is an ensemble that could use the 

bagging technique and the algorithms that train the replicate of the training 

data are a set  of  classifier constructed as a linear  combination of  Linear 

Discriminant  Classifier  and Quadratic  Discriminant  Classifier  (Maximum 

Likelihood), being both of them the first and the last of them (figure 10). 

This methodology is not very popular in the literature, just maybe because is 

not  implemented  in  the main algorithms toolbox.  The idea of  using this 

ensemble  came because these  two single  classifiers  (Linear  Discriminant 

Classifier and Quadratic Discriminant Classifier) get the highest accuracy in 

the LANDAU project.  Hence,  we thought  that  an ensemble where every 

classifier is a combination of them (linear in this case) should throw good 

results.

Figure 10. Regularized Discriminant Classifier (RDC) diagram.

• SVM Ensemble Strategy: this methodology was introduced by Waske et al. 

in 2010, and is based in a combination of Support Vector Machine (SVM) 
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which  are  trained  with  different  features  (image  bands),  also  known  as 

feature  selection  (section  2.2).  In  this  study  (Waske  et  al.,  2010)  the 

ensemble bring good results and also, we try a sketch implementation of a 

single  SVM  and  shows  good  results,  hence  we  decide  to  include  this 

methodology in our work.

3.2.3 Difference between proportions

Once, we obtain the values of accuracy (global, in this case) it is necessary to know 

if those values are significant or not. In others words, if the increase of the accuracy 

values  that  we are  supposed to  get  with  the ensembles proposed,  will  improve 

significantly those results obtained with single classifiers in the LANDAU project.

In our case, it only makes sense to compare the values of accuracy of our ensembles 

with the best single classifier (higher accuracy) in LANDAU, which is LDC.

In Kuncheva (2004) they are proposed some methods, from which the most used are 

the McNemar-test and the Z-test. Finally, the McNemar test was used instead of the 

Z-test,  due  to  the  hypothesis  of  independence  between  proportions  is  violated 

(Dietterich, 1998), since the testing set used in both studies, LANDAU project and 

this dissertation, was the same.

3.2.4 Diversity between Classifiers outputs

Diversity  is  one  the  hottest  topics  at  this  moment  in  the  classifiers  ensemble 

researching field. This novelty entails great ideas and advances, but also confusion 

and no consistent basis is built underneath. In this sense, many diversity measures 

are developed and applied to solve the same problem. Which is the most appropriate 

approach? It is something that it is still not clear. There is an intuition about what it 

is the contribution of diversity (Kuncheva and Whitaker, 2003), but not ground truth, 

which  is  the  most  important  concern  about  diversity.  How diversity  should  be 

measure? Which is the most reliable type of measures? What are the thresholds in 

within the values of diversity of the classifiers should be considered?

In  this  environment  of  uncertainty,  we  will  try  to  apply  one  the  most  applied 

diversity measures, Double Fault, in order to prove the relation between the diversity 

of the classifiers and the higher value of accuracy.
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The strategy followed will  be to analyse only those ensembles with a significant 

increase of accuracy. Then apply a pairwise measure (Double Fault, in this case) 

between a relevant amount of the classifiers within the ensemble and analyse the 

values obtained (mean, maximum value, minimum).

Double-Fault  measure,  used also  by Giacinto  and  Roli  (2001),  is  based  on  the 

concept that is more important to know when simultaneous errors are committed 

rather than when both classifiers are correct (Kuncheva, 2004).

As  an  example  of  how to  apply  a  pairwise measure  to a  ensemble  of  various 

classifiers, we will take the RDC ensemble. It is built by 200 classifiers as linear 

combination of LDC and ML. We need to compare the classifiers pairwise; hence 

the  number  of  comparison  needed  to  get  the  value  is 200*2,  which  is  40000 

comparisons. We take a sample of them, 1% of the population, 400 comparisons.

These values could be seen as a clue to go further or not in our deliberations and to 

implement non-pairwise measures for the whole ensemble, which seem to be more 

appropriate. The reason to start by pairwise measures is a matter of time. They are 

much easier to implement and analyse than non-pairwise measures.
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4 Results and discussions

In this chapter will be presented, firstly the results obtained from the analysis of the 

data  and  their  processing,  the  findings  discovered  in  the  interpretation  of  the 

variables.  Difficulties  founded  in  the  development  of  the  methodology  will  be 

commented as well and, finally, the comparison of accuracy between the ensembles.

4.1 Data analysis and processing

As it was referred before the data set, a Landsat image from a continental area of As 

it  was referred before the data set,  a  Landsat  image from a continental  area of 

Portugal (in the Alentejo region) coincides with one of those which were used in the 

LANDAU project. In this project a variety of single classifiers were used to classify 

the satellite image and global accuracies obtained vary from 76 to 82 (table 1 and 2), 

being  the  Linear  Discriminant  Classifier  (LDC)  the  one  which  presents  better 

performance.

When  analysing  those  results  more  deeply,  including user's  and  producer's 

accuracies,  it  could be observed some phenomena which could be a hint  in the 

further ensemble construction. We can observe in the following tables (table 1 and 2) 

the performance of the algorithms in the classification of the different classes.

Table 1. User's accuracy of LCLU maps from the most representative single classifiers (built from LANDAU project data).
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ACCURACY MATRIX (PRODUCER) ML LDC DQDC KNN PARZEN CART BMP TOTAL ACCURACY  BY CLASS

1.1 Artificial Discontinuous Areas 71 74 33 84 84 82 85 73

2.1 Irrigated agriculture 79 98 91 95 95 93 89 91

2.2 Rain-fed agriculture 71 64 79 51 50 49 67 62

2.3 Rice fields 81 62 83 81 81 79 76 78

3.1 Deciduous Forest 83 69 66 71 73 70 79 73

3.2 Broad-leaves Forest 93 95 79 86 86 88 93 89

3.4 Grassland 84 93 87 86 86 81 82 86

3.5 Shrub 77 84 75 72 72 66 83 76

4 Bare Soil 97 100 100 97 97 94 94 97

5 Wet lands 86 71 53 67 67 79 0 60

6 Water bodies 86 97 92 87 87 87 97 90

TOTAL ACCURACY  BY CLASSIFIER 81 82 76 78 78 77 79 79



Table 2. Producer's accuracy of LCLU maps from the most representative single classifiers (built from LANDAU project data).

In the table 3, it can be seen the meaning of the colours in the tables 1 and 2. Thus, 

the  red  areas  symbolize  the  classes  where  the  algorithms  have  had  a  great 

performance. On the contrary, yellow areas mean very performance of the classifier. 

Orange, white and light brown colours represent the stages in between.

Table 3. Legend of colour in the error matrices.

From table 2,  it  can be observed that  the performance of  Maximum Likelihood 

Classifier (ML) and LDC is better in most of the classes than the rest of algorithms 

(majority of red and orange cells in their columns), which could be seen as a hint to 

build an ensemble from them. Artificial Neural Network (ANN), Parzen classifier 

and Classification and Regression Tree (CART) obtain the highest accuracy values 

in some classes, which it could be thought as an advantage to build an ensemble 

using these algorithms.

Table  1  shows  that  in  some classes,  like  Water  bodies,  Bare  soil  and  Irrigated 

agriculture the values of accuracy are high to most of the classifiers, which is a proof 

of intern invariability within these classes. Further conclusions could be taken from 

special combination of individual classes and algorithms, like the high performance 

of DQDC in Artificial  Discontinuous Areas or BMP in Shrubs in Table 2. These 

findings  could  be  used  to  fine-tune  an  ensemble  (adding  this  algorithm to  the 
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ACCURACY MATRIX  (USER) ML LDC DQDC KNN PARZEN CART BMP TOTAL ACCURACY  BY CLASS

1.1 Artificial Discontinuous Areas 86 73 94 63 63 56 70 72

2.1 Irrigated agriculture 80 72 81 84 84 81 75 80

2.2 Rain-fed agriculture 77 82 66 86 86 82 78 80

2.3 Rice fields 92 90 70 79 79 83 69 80

3.1 Deciduous Forest 81 88 73 71 71 70 79 76

3.2 Broad-leaves Forest 89 80 74 71 73 72 78 77

3.4 Grassland 76 77 73 74 75 76 80 76

3.5 Shrub 91 88 83 82 82 78 91 85

4 Bare Soil 63 89 71 79 79 78 79 77

5 Wet lands 72 79 78 82 82 87 0 69

6 Water bodies 94 93 93 93 93 95 83 92

TOTAL ACCURACY  BY CLASSIFIER 81 82 76 78 78 77 79 78

 VERY HIGH ACCURATE CLASSIFICATION (> 90%)
 HIGH ACCURATE CLASSIFICATION (90%-85%)
 MEDIUM ACCURATE CLASSIFICATION (85%-75%)
 LOW ACCURATE CLASSIFICATION (75%-70%)
 VERY LOW ACCURATE CLASSIFICATION (< 70%)



ensemble) or when the focus of the study is to map one those classes and not all of 

them.

4.2 Ensemble results and significance

The selection of  ensembles used in this work has been carried out  by literature 

selection, choosing those multiple classifier systems more successful in the scientific 

literature, and also guided by the analysis of our dataset. Hence, in the following 

lines we will describe the results associated to any of these ensembles.

In the table below (table 4), it could be seen a summary of the best global accuracies 

reached  by  all  the  ensembles  and  a  comparison  with  results  obtained  in  the 

LANDAU project, using single classifiers.

Table 4. Summarize of the ensembles better results.

In the figure below (figure 11) it can be seen a graphic in which are represented the 

global  accuracies  of  both  groups  of  classifiers,  single  classifiers  used  in  the 

LANDAU  project  (represented  in  blue  at  the  bottom  of  the  graphic)  and  the 

classifiers ensembles used in this dissertation (represented in red at the top of the 

graphic). We can observe how generally the group of ensembles get higher accuracy 

than the group of classifiers used in LANDAU. We can also see how five out of six 

ensembles get  a  higher  value of  accuracy than the best  single  classifier,  Linear 

Discriminant Classifier (LDC), the light blue line in the bottom of the graphic. The 

light red line on the top of the graphic makes reference to the higher global accuracy 

reached in this work, by the RDC ensemble.
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Single Classifier Overall Accuracy Ensemble Type Overall Accuracy

LANDAU DISSERTATION

ML 81,00 Boosting Discriminant 83,40

LDC 82,00 Boosting Trees 83,45

DQDC 76,00 Bagging Discriminant 80,40

K-NN 78,00 Random Forest 83,20

PARZEN 78,00 RDC 85,60

CART 77,00 SVM Ensemble 82,50

BMP 79,00





Boosting  Discriminant  and  Boosting  Trees  ensembles  show  good  results,  both 

around 83,5 % of accuracy. In the case of Boosting Discriminant, the ensemble was 

built by LDC algorithms. In the case of the Boosting Trees, the higher results were 

showed using one hundred classifiers  Trees.  Those results  obtained by applying 

boosting are better by themselves, but also the boosting strategy avoids creating an 

over-fitted classifier.

RDC, Regularized Discriminant Classifier, is the ensemble with better results (figure 

12).

Figure 12. LCLU map, from Landsat image classified by RDC ensemble.

Initially, the idea was to build a RDC ensemble based in the bagging strategy. After 

the results obtained in the Bagging Discriminant Classifier, we understood that this 

strategy  was  not  appropriate  to  this  algorithm.  Hence,  the  last  version  of  the 

ensemble was a two hundred classifiers ensemble, all of them trained in the same 

dataset and with feature (bands) selection of five out of seven. The main reason to 

choose this ensemble was that the performance of the single classifiers LDC and ML 

(type of Quadratic Discriminant Classifier), in the LANDAU project was the best. 

Hence, intuitively we decided to use an ensemble in which every classifier is a linear 

combination of both.
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Finally, we decide to apply a feature selection over an ensemble of Support Vector 

Machine (SVM) algorithms. This structure based Waske's work (Waske et al., 2010) 

try to gain diversity from the feature selection process. SVM is an algorithm which 

has been widely used in satellite image classification (Mountrakis et al., 2011) for 

general land cover and land use tasks. Firstly, we tried to implement a single SVM 

algorithm,  and we got  an  accuracy of  83,45%,  which  take  us to  think than an 

ensemble of them could perform even better .But it did not work in this way and an 

ensemble of SVM with feature selection, only got an accuracy of 82,36 %. We faced 

some problem in the programming step of the development of the ensemble and we 

are aware that  probably the structure of it  is  not  the most suitable to get  better 

results.  We  propose  for  further  studies  to  go  deeply  in  this  model,  by  better 

implementing the code.

Once we get the percentages of accuracy of all the methods used, we tested which of 

them add a significant increase of accuracy in the classification of the image. The 

difference of proportion methods are used to accomplish this task. As we explain in 

a previous section (section 3.2.3) we used the McNemar test.  In the table below 

(table 5),  it  is  show the proportion between the accuracy of  the best  the single 

classifiers from the LANDAU project , LDC with a global accuracy of 82 %, and all 

the ensembles built in this work.

Table 5. McNemar test between all the ensembles and the best single classifier. 

McNemar Test assess that the value of the test between two classifiers (in our case a 

single classifier and classifiers ensemble) have to be higher than 3,841, to consider 

significant the difference of accuracy between them.

In our case, only the RDC ensemble obtains a higher value than 3,841, which is 9,5, 

so only the difference of accuracy showed by this ensemble is significant in relation 

to the best single classifier, LDC. It means that we have only increased significantly 
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LDC (Best LANDAU) Boosting Trees Random Forest RDC SVM Ensemble

G. Accuracy 82,00% 83,40% 83,45% 80,40% 83,20% 85,60% 82,36%

Comparison Boosting Trees Random Forest RDC SVM Ensemble

LDC 0 0,7 0,75 (-) 1,33 0,35 9,5 0,1

COMPARISON OF CLASSIFIERS ENSEMBLES: McNEMAR TEST
Boosting Discr. Bagging Discr.

THE VALUE IN THE TEST HAS TO BE HIGHER THAN 3,841.
Boosting Discr. Bagging Discr.



the  value  of  accuracy  for  image  classification  of  this  dataset  with  the  RDC 

ensemble.  In  this case, was completely unworthy to spend time in building any 

classifiers ensemble, apart from the RDC ensemble. It  is something to have into 

account, because not all the classifiers ensemble get significantly better results than 

single  classifiers,  and  sometimes  is  more  recommended  not  to  spend  time  and 

resources in building an ensemble, if the results are not considerably better.

4.3 Diversity measures

As it  was said before,  diversity is still  a field which need to be explored more 

scientifically, and it will be a good purpose for further research to analyse all these 

ensembles  and  theirs  diversity  using  different  measure,  to  try  to  find  some 

conclusions in one direction or the opposite.

As we explain in section 3.2.4, we only tried one measure, Double-Fault measure. 

We have applied the measure just to one ensemble, the only one with a significantly 

higher value of accuracy than the best single classifier used in the LANDAU project 

(LDC). This ensemble is RDC and by applying this diversity measure, we wanted to 

check if its success was because its high value of diversity.

Also, it was exposed in the section 3.2.4 that the RDC ensemble was built by 200 

classifiers as linear combination of LDC and ML,  which entails  40000 pairwise 

comparisons between them. We take a sample of those comparison and we get the 

results showed in the table below (table 6).

Table 6. Double-Fault diversity measures results.

In this test, the double-Fault measure of diversity between classifiers, we observed 

that the diversity between the classifiers within the ensemble, is not too high, being 
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DIVERSITY MEASURES
Double Fault

 RDC with 200 CLASSIFIERS entails 40000 Pairwise Measures (Comparison), 

MIN VALUE MAX VALUE MEAN VALUE CONCLUSIONS:
14,50% 46,00% 22,91% LOW VALUES OF DIVERSITY BETWEEN CLASSIFIERS

Generalized Diversity???

 It is a Pairwise Measure

 So we took a Sample (1%, 400 MEASURES).

 It is Non-Pairwise Measure
 No need for using it. The values of Double Fault may indicate its uselessness.



the highest score recorded 46 out of 100 (high values of diversity are considered 

from 80). Hence, we can conclude that diversity does not explain the success of the 

RDC ensemble when classifying a Landsat image.

 At least, this diversity measure does not show good results, as it used to happen in 

many studies (Kuncheva, 2003; Dutta, 2009; Faria et al., 2013). It is probable that 

the utilization of a non-pairwise diversity measure,  as the Generalized Diversity 

measure, to quantify the diversity of the RDC ensemble, could be more suitable for 

this study, but the approach and the coding process was too complex to go into it in 

this work. Going further in those diversity measures is a researching line which 

could be very interesting in the future.

The  approach of  the  Double-Fault  measure  was  done with  the  intention  to  test 

randomly the diversity between classifiers in the RDC ensemble. It has been prove 

to  be  effective  and  very  straightforward  to  implement.  Since  not  stimulating 

diversity values were obtained, we refused to go further in our research and not to 

try another diversity measures.
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5 Conclusions

The initial  objective  of  this  work  was  to  prove  that  a  classifiers  ensemble  can 

perform better than strong single classifiers in the task of classification of remote 

sensing images. In most of the cases we have analysed the results were better than 

the results from the best single classifier (LDC) used in the LANDAU project. Of 

course, we are referring in terms of accuracy, which not always means in terms of 

map quality. We will analyse this later on in this section.

One of the statement that  have to be more in our minds is the  ''No Free-Lunch 

Theorem'',  which  basically  set  up  that  there  is  no  optimal  solution  for  every 

circumstances, there is no optimal classifier, or in this case, classifiers ensemble, 

which fit for every data set. Hence, no further conclusions could be taken from this 

work, apart from that this data set (a Landsat image) is best classified by the RDC 

ensemble.  But  we  do  not  know  the  behaviour  of  this  ensemble  in  other 

circumstances.

Another statement, which made the classifiers ensemble to be in the centre of the 

machine learning research, is the possibility of building a strong classifier from a 

combination of weak classifier. This is the base of the Boosting theory developed by 

Schapire.

In  our  case,  the  results  from  the  Boosting  Discriminant  and  Boosting  Trees 

ensembles  were  better  than those  from the  single  classifiers  but  they  were  not 

spectacular,  as  could  be thought  at  the  beginning  of  the  process.  Boosting was 

thought for weak classifiers, those that show an accuracy of 50% or less (Schapire, 

1996), and “our” single classifiers were not that weak, since they have around 80% 

of accuracy. This reason could explain better but no spectacular results.

We can assess that our results for those ensemble which follow the Bagging strategy, 

give consistency to the statement of Breiman which establishes that the bagging 

strategy for ensemble works better for unstable classifiers (Breiman, 1996), those 

where small changes in the training set result in large changes in predictions, as our 

Trees (CART). In fact, the performance of the bagging LDC was worse than the 

performance of the LDC, as a single classifier. Like Kuncheva also relate in his book 

(Kuncheva,  2004),  no  good  results  could  be  expected from  a  multiple  linear 

discriminant system using bagging.
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One of the deceptions of this work was the performance of the SVM ensemble with 

feature  selection.  When  we  run  the  SVM as  a  single  classifier,  we  got  a  high 

accuracy value, sometimes higher than the one get with LDC (82%), which guides 

us to think in better results when applying a group of them in the same system. 

Unfortunately the output was even worse than the one obtained with the simple 

algorithm.  We are  sure  that  we missed something in  the  process  of  coding  the 

algorithm,  because the ensemble seems to be very powerful  (Waske,  2011).  We 

were, also trying to fine-tune the ensemble but the structure of the SVMs is very 

hard  to  understand  (like  the  different  kind  of  kernel's  parameter,  sort  margin 

parameter and alpha value). Hence, finally we did not have time to better develop a 

SVM ensemble. However, further work could be done in this direction, since the 

strength of this methodology could be very high.

Once, we obtained the results of accuracy of our ensembles, the next step was to 

confirm  how  good  were  our  scores  and  testing  the  significance  of  them  in 

comparison with the best of the accuracy mark in the single classifiers. We applied 

one of the most used differences of proportion methods, the McNemar Test, to check 

the importance of the output of the classifiers ensemble trained in this work. As we 

argued before, McNemar Test was selected because of the character of the validation 

dataset. The McNemar Test showed up that the only important value of accuracy 

from all the ensembles that were tested in this work is the one achieve by the RDC 

ensemble, 85,6 %.

Then the following question to answer is why the RDC ensemble is the one which 

get  a  higher  value  of  global  accuracy  rather  than  the  other  multiple  classifier 

systems.

We slightly faced this  question  under  the  point  of  view of  the  diversity of  the 

ensemble.  As we see before,  we applied the Double-Fault  measure  to  the RDC 

ensemble to figure out if the diversity between their two hundreds classifiers was 

high enough to explain the value of global accuracy. The result was negative, the 

values of diversity were far away from top values. Even, as we thought that the 

Double-Fault measure was not the best approach to calculate the diversity, because 

is a pairwise measure, not actually design for ensembles, it calculate the diversity 

very straightforward and could be taken as an indicator. In fact, after getting these 

extremely low values of diversity we gave up to apply another kind of measure. It 

could  be  an  interesting  topic  for  further  investigation,  because  we  still  have 
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problems in understanding the concept of diversity. It sounds intuitive (Kuncheva, 

2003) that having a group of different classifiers which produce different outputs 

should better  than having a group of  similar  classifier  which  produce the same 

outputs, in the last case it does not make sense to build an ensemble, since one of 

them could show up the same results.

If we have in consideration that many ensembles work better than a single classifier, 

we should think that the variation that different algorithms add to the whole system 

must be positive. Under our perspective, two problems appear, when we deal with 

the concept diversity, the thresholds and the measures. Obviously, it seems clear that 

certain degree of variance between the elements of an ensemble will give to it more 

power to predict,  but  which are these thresholds within the diversity,  where the 

ensemble gain strength. As an example, two completely different algorithms that 

produce extremely different  outputs  do not  create a powerful  ensemble,  but  the 

contrary. Hence, how much different should be the algorithm between them within 

the ensemble is still a mystery.

There are many measures approved by the scientific community, most of them come 

from Kuncheva and Whitaker (2003), to calculate the diversity between classifiers 

or within the ensemble,  and many more are being developed at  present,  but  we 

consider  that  there  are  still  not  science  over  there.  A lot  of  mysteries,  a  lot  of 

incongruences, a lot  of  eager to measure something that even is not  completely 

explained. How can you find in the literature for the last ten years, more than ten 

different measure to calculate the same thing? It seems to us that many efforts are 

being done in this direction to clarify the term and the way to used and measure, but 

it is still insufficient.

Then, to finally answer the question about why the RDC ensemble produces the best 

outputs, we were analysing how the algorithms within the ensemble work. RDC or 

RDA,  as  it  was  defined  by  Friedman  (1989),  is  a  regularized  version  of  the 

discriminant analysis. The ensemble of RDC takes many linear combinations from 

LDC to QDC as defined. So the objects, in our case pixels, could be classified by 

using  a  common  covariance  to  all  of  them  as  happen  in  the  LDC,  a  unique 

covariance to each of them like occur in the QDC or everything which is between of 

both classifiers. So, we can argue that the success of this ensemble resides in the 

versatility to build covariance matrices à la carte, in order to explain the behaviour 

of the variables and also do better prediction.

xlviii



Finally,  having  a  look  over  the  maps  that  were  produced  by using  the  all  the 

classifiers ensembles, including the map generated from the best single classifier 

(LDC) and a google map image of the study area (figure 13), we can see how the 

differences on classification are independent of the degree of accuracy.

Figure 13.  LCLU maps,  from Landsat image classified by all  ensembles analysed and 

google map image.  From left to right and from up to the bottom, following the scores of 

global accuracy from lower to higher these maps belong to: Bagging Discriminant (1), 

LDC (2),  SVM ensemble  (3),  Random Forest  (4),  Boosted Discriminant  (5),  Boosted 

Trees(6) and RDC ensemble (7), respectively.

Looking at the maps, it is hard to say which is the map with the best appearance. At 

a first glance, it  could be said that the second, the fourth and the seventh maps 

(following the order in the figure 13) show a more compact structure. Their global 

accuracies values are 82%, 83,2% and 85,6%, respectively.

For further research it would be taken in consideration a deep study about diversity 

and the different diversity measures, and also a better implementation of the SVM 

ensemble by using feature selection, which seems to offer great results.
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Annex I – Confusion Matrix of the Classifiers Ensembles 

Table 7. Global accuracy of LCLU maps of more representative single classifiers (built from LANDAU project data).
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ACCURACY MATRIX ML LDC DQDC KNN PARZEN CART BMP TOTAL ACCURACY  BY CLASS

1.1 Artificial Discontinuous Areas 78 73 63 73 74 69 78 73

2.1 Irrigated agriculture 80 85 86 90 89 87 82 86

2.2 Rain-fed agriculture 74 73 73 66 68 65 73 70

2.3 Rice fields 87 76 77 80 80 77 72 78

3.1 Deciduous Forest 82 78 79 71 72 70 79 76

3.2 Broad-leaves Forest 91 88 77 79 80 80 86 83

3.4 Grassland 80 85 80 80 81 79 81 81

3.5 Shrub 84 86 79 77 77 72 87 80

4 Bare Soil 80 95 86 88 90 86 87 87

5 Wet lands 79 75 67 74 75 83 0 65

6 Water bodies 90 95 93 90 90 91 90 91

TOTAL ACCURACY  BY CLASSIFIER 81 82 76 78 78 77 79 79



Table 8. Error matrix of LCLU map get from Bagging Discriminant ensemble.
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Error Matrix Bare Soil Wetlands Water body Urban Area Irrigated agri. Rainfed agri. Rice field Broad-leav. F Deciduous F Grassland Shrub User's ACC

0 4 6 7 12 21 22 23 31 32 34 35

Bare Soil 4 35 0 0 0 0 2 0 0 0 0 0 0,946

Wetlands 6 0 15 0 0 0 0 2 0 0 0 0 0,882

Water body 7 0 6 65 0 0 0 0 0 0 0 0 0,915

Urban Area 12 0 0 0 38 0 11 0 0 0 0 0 0,776

Irrigated agri. 21 0 1 0 0 42 0 9 3 0 0 0 0,764

Rainfed agri. 22 0 0 0 9 0 50 0 0 0 2 0 0,820

Rice field 23 0 12 0 0 0 0 27 0 1 0 0 0,675

Broad-leav. F 31 0 0 0 1 1 0 0 27 4 1 0 0,794

Deciduous F 32 0 0 3 0 0 0 2 9 37 0 1 0,712

Grassland 34 0 0 0 0 0 7 1 1 0 53 9 0,746

Shrub 35 0 0 0 1 1 1 0 2 1 4 53 0,841

Prod's ACC 1,000 0,441 0,956 0,776 0,955 0,704 0,659 0,643 0,860 0,883 0,841 0,804
Overall ACC



Table 9. Error matrix of LCLU map get from Boosting Discriminant ensemble.
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Error Matrix Bare Soil Wetlands Water body Urban Area Irrigated agri. Rainfed agri. Rice field Broad-leav. F Deciduous F Grassland Shrub User's ACC

0 4 6 7 12 21 22 23 31 32 34 35

Bare Soil 4 35 0 0 0 0 2 0 0 0 0 0 0,946

Wetlands 6 0 15 0 0 0 0 2 0 0 0 0 0,882

Water body 7 0 6 65 0 0 0 0 0 0 0 0 0,915

Urban Area 12 0 0 0 38 0 11 0 0 0 0 0 0,776

Irrigated agri. 21 0 1 0 0 42 0 9 3 0 0 0 0,764

Rainfed agri. 22 0 0 0 9 0 50 0 0 0 2 0 0,820

Rice field 23 0 12 0 0 0 0 27 0 1 0 0 0,675

Broad-leav. F 31 0 0 0 1 1 0 0 27 4 1 0 0,794

Deciduous F 32 0 0 3 0 0 0 2 9 37 0 1 0,712

Grassland 34 0 0 0 0 0 7 1 1 0 53 9 0,746

Shrub 35 0 0 0 1 1 1 0 2 1 4 53 0,841

Prod's ACC 1,000 0,441 0,956 0,776 0,955 0,704 0,659 0,643 0,860 0,883 0,841 0,804
Overall ACC



Table 10. Error matrix of LCLU map get from Boosting Trees ensemble.
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Error Matrix Bare Soil Wetlands Water body Urban Area Irrigated agri. Rainfed agri. Rice field Broad-leav. F Deciduous F Grassland Shrub User's ACC

0 4 6 7 12 21 22 23 31 32 34 35

Bare Soil 4 34 0 0 0 0 2 0 0 0 0 0 0,944

Wetlands 6 0 36 5 0 0 0 0 0 0 0 0 0,878

Water body 7 1 3 52 0 0 0 0 0 0 0 0 0,929

Urban Area 12 0 0 0 45 0 20 0 0 0 2 0 0,672

Irrigated agri. 21 0 0 0 0 39 0 4 3 0 0 0 0,848

Rainfed agri. 22 0 0 1 3 0 47 0 0 0 0 0 0,922

Rice field 23 0 3 1 0 1 0 36 0 0 0 0 0,878

Broad-leav. F 31 0 0 0 0 1 0 0 31 2 1 0 0,886

Deciduous F 32 0 0 1 0 0 0 3 6 39 0 2 0,765

Grassland 34 0 0 0 0 0 3 1 1 0 54 13 0,750

Shrub 35 0 0 0 1 0 0 0 2 2 3 46 0,852

Prod's ACC 0,971 0,857 0,867 0,918 0,951 0,653 0,818 0,721 0,907 0,900 0,754 0,835

Overall ACC



Table 11. Error matrix of LCLU map get from Random Forest ensemble.
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Error Matrix Bare Soil Wetlands Water body Urban Area Irrigated agri. Rainfed agri. Rice field Broad-leav. F Deciduous F Grassland Shrub User's ACC

0 4 6 7 12 21 22 23 31 32 34 35

Bare Soil 4 32 0 0 0 0 3 0 0 0 0 1 0,889

Wetlands 6 0 36 6 0 0 0 1 0 0 0 0 0,837

Water body 7 1 3 52 0 0 0 0 0 0 0 0 0,929

Urban Area 12 2 0 0 46 0 19 0 0 0 1 0 0,676

Irrigated agri. 21 0 0 0 1 41 0 5 2 0 0 0 0,837

Rainfed agri. 22 0 0 1 1 0 46 0 0 0 0 0 0,958

Rice field 23 0 3 0 0 0 0 35 1 0 0 0 0,897

Broad-leav. F 31 0 0 0 0 0 0 0 31 1 1 3 0,861

Deciduous F 32 0 0 1 0 0 0 2 6 40 0 1 0,800

Grassland 34 0 0 0 0 0 4 1 1 0 55 12 0,753

Shrub 35 0 0 0 1 0 0 0 2 2 4 43 0,827

Prod's ACC 0,914 0,857 0,867 0,939 1,000 0,639 0,795 0,721 0,930 0,902 0,717 0,831

Overall ACC



Table 12. Error matrix of LCLU map get from RDC ensemble.
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Error Matrix Bare Soil Wetlands Water body Urban Area Irrigated agri. Rainfed agri. Rice field Broad-leav. F Deciduous F Grassland Shrub User's ACC

0 4 6 7 12 21 22 23 31 32 34 35

Bare Soil 4 34 0 0 0 0 2 0 0 0 0 0 0,944

Wetlands 6 0 29 0 0 0 0 5 0 0 0 0 0,853

Water body 7 0 4 63 0 0 0 0 0 0 0 0 0,940

Urban Area 12 0 0 0 44 0 7 0 0 0 0 0 0,863

Irrigated agri. 21 0 1 0 0 42 0 7 3 0 0 0 0,792

Rainfed agri. 22 0 0 1 5 0 57 0 0 0 4 0 0,851

Rice field 23 0 2 0 0 0 0 26 0 0 0 0 0,929

Broad-leav. F 31 0 1 0 0 0 0 0 34 2 1 1 0,872

Deciduous F 32 0 0 1 0 0 0 3 3 38 0 1 0,826

Grassland 34 0 0 0 0 0 5 1 1 0 51 8 0,773

Shrub 35 0 0 0 1 1 0 0 1 3 4 53 0,841

Prod's ACC 1,000 0,784 0,969 0,880 0,977 0,803 0,619 0,810 0,884 0,850 0,841 0,856

Overall ACC



Annex II – Ensembles implementation Code, an example.

RDC ensemble code, implemented in Matlab.

1. Algorithm definition:

function  outclass = rdc(sample,training,group,type,prior,al pha) 

% Input 'type' is not to be used 
type = [];
% grp2idx sorts a numeric grouping var ascending, a nd a string 
grouping
% var by order of first occurrence
[gindex,groups,glevels] = grp2idx(group);
nans = find(isnan(gindex));
if  ~isempty(nans)
    training(nans,:) = [];
    gindex(nans) = [];
end
ngroups = length(groups);
gsize = hist(gindex,1:ngroups);
nonemptygroups = find(gsize>0);
nusedgroups = length(nonemptygroups);
if  ngroups > nusedgroups
    warning(message( 'stats:classify:EmptyGroups' ));
end
[n,d] = size(training);
if  size(gindex,1) ~= n
    error(message( 'stats:classify:TrGrpSizeMismatch' ));
elseif  isempty(sample)
    sample = zeros(0,d,class(sample));  % accept any empty array but 
force correct size
elseif  size(sample,2) ~= d
    error(message( 'stats:classify:SampleTrColSizeMismatch' ));
end
m = size(sample,1);
 
% if nargin < 4 || isempty(type)
%     type = 'linear';
% elseif ischar(type)
%     types = 
{'linear','quadratic','diaglinear','diagquadratic', 'mahalanobis'};
%     type = internal.stats.getParamVal(type,types, 'TYPE');
% else
%     error(message('stats:classify:BadType'));
% end
 
% Default to a uniform prior
if  nargin < 5 || isempty(prior)
    prior = ones(1, ngroups) / nusedgroups;
    prior(gsize==0) = 0;
    % Estimate prior from relative group sizes
elseif  ischar(prior) && strncmpi(prior, 'empirical' ,length(prior))
    %~isempty(strmatch(lower(prior), 'empirical'))
    prior = gsize(:)' / sum(gsize);
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    % Explicit prior
elseif  isnumeric(prior)
    if  min(size(prior)) ~= 1 || max(size(prior)) ~= ngrou ps
        error(message( 'stats:classify:GrpPriorSizeMismatch' ));
    elseif  any(prior < 0)
        error(message( 'stats:classify:BadPrior' ));
    end
    %drop empty groups
    prior(gsize==0)=0;
    prior = prior(:)' / sum(prior); % force a normalized row vector
elseif  isstruct(prior)
    [pgindex,pgroups] = grp2idx(prior.group);
   
    ord = NaN(1,ngroups);
    for  i = 1:ngroups
      j = find(strcmp(groups(i), pgroups(pgindex))) ;
        if  ~isempty(j)
            ord(i) = j;
        end
    end
    if  any(isnan(ord))
        error(message( 'stats:classify:PriorBadGrpup' ));
    end
    prior = prior.prob(ord);
    if  any(prior < 0)
        error(message( 'stats:classify:PriorBadProb' ));
    end
    prior(gsize==0)=0;
    prior = prior(:)' / sum(prior); % force a normalized row vector
else
    error(message( 'stats:classify:BadPriorType' ));
end
% Add training data to sample for error rate estima tion
if  nargout > 1
    sample = [sample; training];
    mm = m+n;
else
    mm = m;
end
 
gmeans = NaN(ngroups, d);
for  k = nonemptygroups
    gmeans(k,:) = mean(training(gindex==k,:),1);
end
 
% Linear 
% computed without unpermuting.  Instead use SVD to  find rank of R.
[Q,R] = qr(training - gmeans(gindex,:), 0);
R = R / sqrt(n - nusedgroups); % SigmaHat = R'*R
 
% Quadratic
D = NaN(mm, ngroups);
logDetSigma = zeros(n,1);
for  k = nonemptygroups
    [Q,Rk] = qr(bsxfun(@minus,training(gindex==k,:) ,gmeans(k,:)), 
0);
    Rk = Rk / sqrt(gsize(k) - 1); % SigmaHat = R'*R
    % the average between Rk and R
    Rk = alpha*Rk + (1-alpha)*R;
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    s = svd(Rk);
    if  any(s <= max(gsize(k),d) * eps(max(s)))
        error(message( 'stats:classify:BadQuadVar' ));
    end
    logDetSigma(k) = 2*sum(log(s)); % avoid over/underflow
    A = bsxfun(@minus, sample, gmeans(k,:))/Rk;
    D(:,k) = log(prior(k)) - .5*(sum(A .* A, 2) + l ogDetSigma(k));
end
% find nearest group to each observation in sample data
[maxD,outclass] = max(D,[],2);
%Convert outclass back to original grouping variabl e type
outclass = glevels(outclass,:);
end

2. Accuracy Assessment:

load( '../data/mat/landsat_a.mat' );

 
%% The inputs
nparts = 200;
 
pfeat = 0.8;
ptrain = 1.0;
 
freplace = 0; % feature replacement
treplace = 1; % training unit replacement
 
%% Processing 
 
ntrain = size(datatr,1);
k = floor(pfeat*size(datatr,2)); % should be <= n. of features, i.e. 
nbands
m = floor(ptrain*size(datatr,1)); % n. of training samples
 
% alpha ranging from 0 to 1 in 0.01
alpha = [];
factor = 1/nparts;
for  i = 0:nparts
   alpha = [alpha; factor * i]; 
end
 
outclasses = [];
for  i = 1:length(alpha) 
    fidx = randsample(nbands,k,freplace);
    tidx = randsample(ntrain,m,treplace);
    outclass = rdc(datats(:,fidx),datatr(tidx,fidx) ,labeltr(tidx),
[],[],alpha(i));
    outclasses = [outclasses outclass];
end
 
outclass = mode(outclasses,2);
 
%% Validate the model
labelf = [];
for  i = 1:length(labelts)
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    if  outclass(i)==labelts(i,1) || outclass(i)==labelts( i,2)
        labelf = [labelf; outclass(i)];
    else
        labelf = [labelf; labelts(i,1)];
    end
end
 
[C codes] = confusionmat(outclass,labelf);
 
OA = sum(diag(C))/sum(C(:));
PA = diag(C)'./sum(C,1);
UA = diag(C)./sum(C,2);
 
EM = C;
EM = [EM UA];
EM = [EM; PA OA];
EM = [[codes; 0] EM];
EM = [0 codes' 0; EM];

3. LCLU map creation:

%% Input data

 
matname = '..\data\mat\Landsat_A.mat' ;
 
load(matname);
 
%% Process stuff
 
% This is my random forest function
map = rdc(image,datatr,labeltr,[] ,5 ,0.005);
 
% reshape this into a map format
map = reshape(map,nrows,ncols);
 
%% Output it
 
imwrite(uint8(map), '..\data\single_maps\landsat_RDC1.tif' , 'tif' );
worldfilewrite(refmat, '../data/single_maps/landsat_RDC1.tfw' );
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