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Dissertation Title:
Classifiers ensemble in remote sensing: a

comparative analysis

Abstract

Land Cover and Land Use (LCLU) maps aexy important tools for understanding
the relationships between human activities andnidteiral environment. Defining
accurately all the features over the Earth's sarfec essential to assure their
management properly. The basic data which are hesrd to derive those maps are
remote sensing imagery (RSI), and concretely, Igateimages. Hence, new
technigues and methods able to deal with those aladaat the same time, do it
accurately, have been demanded.

In this work, our goal was to have a brief revieweio some of the currently
approaches in the scientific community to face tiiallenge, to get higher accuracy
in LCLU maps. Although, we will be focus on the dywf the classifiers ensembles
and the different strategies that those ensembkesept in the literature. We have
proposed different ensembles strategies based rirdata and previous work, in
order to increase the accuracy of previous LCLU smapde by using the same data
and single classifiers.

Finally, only one of the ensembles proposed havesigmificantly higher accuracy,
in the classification of LCLU map, than the betargle classifier performance with
the same data. Also, it was proved that diversiiyndt play an important role in the

success of this ensemble.
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1 Introduction

1.1 Why LCLU maps are important?

Land cover is the physical material on the Earg8usface, as a result of the
expression of human activities and changes (Di @tegand Jansen, 2000). Land
cover comprises trees, asphalt, water, etc. Coesgiguland cover is a geographical
feature that can form a reference base for appitait ranging from forest
management and monitoring, agriculture, urban phapnnvestment, biodiversity,
climate change, to desertification control, anebsdDi Gregorio and Jansen, 1997).
In the other hand, land use could be explainechasuse that humans give to the
features on the surface, in this sense, a treganiand cover feature) could be a
interpreted as forest, urban park, rain-fed agnica| etc. Figure 1 is an example of
land cover map of Portugal done under the CORINgept's umbrella in 2006.

Madeira Is.

Figure 1. CORINE land cover: Portugal 2006



There is a higher demand for precisely define thgls surface due to an increase
need for defining and classify accurately the laoger, in order to offer the best
tools to the decision-makers. In this sense, th&RIBIE report (1995) from the
European Environmental Commission, also states ithatur environment and
natural heritage have to be properly managed, ideemakers need to be provided
with both an overview of existing knowledge, antbrmation which is as complete
and up-to-date as possible on changes in certaborées of the biosphere. In this
sense, the term LCLU Change (LCLUC), also knowtaad change, is adopted to
point out to any modification of the Earth's sugaEBrom a conceptual perspective,
study of land-cover changes permits identificatodriong-term trends in time and
space and the formation of policy in anticipatidntiee problems that go with the

changes in land-cover (Jensen, 1996).

Land-cover of the Earth's land surface has beengihg since time immemorial at
a range of spatial scales from local to global anttmporal frequencies of days to
millennia an is likely to change in the future (Twshend, J., et al., 1991). LCLU
features have the particularity to show spatial stndctural changes as a reaction to

changes in physical, economic and cultural circamsss.

It is a fact that humans have continually reshagiesl Earth, but the present
magnitude and rate are unprecedented (Di GregodoJansen, 1997). Nowadays,
administrations and organizations have realized iths very important to know
how land cover has changed over time, in orderd@arassessments of the changes
one could expect in the (near) future and the impéathese changes will have on
peoples’ lives (FAO, 1996a). Changes in land camt land use affect global
systems (e.g. atmosphere, climate and sea levelyaur in a localized fashion in
enough places to have a significant effect (Meyer Burner, 1992).

Due to the influence of land-cover change on mdrih® environmental issues both
direct and indirect, such as loss of biodiversityanges in hydrological, carbon and
nitrogen cycles, and climatic change, it is impottdhat these areas under intense
change needs to be better understood for adaptitgboke management strategies
(Schilling et al., 2010). As an example of thispontance, could be shown the
article of Sala et al. (2000), which calculated #lang the coast, land-cover change
has been reported to be the prime cause of bialiydoss, accounting for over

50% of the global biodiversity loss, and thus gdimgtobal attention in the last
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decade. Also in the context of the management ehtktural resources, LCLU has
become an important tool, in the sense that arasting number of socio-economic

activities are taking place on those areas.

1.2 LCLU classification

The recent availability of geospatial informati@thnologies with satellite data (in
the last four decades) helps us for better undedstg of the land-cover change and
its effect on human environment. Change detectardcbe defined as the process
of identifying differences in the state of an olbjec phenomenon by observing it at
different time. This process is usually appliedetrth surface changes at two or
more times (Coppin et al., 2004).

Information describing current land cover is an amant input for planning and
modelling, but the quality of such data defines tk&ability of the simulation
outputs (Townshend, 1992). In addition to a higmaded for improved land cover
data sets, in the middle ninety's there was alsweed for standardization and
compatibility between data sets and for the polésitto map, evaluate and monitor
wide areas in a consistent manner, which techaidahnces, like the vast amount of
remote sensing data that has become available &arh observation satellites,
made that increasingly possible (Di Gregorio, 1995)

Remote sensing imagery and, specifically, sateifitagery is the main source for

creating LCLU maps. This is due to the followingsens:

 The large amount of data available and producedyegiay in different

spatial and spectral resolution.

* The high temporal resolution which allows a largaikability of images

from the same area.

* The elevated variability of computational methodsahalyse the satellite

imagery.

* High availability of images, some of them free dfagye, like Landsat

images.
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Techniques to deal with this increasingly large antoof data had been also
improved through these years. We will face thislaven in the following chapter
(chapter 2), but as an introduction, we can salydbeeral attempts have been done
with different classifiers. More recently differergsearchers have been trying to
combine classifiers in different manners. In thissdrtation, we explores a specific
possibility, classifiers ensemble and it consists a0 machine learning paradigm
where multiple algorithms are trained to solve $laene problem and combined to
use and to get a best solution (Zhou, 2004).

Present work is a modest attempt to prove that wfogte time, ensemble methods
improve the accuracy of LCLU maps. In this disgestg we have built different
ensemble methods following the evolution they himlewed through the last two

decades.

1.3 Research Question

Does a Multiple Classifiers System (MCS) or a dfegs Ensemble (CE) perform

better than a single classifier?

In this dissertation, our purpose is to build difet ensemble methods to compare
and to analyse the results of accuracy obtainedti{ein classification of satellite
images to create LCLU maps) with those resultsinbthain the LANDAU project,
where only single classifiers were used to classaftellite images.

The study area is close to the mouth of the rivgo &nd the reason of our choice is
that this area was already taken in a previouept¢. ANDAU), providing results
for comparison. In this project different simplassifiers were used to build LCLU
maps. Hence, in order to assess the success ohaps, we need to compare the
accuracy obtained with the different ensemble natlagies adopted for us and the
accuracy achieved in the algorithms used in LANDAU.

Our first step, it will be to study the LANDAU pmgt conclusions and to analyse
their outputs, which could be a guide for our fetige. Then, once we are familiar
with data and the variables we have to deal wiehstwould consider if adding more
variables (bands, in our case) to the classifioajpwocedure, will enlarge our

possibilities of success. The more straightforwaay to add features (variables) in
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this case, is the creation of artificial bands @tagon index for instance, NDVI),
since the majority of the landscape of our studdaas natural and include different
types of vegetation.

After that, the main task of the whole process dlto build an ensemble (or a set
of them) of classifiers which allow us to get betiecuracies in our map, in relation
with the accuracies obtained in the LANDAU projethe issue that underlie this
approach is the possibility of building a straiginfard combination of algorithms
to classify a satellite image rather than usinggls classifier which should be fine-
tuned, in order to get higher accuracies, and mghaver-fitted.

We will develop that using as guidance the articden Du et al. (2012), on which a
review of the classifiers ensemble is done and soemecombinations are proposed.
Hence, we will build some of the most used ensentdkéng into account this
review and then, we will try to build our own hypesis, by using the same simple
classifiers that were compared in the LANDAU projec

Finally, we will try to demonstrate the diversitygdothesis, by testing if the
ensembles with better global accuracy results laoset which also show higher
diversity value. There is a kind of intuition abaliversity which say that the more
different are the outputs of the classifiers thdewithe range of features that could
be classified, and this entails an accurate claasibn. In this sense, when all the
algorithms classify on the same way, the divergtyminimum and, when they
classify in a completely opposite way, it could baid, that the diversity is
maximum. Neither of these extremes is helpful assify remote sensing imagery.
Hence, the issue is to know where the threshol@hiith the diversity influence is
positive, is.

The remainder of this paper is organized as folldwSection 2, we introduce some
common approaches of RSI classification, summagizime factors that play a
important role in the accuracy of the final map.Saction 3, it is explained the
methodology followed in this work, including a Wriexplanation of the single and
classifiers ensemble used in it. Experimental tesate presented in Section 4.
Section 5 includes the conclusion of this paper.
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2 Improving accuracy: factors influencing LCLU mamup

accuracy

The main goal of the scientific community when degaliwith the classification of
remote sensing images to create LCLU maps, is toagehigher accuracy as
possible. There are many approaches, which havefolewed historically, to face
this problem since the first images were obtainddny of these methods and
algorithms are derive from classical statisticLagear Discriminant Classifiers or
K-Nearest Neighbour, but also those that come fileenMachine Learning and Data
Mining field are being widely used, as Neural Netkydecision Trees and Support
Vector Machine.

Building a LCLU map from remote sensing imagerpasically to assign a class to
an object. In remote sensing images those objeetpigel with an intensity value,
which represents the measured solar radiance imea gvavelength band reflected
from the ground (Liew, 2001). This process to assgclass to any pixel is also a
prediction. So, using a group of pixels which clhase been already classified and
checked in the field, training sample (in the caseupervised classification) we
predict the behaviour of the rest of the pixelgha image and provide a class to
each of them.

The process of classifying remote sensing imagesivas many factors, as user's
needs, data available, skills of the analyst, #sgh of the procedure and so on.
The more important steps in the remote sensingsifilzaion process are: data
selection, classification system and training da&ti@ction (in the case of supervised
classification, which otherwise used to be the nmsbular methodology), data
preprocessing, feature extraction and selectidtglda classification method choice
and accuracy classification assessments (Lu and)V2897). All of these steps are
dramatically important to ensure the higher acopraussible of the final product of
the process, which is the LCLU map.

In the following sub-sections, we will try to summnza the main properties and
particularities of these steps and how importaay thre under the accuracy point of
view. We will pay special attention to those fasttrat play an important role in this
dissertation.
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2.1 Initial steps

Remote sensing images selection is the first stepfollowed in the process and it
will determine the quality of the final map. Thepgyof image will be depending on
the scale and dimensions of the study area, thesusseds and the kind of images
available. Economics resources play also an imporiae, since the price of the
images vary dramatically from images free of chahffe Landsat, to images very
expensive. Figure 2 is an example of Landsat inedgbe study area used in this
work.

Secondly, defining land cover classification unigs also an important task to
implement. These units’ choice is very related witle spatial resolution of the
image and have to be environmentally and ecoldgicataningful (Cingolani et al.
2004).

Remote sensing classification is mostly supervigddch entails the existence of a
training set. Traditionally, for a wide range ofassifiers have been defined a
positive relation between the size of the trainseg) and the classification accuracy
(Foody, and Mathur, 2004). But the acquisition dam@e training set is very costly
in terms of financial and time resources. Indeadnes studies like Foody et al.
(2006), claim that size is just an attribute of tteening set and considerations about
the way the classifiers perform can help when selgche samples of the training
set in a small and less costly way.

Other tentative to build smart training sample @ive Learning (AL), an algorithm
widely used in Machine Learning, which is beingraduced in remote sensing
classification lately. Rajan et al. (2008) propa@se active learning approach for
hyper-spectral images classification, and they ayddetter accuracy classification
than just choosing traditional random samples. WUritte philosophy of these
methods, lie the acquisition of “smarter” sampldsal better defines the classes or
the border between them (some AL algorithms arét bpion the Support Vector
Machines -SVM- where the samples are chosen inntain between different
classes). Regarding to Tuia et al. (2011) “Actiearning aims at building efficient
training set by improving iteratively the perforncanof the model’. AL models
return the pixel with more uncertainty to be claedi which are accurate labelled
by the user and reincorporated to the model tdoria and optimize it.

hen, the preprocessing step includes geometridfication or image registration,
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radiometric calibration, atmospheric and topograptorrections (Lu and Weng,

2007). Atmospheric corrections are not needed wdeading with an single-date

image (Song et al. 2001). If ancillary data is yssshversion between different

sources or formats will be included in this pregssing stage. We do not go further
in describing this issue, since many articles andkb have illustrated it in detail

(Jensen 1996, Toutin 2004).

2.2 Feature extraction and selection

Many different features could be used in remotesisgnimage classification. The
most common are spectral bands from one or moes @aid vegetation indices; but
others kind of data are becoming popular in thesgiag of accuracy improvement,
like transformed images, contextual and texturédrimation, multi-sensor images
and ancillary data.

Using many variables in the classification proceducould decrease the
classification accuracy (Hughes 1968, Price e2@02). Thus, selecting those which
result more useful to define the classes becomrmegst. PCA, discriminant analysis
and decision boundary feature extraction are sointeeomost used methodologies
for that.

A special notation should be done about the moltikse imagery analysis, which is
still being a trending topic today. Pohl and Gerde(1998), in a review about
multi-sensor image fusion, listed the benefitshis trelatively new research field at

the leading edge of the available technology”:

* Increase spatial resolution, sharpen images.

* Improve geometric corrections.

* Enhance certain features not visible in eithehefgingle data alone.
* Complement data sets for improved classification.

* Replace defective data and missing information.
Twelve years later, Zhang (2010) stated that “dmyMep effective methods for
multi-source fusion and interpretation is stilllstienging activity”. The high-speed

of new sensor technologies development, new maitree fusion techniques and
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some remains problems in computation effectivea@ssefficiency, make the field
very dynamic.

Finally, the other strategy to get higher accuratthe maps at this level, is to use
contextual classifiers, where the spatial neighimguipixel information is used.
They were developed to cope with the of intraclggsctral variations (Lu and
Weng, 2007). The Markov random field-based contxtiassifiers, such as iterated
conditional modes, are the most frequently usedragmhes in contextual
classification (Magnussen et al. 2004). By now, patationally is much more
expensive than other methods (process become 20% computing consuming in
a 4000 pixel image) and the increase of accurangti€nough to justify their use, in

most of the cases.

2.3 Suitable Classification Method

2.3.1 Single Classifiers Methods

The earlier classical statistics methods for R8ssification have been shifted in to
derived methods from Machine Learning and Data Mjniields. Hence, methods
like K-Nearest Neighbour (kKNN), Linear Discriminar@lassifier (LDC) and
Maximum Likelihood (ML) were partially, replaced loghers like Neural Networks
(NN), Decision Trees (DT) and Support Vector Maehif8VM). Although, the
classical methods are widely used.

Regarding with this pursuing of accuracy and thailakility of higher computing
resources, many different classifiers have beirgdus classify satellite imagery.
These methods could be classify (Lu and Weng, 20070)fferent ways.

If training set is needed, then the methods magldssified as:

» Supervised, they need some samples known by theiruseder to predict
the rest of objects (pixels): Maximum Likelihood aSsification, k-NN
Means, Support Vector Machine, Artificial NeuraltiWerks, etc.

* Unsupervised, there are no need for training sasnpmple One-Pass

Clustering, Isodata Classification , Self-Organat
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If covers methods which rely or not on assumptithet the data are following a
given distribution, then the methods may be classis:

e Parametric, data come from a probability distribatand make inferences
with parameters, such as mean vector and covariagnagix: Linear
Discriminant Classifier, Maximum likelihood.

* Non Parametric, no assumptions about data disivitbuare given (and
needed): k-NN Means, Parzen Windows, Artificial KeguNetworks.

If it is taken in account different unit of analysthen the methods may be classified

as:

* Pixel-based: each pixel has assigned a class,ohtst classifiers: such as
maximum likelihood, minimum distance, artificial ural network, decision
tree and support vector machine.

e Sub-Pixel-based: each pixel is a combination ofssd#a: Fuzzy-set
classifiers, sub-pixel classifier, spectral mixtarelysis.

* Object-oriented: pixel are merged into objects: AB4-Cognition)

» Per-fields: integrating vector and raster data JGlige image is divided in

parcels: GIS-based classification approaches.

For RSI classification, there is no classifier thauld always perform well (Roli et
al., 1997). This assumption is known also as theffae lunch theorem™ (Wolpert
and Macready, 1997), where it is exposed that evkassifier could have a weak
performance when facing a classification problenasd®l on that, the common
strategy followed by many researchers is to compifferent methods (Lu and
Weng, 2007) and choosing the one which offers betwuilts (accuracy).

One the most used algorithms in the decade of 1#8@ the Artificial Neural
Networks (ANNS), that include Back-propagation netiy fuzzy neural network,
Kohonen self-organizing featured map, Hybrid leagnvector hierarchical network
and so on. An artificial neural network is an ietamnected group of nodes, which
represents an artificial neuron (the idea of thetesy come from animal neurons and
theirs connections) and an arrow that represeatgaection from the output of one
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neuron to the input of another (figure 2). The ssscof the ANNs in RSI
classification is based in the size and qualitsheftraining set (Zhang et al., 2013).

Input Hidden Hidden Output
Layer Layer #1 Layer #2 Layer
Neurons Neurons

Wiik ¢ ;o
Xo 4 -\\ Wik )\
N =) N i
ol e
X4
be =] -y
X2 /
X3 j i D/
Bias
Inputs 1 1 1

Figure 2. Neural Network classifier structdre

In the early ninety's, one the most novel and ateumlgorithm used in RSI
classification was Support Vector Machine (SVM)isTinethod is based in looking
for the optimal separating hyperplane in a multeinsional feature (figure 3).

Support vectors

Figure 3. SVM strateg$

! http://codebase.mql4.com/5738

2 http://nlp.stanford.edu
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It has been used so much, because its stabilityyetbence and high precision
(Zhang et al., 2013). It also does not need arhigihg set to be effective. It is very
used and combined with other methods or techniques.

We will also consider in this section those singbessifiers which were used in both
projects, LANDAU and this dissertation. These af@ed, QDC (or Maximum
Likelihood), Classification and Regression Tree RJA and SVM (was analysed
above).

« LDC is a method used to find a linear combinatidnfeatures which
describe or divided two or more classes of objépigels). It could be
thought as the minimum-error (Bayes) classifier farmal distributed
classes with equal covariance matrices, although mbsults can be
surprisingly good even when the classes have nanalodistribution
(Kuncheva, 2004). LDC is related with Principal Gmnent Analysis and
Factor Analysis, in the sense that all of them l@wlka linear combination of
variables which best explains the data (MartinezAminash, 2001).

* ML (special case of Quadratic Discriminant Classjfi as in the LDC we
assume a normal distribution of the classes buihigcases the covariance
matrix of every class is different (Kuncheva, 2Q@hich entails that allows
to separate objects of different classes by a dquiadrface. | t could be seen
as a generalization of the LDC, justified by theb#@mn of classifying more
complex separating surfaces.

* CART uses a decision tree as a predictive modelevtiee decision process
can be traced as a sequence of simple decisiomefi¢va, 2004). In the tree
structure, leaves represent class labels and beanepresent combinations
of features that guide to these labels. In our,cagewill do classification

tree analysis, so the predicted outcome is the ¢tag/hich the data belongs.
2.3.2 Classifiers Ensemble Methods
Multiple Classifier System, Classifier EnsembleMultiple Combination Methods
are a machine learning paradigm where multiplenkear are trained to solve the

same problem, in others words, are a combinatiodiftérent single classifiers in

order to increase the accuracy of the classifioafigure 4).
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Ensemble learning methodologies, in contrast toinarg machine learning
approaches which try to learn one hypothesis fr@ming data, try to construct a

set of hypotheses and combine them to use (Zh@4)20

-—-u__.‘“l
™

Sampling

f:% \

" Combine Predictions _ )

Outputs
\.L/

Figure 4. Classifier ensemble notion (Du, 2012).

The evolution of the classifiers ensemble coulddescribed as follow (Polikar,

2006). Firstly, Hansen and Salomon (Hansen andn®alp 1990) showed that
performance of a neural network can be improveddiyg an ensemble of similarly
configured neural networks. But it was the Boostingory (Schapire 1990) which
puts the ensemble systems at the centre of matdkanang research, with the idea
that a combination of weak classifiers could perf@s strong classifier. After a few
years, Boosting was improved by creating the AdaBadgorithm (Freund and

Schapire, 1996) which became one of the most popetesemble learning

algorithms. The others "big names" in classifienseanble are Bagging (Breiman,
1996) and Stacked generalization (Wolpert, 1992).

According to Polikar (2006), there many approached models of building an
ensemble learning algorithm, but they usually diffasically in two ways:
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» Specific procedure used for generating individuassifiers, which includes

Bagging, Boosting, Stacked Generalization and Me&tf Expert.

» AdaBoost (Adaptive Boostinglt is one of the best known of all
ensemble-based algorithms, extends boosting to i-olafis and
regression problems (Freund and Schapire 1996).Béalt is
adaptive in the way that classifiers built are nfiedi by taking into
account those instances misclassified by previtassifiers, and is
boosting, because is an algorithm for constructang’strong”
classifier as linear combination of simple “weaklagsifiers.
Allocates weight to a set of classifiers, as prdiigbof best
predicting the label, which will be updated afteesy training in the
data set, the most successful ones gain weight.

 Random Forest (BaggingBagging or bootstrap aggregating is an
ensembling method which trains independent andabtestlassifiers,
by using bootstrap replicate of the training setgd). Random Forest
(Breiman, 2001) operate by constructing a multitafidecision trees
at training time and outputting the class thahes thode (most often

value) of the classes output by individual trees.

» Stacked Descriptionan ensemble of classifiers is first trained using
bootstrapped samples of the training data, creTier 1 or first
class classifiers, whose outputs are then usedato &Tier 2 or
second class classifier or meta-classifier (Wo|[1992).

* Mixture of Expert:it is a similar concept thaBtacked Description,
where a first level of classifiers are trained gsibootstrapped
samples of the training data, but the combinatibrthe outputs is
made by simple combination rules, as random seleair weighted
majority. In here, a second level classifier onmgganetwork (usually
a neural network) is trained using the raw trainilaga to determine
the weight distribution of each classifier. Thegoral Mixture of

Experts (ME) model was introduced by Jacobs enhdl991.

» The strategy employed for combining the classifiergarticular, the way in

which the output of each classifier are combinedeyT includes Majority
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\Voting, Weighted Majority Voting, Naives Bayes Comdtion and

Multinomial Methods. The classification could be&ided in two depending

if the combination rules apply to class labels@mchass-specific continuous

outputs.

» Combining class label:

Majority voting it is technique (Kuncheva, 2004) where the
ensemble choose the class on which, all classif&ee
(unanimous voting), at least, one more than half thoé
classifiers are agree (simple majority) more cfassi agree

(plurality voting).

Weighted majority voting: is used when we imagine than
some classifier perform better than other, in tbase, we
weighted heavily those classifiers in order to iayar our
general performance (Kuncheva, 2004). There are lasic
approaches to know which weight should be give ng a
classifier, by using a validation data set or tlantng data set
(as AdaBoost), and estimate classifiers' futuréoperance.

Behaviour Knowledge Space (BK&§Jluang and Suen, 1993)
developed it firstly, and the procedure consistkeep track
of all the labelling combination of the ensemblditally the

class which more times appear on the combination.

Borda count:each classifier vote each class by rankings. At
the end , the most voted class is the chosen iretisemble
decision. It was first developed by Jean Charlesd8adn
1770.

» Combining continuous outputs

Algebraic combinersthe support for a class is obtained by a
simple function which includes all the support frat the
classifiers. Includes: Mean Rule, Weighted Average,

Minimum-Maximum-Median Rule, Product Rule and so on

Decision templates(Kuncheva, 2004) measure the similarity
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(Euclidean distance) between every ensemble owpdt a
template, created as averaged of decision probkeiwed in

each class throughout the training.

» Dempster-Shafer based combinatidhe final value is linear
combination of values of belief, instead of profighiwhich
is measured in proximity instead of distances. fhe®ry was
first introduced by Arthur Dempster and Glenn Shé&hafer,
1976).

Ensemble strategies could be also classified (Keweh2004) on:

Classifier selectioneach classifier is trained in a part of the datia having

a good knowledge of it. The combination of the siléers is then, based on
the vicinity of the instance, according to sometatise metric, then, the
closet classifier obtain the highest credit, inasrtb be chosen to make the

decision.

Classifier fusion all classifiers are trained over the entire featspace. The
combination involves merging the individual clagsg$ output (which are
normally normalized to the [0, 1] interval and enthae support of the
classifiers to posterior prediction) to obtain gewior performance. This
strategy based the combination in algebraic rutesaf rule, median rule,
maximum rule, etc), majority voting or weighted ordy voting , fuzzy

integral or the Dempster-Shafer based fusion.

Traditionally the ensembles have followed threallon structures:

Parallel: the classifiers train the data set (modified -baggior not)

independently and their output are combined.

Cascade or sequentialvhere the output of a classifier is the input o th

subsequent.

Mixed or Hierarchical:is an ensemble which is a mix of both structures

above.
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The key of the success of ensemble learning isdiliersity of the classifiers
(Kuncheva and Whitaker, 2003). There is not a tsttéfinition of diversity, but an
intuition. The intuition is that if each classifienakes different errors, then a
strategic combination of these classifiers can cedhbe total error, a concept not too
dissimilar to low pass filtering of the noise (FRali, 2009). When dealing with
diversity, the different authors refer to the diffiece of values obtained in the output

of the classifiers that form the ensemble.

Still, the relation between diversity and ensemialecuracy is ambiguous.
Nevertheless, many authors have tried to relate thed to generate more diverse
ensembles, by:

* Using different training datasets to train indivadlclassifiers. Bootstrapping
or bagging is a technique of re-sampling data &&al different data sets is
very expensive, also in terms of time.

» Uses of weak or more unstable classifiers couldwalto get different
decision boundaries.

* Use different training parameters for different seifiers, tuning the
classifiers in dissimilar way.

e Using completely different types of classifiers.

* Choosing feature selection methods, where eaclsifitasis trained in a

separate part of the training set.

Finally, there are many different ways to meashi diversity. Measuring diversity
is about measuring distance (Euclidean) betweentpg¢Kuncheva and Whitaker,
2003). Hence, when less correlated are the outfutise classifiers the better the
ensemble. In this sense, when the classifiersteeatg positively correlated the lack
of accuracy is slightly reduced, when the correfatis small or negative the
accuracy of the ensemble could be better (TurngéiGosh, 1996).

Diversity measures assess the degree of agreereemedn classifiers (Faria et al.
2013). They can be pairwise, between two classifigrnon-pairwise, the measure

takes into account all the classifiers in the eridem
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Some of the most used measures are (Kuncheva,:2004)

+ Pairwise:

Double-Fault Measurethe ratio of the number of observations on
which two classifier classify equally but wrong,tke total number of
observations.

Q-Statistic: measure the ratio of the number of observationsrevhe
the classifiers perform equally minus when theyfqren differently

to the total number of observations.

Interrater Agreement, kDefined by Kuncheva (2004) as the degree
of agreement while correcting by chance.

Disagreement MeasureDefined also by Kuncheva (2004), as the
ratio of the number of observations on which twasslfiers classify
differently to the total number of observations.

Correlation Coefficient:ithe diversity of two classifiers is inversely

proportional to the correlation between them (DAt)9).

*« Non-Pairwise:

Entropy Measure, Emakes the assumption that the diversity is higher
if half of the classifiers are correct and the ramma wrong.
Kohavi-WolpertVariance: is derived a decomposition formula fa th
error rate of the classifier.

Measurement of Interrater Agreement, Which is similar but not
equal to the average pairwise Kappa.

Measure of Difficulty:rrelated with the difficulty that classifiers meet
when trying to define the class of the data setiendistribution, for
instance, the same problem with the same datahallctassifiers
entails low diversity of the ensemble.

Generalized Diversityrelated with the probability of failure of a

randomly chosen classifier.

In the figure below (figure 5) it can be seen a swanze of different diversity

measures, in which is defined the correlation ef ¥hlue itself with the measure

(low value entail low or high diversity?), if it girwise or not and the reference.
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Name At P S Reference

Q-statistic Q ) Y Y (Yule, 1900)

Correlation coefficient P (1) Y Y (Sneath & Sokal, 1973)
Disagreement measure D ) ¥ Y (Ho, 1998; Skalak. 1996)
Double-fault measure DF 1) X N (Giacinto & Roli, 2001)
Kohavi-Wolpert variance kw 1t N Y (Kohavi & Wolpert, 1996)
Interrater agreement K ) N ki (Dietterich, 2000b; Fleiss, 1981)
Entropy measure Ent ) N Y (Cunningham & Carney, 2000)
Measure of difficulty a 1) N| N (Hansen & Salamon, 1990)
Generalised diversity GD 1) N N (Partridge & Krzanowski, 1997)
Coincident failure diversity CFD ) N N (Partridge & Krzanowski, 1997)
Note: The arrow specifies whether diversity is greater if the measure is lower () or greater (1). ‘P’ stands for
‘Pairwise’ and °S” stands for ‘Symmetrical’.

Figure 5. Summary of the measures of diversity @fava and Whitaker, 2003).

2.4 Accuracy assessment

The quality of LCLU map produced from the classifion of a satellite image is
estimated by measuring the accuracy between tlssifitation of the land-cover
made by any method and the reality. It is obvida tt is impossible to check the
behaviour of every method at any surface unit (piteence in our case; we do the
validation using the testing sample. The most commay to do this comparison is
by using a confusion/error matrix (Foody, 2002).this method, the classification
obtained by the methods at one place is compardd tive class defined in the
testing observation. If both classify in the sama&ywwe could say that there is
concordance, if not there is discordance. At thek @are sum up all the concordances
divided by the number of testing observations aedhave the Global Accuracy of
the method.

There are other measure of validation derived ftbenconfusion/error matrix, i.e.
Producer's Accuracy and User's Accuracy. The Pextiuéccuracy is defined as
probability of finding in the map the same clasat tihis been checking in the field.
The User's Accuracy is the probability to find etground the same class that it is
been pointed out in the map. As an example to beftderstand both accuracies, let
us use a class, like water bodies, which could lzavalue of hundred percent user's
accuracy and eighty percent producer's accuraogehevery water body in the map
is in the ground, but only eighty percent of theaewdodies in the reality are in the
map. There is an error of omission (in the mapdhdf producer's accuracy is higher

than the user's the error is of commission.
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Methodology

3.1 Study Area and Data Selection

3.1.1 Study Area

he study area is located in the centre of contaldportugal, in the administration
area of Alentejo, close to the mouth of the rivejol(figure 6). The reasons why this
area was selected are mainly, because is a flatvareh facilitate the preprocessing
stage, there are a wide variety of features (is tase, land use types) and it
coincides with one of the study areas that were uséhe LANDAU project, which

is essential to establish comparison between gesult

Figure 6. Location of the study area (Google Earth)

3.1.2 Data set

All the data needed is a Landsat 5 image from Z0Ql¥). This image has an spatial
resolution of 30 meters and 7 spectral bands, adfhothe sixth is not used

commonly in these kind of analysis. Instead, weehadded a synthetic band, a
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vegetation index band (NDVI), which is very helptalidentify the vegetation. The

idea of taking a summer image is because the atmosshould be clean of clouds
and the differences between the rain-fed and tigated agricultural fields should

be significantly noticeable.

We have chosen just one kind of satellite imadeamdsat (figure 7), being aware of
our limitations of time, although it will be moreaommended to try different spatial
resolution images, which allow us to get betterobasions of our work.

The image is available on-line and can be downldadem the following web

addresshttp://landsatlook.usgs.gav/

Figure 7. Landsat image from the study area

Other kind of ancillary data were used to deterntingetraining and the testing set to
train the algorithms, those data are:

» Aerial imagery (orto-rectified) with a spatial réstoon of 0,05 meters and a
spectral resolution of four bands, from the follogiyears (1995, 2005 and
2007).

» Forestry Inventory of Portugal, IF (2005).
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* CORINE Land Cover Cartography, CLC (2000, 2006).
e Carta de Ocupacao/Uso do Solo de Portugal, COS{200

3.1.3 Nomenclature

The nomenclature of the features that appear inL@uU maps were proposed in
the LANDAU project (Dinis et al. 2012). Only 11 oot 15 categories defined were
used in this work, due to the inapplicability oeth in this area. Hence, the final

categories in this work are keeping the same nameégodes than in LANDAU:

e 1.1 - Discontinuous Atrtificial Areas.
e 2.1 - Irrigated Agriculture.

» 2.2 - Non-Irrigated Agriculture.
* 2.3 -Rice crops.

» 3.1 - Broadleaved Forest.

» 3.2 - Coniferous Forest.

* 3.4 - Grassland.

* 3.5 - Shrubs-land.

4 - Bare-land.

6 - Wetlands.

7 - Water bodies.

3.1.4 Software

In this work, we have used different software. Mhatwas the software where the
image was treated as a matrix of data and wherethal algorithms were
implemented and the outputs, presented as valuascofacy or LCLU maps were
obtained. PrTool and Libsvm libraries were usedthie implementation of the
algorithms in Matlab.

We have also used Excel to analyse the resultpeesent some table and graphics.

Finally, the maps were displayed in ArcGIS.
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3.2 Methodological procedure

Following the theoretical evolution of the classii ensemble methodologies
(Polikar -2009- and Du -2012-) and their using ®mpte sensing imagery
classification, we have try to implement in Mattile most used and well known of
these methods. Also, taking into considerationahalysis of the data and results of
the LANDAU project, we choose some other ensemtiias we thought could fit
the analysis of the previous work.

The methods we have implemented are: Boosting TRasdom Forest, Boosting
Discriminant, Bagging Discriminant, Regularized ®iminant Classifier and a
SVM Ensemble Strategy. Below, we will describe tyig¢heir structure and our
motivation to include them in our dissertation (g8t3.2.2).

Firstly, it is necessary to explain that all of shemethods are supervised, which
entails to have a training data set to fit a mdotebur case, the ensembles) that can
be used to predict the not known values. And, alss required to have a testing set
to validate the accuracy of our prediction (in oase, classification).

3.2.1 Training and Testing Set and Validation

The training set is made up of 10980 sample podatgerministically extracted from
the satellite image by using the CORINE Land Co@artography (2006) and
ancillary data (Dinis et al, 2012b).

The testing set was recollected directly in thedgtarea. An amount of 550
observations taken in a random way and coveringoxppately equally all the
classes (Dinis et al, 2012b).

The quality of LCLU map produced from the classifion of a satellite image is
estimated by measuring the accuracy between tlssiftation of the land-cover
made by any method and the reality. It is obvida tt is impossible to check the
behaviour of every method at any surface unit (piteence in our case; we do the
validation using the testing sample. The most commay to do this comparison is
by using a confusion/error matrix. In this methtitg classification obtained by the
methods at one place is compared with the clagsetkin the testing observation. If

both classify in the same way, we could say thatethis concordance, if not there is
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discordance. At the end, we sum up all the concmes divided by the number of
testing observations and we have the Global Acgupathe method.

There are other measure of validation derived ftbenconfusion/error matrix, i.e.
Producer's Accuracy and User's Accuracy. The Pextiuéccuracy is defined as
probability of finding in the map the same clasattihis been checking in the field.
The User's Accuracy is the probability to find etground the same class that it is
been pointed out in the map. As an example to bettderstand both accuracies, let
us use a class, like water bodies, which could lzavalue of hundred percent user's
accuracy and eighty percent producer's accuraagehevery water body in the map
IS in the ground, but only eighty percent of theaavdodies in the reality are in the
map. There is an error of omission (in the mapdhdf producer's accuracy is higher

than the user's the error is of commission.

3.2.2 Ensemble methods description

As we assess in the beginning of chapter 3.2,ignstbction we are going to describe
all the methods that were used in this work. Thase Boosting Trees, Random
Forest, Boosting Discriminant, Bagging DiscriminafRegularized Discriminant
Classifier and SVM Ensemble Strategy.

* Boosting Trees: Classification tree analysis presgi@n effective collection
of algorithms for classifying remotely sensed dat#, has the limitations of
not searching for the optimal tree structure onbeadversely affected by
outliers, inaccurate training data, and unbalardagd sets (Lawrence et al.,
2004). Boosting is a technique developed to ineredassification accuracy
by forcing the learning algorithm to concentrate ¢mose training
observations that are most difficult to classifyi¢kd et al., 1999). Boosting
which is an adaptive and iterative training techmei@llows the combination
of trees to find the best structure and being is$ee to noise (Shapire,
1990). Boosting is one of the most important sgi@® in constructing
ensemble (figure 8). This ensemble constructioalss used in Du's work
(Du, 2012).
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Hix) = a h(x) 2 boosting

Figure 8. Boosting tree diagrdm

* Boosting Discriminant: The structure of this ensémis similar to the
previous, but instead of classification Trees, éhare a combination of
Linear Discriminant Classifiers (LDC), which hacketbest single classifiers
performance in the LANDAU project. The reasons ioase this ensemble
are the same that the exposed in the ensemble .aAl®ee to include the
most successful single classifier in the LANDAU jpit (LDC).

* Random Forest: It is one the most known classif@rsemble and it was
introduced by Breiman in 2001. The idea in thiseenisle is the using of
bagging to improve the performance of the combamaif classification
Trees. What bagging offers is a bootstrap replicdtthe training set with
replacement (kind of "bags"), (I,x) in the figurgi® which the different

Trees are trained, in order to get more diversithe outputs.

(I, x) (I, x)

tree 1 ' tree T

'DT|:C:|
I P lc) “

Figure 9. Random Forest diagram

3 http://www.iis.ee.ic.ac.uk/icvl/iccv09 tutorial.htm

4 http://www.iis.ee.ic.ac.uk/icvl/iccv09 tutorial.htm
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Bagging Discriminant: The strategy of the ensenibl® create determined
number of bootstrap replicate of the training s& o train them with (in
our case) LDC. Bagging is the other great ensersioégegy together with
boosting. Again, the most successful classifiltANDAU (LDC) is used in
this ensemble.

Regularized Discriminant Classifier: This is an@nble that could use the
bagging technique and the algorithms that trainrépicate of the training
data are a set of classifier constructed as arlinembination of Linear
Discriminant Classifier and Quadratic DiscriminaDlassifier (Maximum
Likelihood), being both of them the first and tleestl of them (figure 10).
This methodology is not very popular in the literat just maybe because is
not implemented in the main algorithms toolbox. Tilea of using this
ensemble came because these two single clasgffisrear Discriminant
Classifier and Quadratic Discriminant Classifieel ¢the highest accuracy in
the LANDAU project. Hence, we thought that an enslemwhere every
classifier is a combination of them (linear in tlese) should throw good

results.

* Regularized Discriminant Classifier (RDC):

~

S =008 a8

Train
« sample
<— Bags
RDCA005 RDCAo35 [||RDC)065 | || RDC)0.5 Pixel
classification
by Majority
RDCA20 ||RDCAoso || RDCAosgo \Vote

Figure 10. Regularized Discriminant Classifier (RDGgiam.

SVM Ensemble Strategy: this methodology was intoeduby Waske et al.
in 2010, and is based in a combination of Suppedt® Machine (SVM)
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which are trained with different features (imagends), also known as
feature selection (section 2.2). In this study (Méast al., 2010) the
ensemble bring good results and also, we try ackBkietplementation of a
single SVM and shows good results, hence we detdénclude this

methodology in our work.

3.2.3 Difference between proportions

Once, we obtain the values of accuracy (globathis case) it is necessary to know
if those values are significant or not. In othewds, if the increase of the accuracy
values that we are supposed to get with the enssmimoposed, will improve
significantly those results obtained with singlasslifiers in the LANDAU project.

In our case, it only makes sense to compare theesaf accuracy of our ensembles
with the best single classifier (higher accuraayl ANDAU, which is LDC.

In Kuncheva (2004) they are proposed some mettiams, which the most used are
the McNemar-test and the Z-test. Finally, the Mcldemest was used instead of the
Z-test, due to the hypothesis of independence legtw@oportions is violated
(Dietterich, 1998), since the testing set usedath studies, LANDAU project and

this dissertation, was the same.

3.2.4 Diversity between Classifiers outputs

Diversity is one the hottest topics at this momentthe classifiers ensemble
researching field. This novelty entails great idaad advances, but also confusion
and no consistent basis is built underneath. Is $ehse, many diversity measures
are developed and applied to solve the same probérth is the most appropriate
approach? It is something that it is still not cl@ere is an intuition about what it
is the contribution of diversity (Kuncheva and Véhkier, 2003), but not ground truth,
which is the most important concern about diverskipw diversity should be
measure? Which is the most reliable type of mea8uvéhat are the thresholds in
within the values of diversity of the classifief®sld be considered?

In this environment of uncertainty, we will try t@pply one the most applied
diversity measures, Double Fault, in order to prihveerelation between the diversity

of the classifiers and the higher value of accuracy
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The strategy followed will be to analyse only thesesembles with a significant
increase of accuracy. Then apply a pairwise meaddoeble Fault, in this case)
between a relevant amount of the classifiers withm ensemble and analyse the
values obtained (mean, maximum value, minimum).

Double-Fault measure, used also by Giacinto and R0I01), is based on the
concept that is more important to know when sirmdtas errors are committed
rather than when both classifiers are correct (lKena, 2004).

As an example of how to apply a pairwise measurea tensemble of various
classifiers, we will take the RDC ensemble. It igltbby 200 classifiers as linear
combination of LDC and ML. We need to compare tlessifiers pairwise; hence
the number of comparison needed to get the valu20®?, which is 40000
comparisons. We take a sample of them, 1% of tpelpton, 400 comparisons.
These values could be seen as a clue to go fusthmot in our deliberations and to
implement non-pairwise measures for the whole ebssmvhich seem to be more
appropriate. The reason to start by pairwise measigra matter of time. They are

much easier to implement and analyse than non-g@mueasures.
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4 Results and discussions

In this chapter will be presented, firstly the desobtained from the analysis of the
data and their processing, the findings discovdredhe interpretation of the
variables. Difficulties founded in the developmesft the methodology will be

commented as well and, finally, the comparisonooiuaacy between the ensembles.

4.1 Data analysis and processing

As it was referred before the data set, a Landsage from a continental area of As
it was referred before the data set, a Landsat enfegm a continental area of
Portugal (in the Alentejo region) coincides witheaof those which were used in the
LANDAU project. In this project a variety of singt#assifiers were used to classify
the satellite image and global accuracies obtanaeg from 76 to 82 (table 1 and 2),
being the Linear Discriminant Classifier (LDC) tloe which presents better
performance.

When analysing those results more deeply, includuser's and producer's
accuracies, it could be observed some phenomenehwduuld be a hint in the

further ensemble construction. We can observedridtiowing tables (table 1 and 2)

the performance of the algorithms in the clasdiicaof the different classes.

ACCURACY MATRIX (PRODUCER) ML LDC DQDC KNN PARZEN CART BMP | TOTAL ACCURACY BY CLASS
1.1 Artificial Discontinuous Areas 71 74 33 84 84 82 73
2.1 Imigated agriculture 79
2.2 Rain-fed agriculture 71 64 79 51 50 49 67 62
2.3 Rice fields 8L 62 83 81 81 7 76 78
3.1 Deciduous Forest 83 69 66 71 73 70 79 73
3.2 Broad-leaves Forest
3.4 Grassland
3.5 Shrub
4 Bare Soil
5Wet lands
6 Water bodies

TOTAL ACCURACY BY CLASSIFIER

Table 1. User's accuracy of LCLU maps from the mestesentative single classifiers (built from LAND project data).
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ACCLRACYMATRX (USER) | ML | LDC | DQDC | KNN | PARZEN | CART | BWP [TOTALACCURACY BYCLASS

1.1 Artificial Discontinuous Areas 63 63 56 70 72

2.1 Irigated agriculture 84 81 75 80
2.2 Rain-fed agricutture 82 8 80
2.3 Rice fields 83 69 80
3.1 Deciduous Forest 73 71 7 70 79 76
3.2 Broad-leaves Forest 74 71 73 72 8 i

34 Grassland 76
3.5 Shrub

4 Bare Soil
5Wet lands

6 Water hodies

TOTAL ACCURACY BY CLASSIFIER

Table 2. Producer's accuracy of LCLU maps fromntiost representative single classifiers (built fioANDAU project data).

In the table 3, it can be seen the meaning of ¢ih@ucs in the tables 1 and 2. Thus,
the red areas symbolize the classes where theitalgsr have had a great
performance. On the contrary, yellow areas meay performance of the classifier.

Orange, white and light brown colours represensthges in between.

VERY HIGH ACCURATE CLASSIFICATION (> 90%)
HIGH ACCURATE CLASSIFICATION (90%-85%)
MEDIUM ACCURATE CLASSIFICATION (85%-75%)

LOW ACCURATE CLASSIFICATION (75%-70%)
VERY LOW ACCURATE CLASSIFICATION (< 70%)

Table 3. Legend of colour in the error matrices.

From table 2, it can be observed that the perfoomawnt Maximum Likelihood
Classifier (ML) and LDC is better in most of thes$es than the rest of algorithms
(majority of red and orange cells in their columnghich could be seen as a hint to
build an ensemble from them. Artificial Neural Netk (ANN), Parzen classifier
and Classification and Regression Tree (CART) obthhe highest accuracy values
in some classes, which it could be thought as amargdge to build an ensemble
using these algorithms.

Table 1 shows that in some classes, like WaterdsodBare soil and Irrigated
agriculture the values of accuracy are high to rob#te classifiers, which is a proof
of intern invariability within these classes. Fuatltonclusions could be taken from
special combination of individual classes and atgors, like the high performance
of DQDC in Atrtificial Discontinuous Areas or BMP i8hrubs in Table 2. These

findings could be used to fine-tune an ensemblalifgd this algorithm to the
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ensemble) or when the focus of the study is to orethose classes and not all of
them.

4.2 Ensemble results and significance

The selection of ensembles used in this work ha lmarried out by literature

selection, choosing those multiple classifier systenore successful in the scientific
literature, and also guided by the analysis of d@ataset. Hence, in the following

lines we will describe the results associated foadrihese ensembles.

In the table below (table 4), it could be seenrammary of the best global accuracies
reached by all the ensembles and a comparison reshlts obtained in the

LANDAU project, using single classifiers.

Single Classifier Owerall Accuracy Ensemble Type Owerall Accuracy
LANDAU DISSERTATION
ML 81,00 Boosting Discriminant 83,40
LDC 82,00 Boosting Trees 83,45
DQDC 76,00 Bagging Discriminant 80,40
K-NN 78,00 Random Forest 83,20
PARZEN 78,00 RDC 85,60
CART 77,00 SVM Ensemble 82,50
BMP 79,00

Table 4. Summarize of the ensembles better results.

In the figure below (figure 11) it can be seen aptpic in which are represented the
global accuracies of both groups of classifiersigle classifiers used in the
LANDAU project (represented in blue at the bottorh tbe graphic) and the
classifiers ensembles used in this dissertatioprésented in red at the top of the
graphic). We can observe how generally the grougngembles get higher accuracy
than the group of classifiers used in LANDAU. We @so see how five out of six
ensembles get a higher value of accuracy than #s¢ $ingle classifier, Linear
Discriminant Classifier (LDC), the light blue line the bottom of the graphic. The
light red line on the top of the graphic makes ne&fiee to the higher global accuracy
reached in this work, by the RDC ensemble.
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Accuracy of Single Classifiers and Classifiers Ensembles

SVM Ensemble

RDC

Random Forest
Bagging Discriminant
Boosting Trees
Boosting Discriminant
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Figure 11. Global Accuracy of Classifiers used in LANDAU and Ensembles used in this dissertation.

In general, all the classifiers ensembles have had a better performance than the
single classifiers apart from the Bagging Discriminant ensemble, which get a global
accuracy of 80,4 %, being lower than the accuracy obtained by LDC and ML, 82
and 81 percent, respectively. RDC gets the higher value of accuracy, 85,6 %, almost
4 percent higher than the best single classifier, LDC.

The Bagging Discriminant classifier, as we said before, got the lower value,
according to Breiman (1996), the cause of this poor performance could be that
Bagging is effective on unstable learning algorithms where small changes in the
training set result in large changes in predictions, an example of these unstable
learning algorithms are neural networks and decision trees. LDC is extremely stable;
hence no good results should be expected from this multiple classifier system.
However, for data sets where the number of cases is small and the number of
features is large, LDC is no longer stable because small changes in the training set
might lead to large changes of the classifier. Bagging and “nice bagging” have been

found to work for unstable LDC (Kuncheva, 2004).

In this context of bagging, the ensemble Random Forest is a bagging of "Trees",
which are unstable classifiers and it was expected to get a higher results than the
Bagging Discriminant, then almost 3 more point of accuracy were obtained.

Random Forest have been one the most popular ensembles through the last decade.
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Boosting Discriminant and Boosting Trees ensemislesw good results, both

around 83,5 % of accuracy. In the case of Boodliisgriminant, the ensemble was
built by LDC algorithms. In the case of the Boogtifrees, the higher results were
showed using one hundred classifiers Trees. Theselts obtained by applying

boosting are better by themselves, but also thethmpstrategy avoids creating an
over-fitted classifier.

RDC, Regularized Discriminant Classifier, is thes@mble with better results (figure
12).

Legend
landsat_bagrdc_100 tif

l:l Bare soil

- Humid area

- Water body

- Urban area

- Irrigated agriculture
l:l Rainfed agriculture
[ |Rice field

- Broad-Leaved forest
- Deciduous forest
|:| Grassland

- Shrubs

T — s
0 700,400 2800 4200 5800

Figure 12. LCLU map, from Landsat image classifiggRDC ensemble.

Initially, the idea was to build a RDC ensembledaas the bagging strategy. After
the results obtained in the Bagging DiscriminardsSifier, we understood that this
strategy was not appropriate to this algorithm. d¢éenthe last version of the
ensemble was a two hundred classifiers ensemblef #iem trained in the same
dataset and with feature (bands) selection of dweof seven. The main reason to
choose this ensemble was that the performance=cfitigle classifiers LDC and ML
(type of Quadratic Discriminant Classifier), in thANDAU project was the best.
Hence, intuitively we decided to use an ensembighith every classifier is a linear
combination of both.
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Finally, we decide to apply a feature selectionrae ensemble of Support Vector
Machine (SVM) algorithms. This structure based Véaskork (Waske et al., 2010)
try to gain diversity from the feature selectiogess. SVM is an algorithm which
has been widely used in satellite image classiioafMountrakis et al., 2011) for
general land cover and land use tasks. Firstlyiried to implement a single SVM
algorithm, and we got an accuracy of 83,45%, whike us to think than an
ensemble of them could perform even better .Bdiditnot work in this way and an
ensemble of SVM with feature selection, only gotanuracy of 82,36 %. We faced
some problem in the programming step of the devedy of the ensemble and we
are aware that probably the structure of it is th@ most suitable to get better
results. We propose for further studies to go deepl this model, by better
implementing the code.

Once we get the percentages of accuracy of alingtbods used, we tested which of
them add a significant increase of accuracy indhssification of the image. The
difference of proportion methods are used to acdisimphis task. As we explain in
a previous section (section 3.2.3) we used the MuMetest. In the table below
(table 5), it is show the proportion between theuaacy of the best the single
classifiers from the LANDAU project , LDC with aalal accuracy of 82 %, and all

the ensembles built in this work.

COMPARISON OF CLASSIFIERS ENSEMBLES: McNEMAR TEST
LDC (Best LANDAU) | Boosting Discr.| Boosting Trees | Bagging Discr. | Random Forest| ~ RDC | SVM Ensemble
G. Accuracy | 82,00% 8340% | 8345% | 8040% | 8320% | 8560% | 82,36%
THE VALUE IN'THE TEST HAS TO BE HIGHER THAN 3,841.
Comparison Boosting Discr. | Boosting Trees | Bagging Discr. | Random Forest| ~ RDC | SVM Ensemble
L0C 0 07 075 | (138 | 035 | 95 01

Table 5. McNemar test between all the ensembleshantest single classifier.

McNemar Test assess that the value of the testeleetwwo classifiers (in our case a
single classifier and classifiers ensemble) havieetdigher than 3,841, to consider
significant the difference of accuracy between them

In our case, only the RDC ensemble obtains a higalele than 3,841, which is 9,5,

so only the difference of accuracy showed by thiseenble is significant in relation

to the best single classifier, LDC. It means thathave only increased significantly
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the value of accuracy for image classification bfstdataset with the RDC
ensemble. In this case, was completely unworthgpgend time in building any
classifiers ensemble, apart from the RDC enseniblis. something to have into
account, because not all the classifiers ensendilsignificantly better results than
single classifiers, and sometimes is more recomeenibt to spend time and
resources in building an ensemble, if the resuééshat considerably better.

4.3 Diversity measures

As it was said before, diversity is still a fieldhiwh need to be explored more
scientifically, and it will be a good purpose farrther research to analyse all these
ensembles and theirs diversity using different megsto try to find some
conclusions in one direction or the opposite.

As we explain in section 3.2.4, we only tried oneasure, Double-Fault measure.
We have applied the measure just to one ensenhigl@nily one with a significantly
higher value of accuracy than the best single iflassised in the LANDAU project
(LDC). This ensemble is RDC and by applying thigedsity measure, we wanted to
check if its success was because its high valaivefsity.

Also, it was exposed in the section 3.2.4 thatRIREC ensemble was built by 200
classifiers as linear combination of LDC and ML, igth entails 40000 pairwise
comparisons between them. We take a sample of tws@arison and we get the

results showed in the table below (table 6).

DIVERSITY MEASURES

Double Fault | It is a Pairwise Measure
RDC with 200 CLASSIFIERS entails 40000 Pairwise Measures (Comparison),
So we took a Sample (1%, 400 MEASURES).

MIN VALUE MAXVALUE | MEAN VALUE CONCLUSIONS:
14,50% 46,00% 22,91% LOW VALUES OF DIVERSITY BETWEEN CLASSIFIERS
Generalized Diversity??? Itis Non-Pairwise Measure
No need for using it. The values of Double Fault may indicate its uselessness.

Table 6. Double-Fault diversity measures results.

In this test, the double-Fault measure of diverbyween classifiers, we observed
that the diversity between the classifiers witlia €nsemble, is not too high, being
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the highest score recorded 46 out of 100 (higheslof diversity are considered
from 80). Hence, we can conclude that diversitysdoet explain the success of the

RDC ensemble when classifying a Landsat image.

At least, this diversity measure does not showdgesults, as it used to happen in
many studies (Kuncheva, 2003; Dutta, 2009; Farial.et2013). It is probable that
the utilization of a non-pairwise diversity measuas the Generalized Diversity
measure, to quantify the diversity of the RDC endemcould be more suitable for
this study, but the approach and the coding prosesstoo complex to go into it in
this work. Going further in those diversity measure a researching line which
could be very interesting in the future.

The approach of the Double-Fault measure was datie the intention to test
randomly the diversity between classifiers in tHe(Rensemble. It has been prove
to be effective and very straightforward to implemeSince not stimulating
diversity values were obtained, we refused to gthér in our research and not to

try another diversity measures.
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5 Conclusions

The initial objective of this work was to prove tha classifiers ensemble can
perform better than strong single classifiers ia thsk of classification of remote
sensing images. In most of the cases we have abtihie results were better than
the results from the best single classifier (LDGgd in the LANDAU project. Of
course, we are referring in terms of accuracy, Wwimot always means in terms of
map quality. We will analyse this later on in thection.

One of the statement that have to be more in owmdsnis the "No Free-Lunch
Theorem”, which basically set up that there is apimal solution for every
circumstances, there is no optimal classifier, rothis case, classifiers ensemble,
which fit for every data set. Hence, no further dasions could be taken from this
work, apart from that this data set (a Landsat enag best classified by the RDC
ensemble. But we do not know the behaviour of thissemble in other
circumstances.

Another statement, which made the classifiers ebkemo be in the centre of the
machine learning research, is the possibility afdig a strong classifier from a
combination of weak classifier. This is the baséhef Boosting theory developed by
Schapire.

In our case, the results from the Boosting Disamemt and Boosting Trees
ensembles were better than those from the singissiflers but they were not
spectacular, as could be thought at the beginninth® process. Boosting was
thought for weak classifiers, those that show aruxcy of 50% or less (Schapire,
1996), and “our” single classifiers were not thaak, since they have around 80%
of accuracy. This reason could explain better louspectacular results.

We can assess that our results for those ensenhioté ¥ollow the Bagging strategy,
give consistency to the statement of Breiman whastablishes that the bagging
strategy for ensemble works better for unstablesdigrs (Breiman, 1996), those
where small changes in the training set resulaigd changes in predictions, as our
Trees (CART). In fact, the performance of the baggiDC was worse than the
performance of the LDC, as a single classifierellduncheva also relate in his book
(Kuncheva, 2004), no good results could be expedtech a multiple linear
discriminant system using bagging.

Xlvi



One of the deceptions of this work was the perforceaof the SVM ensemble with
feature selection. When we run the SVM as a simigessifier, we got a high
accuracy value, sometimes higher than the one getLMC (82%), which guides
us to think in better results when applying a gradpghem in the same system.
Unfortunately the output was even worse than the obtained with the simple
algorithm. We are sure that we missed somethinghé process of coding the
algorithm, because the ensemble seems to be veverppd (Waske, 2011). We
were, also trying to fine-tune the ensemble butdinacture of the SVMs is very
hard to understand (like the different kind of lais parameter, sort margin
parameter and alpha value). Hence, finally we didhave time to better develop a
SVM ensemble. However, further work could be domehis direction, since the
strength of this methodology could be very high.

Once, we obtained the results of accuracy of osembles, the next step was to
confirm how good were our scores and testing thgnifstance of them in
comparison with the best of the accuracy mark engimgle classifiers. We applied
one of the most used differences of proportion waththe McNemar Test, to check
the importance of the output of the classifierseemsle trained in this work. As we
argued before, McNemar Test was selected becaube character of the validation
dataset. The McNemar Test showed up that the eonppitant value of accuracy
from all the ensembles that were tested in thiskvidthe one achieve by the RDC
ensemble, 85,6 %.

Then the following question to answer is why the@RBnsemble is the one which
get a higher value of global accuracy rather thla@ other multiple classifier
systems.

We slightly faced this question under the pointvadw of the diversity of the
ensemble. As we see before, we applied the Douldt-Fneasure to the RDC
ensemble to figure out if the diversity betweenirtio hundreds classifiers was
high enough to explain the value of global accurddye result was negative, the
values of diversity were far away from top valuBsen, as we thought that the
Double-Fault measure was not the best approachltolate the diversity, because
is a pairwise measure, not actually design for riées, it calculate the diversity
very straightforward and could be taken as an atdic In fact, after getting these
extremely low values of diversity we gave up to lgmmother kind of measure. It
could be an interesting topic for further investiga, because we still have
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problems in understanding the concept of diversitgounds intuitive (Kuncheva,
2003) that having a group of different classifigrisich produce different outputs
should better than having a group of similar classiwhich produce the same
outputs, in the last case it does not make senbeild an ensemble, since one of
them could show up the same results.

If we have in consideration that many ensemblekwetter than a single classifier,
we should think that the variation that differelgaaithms add to the whole system
must be positive. Under our perspective, two proisleppear, when we deal with
the concept diversity, the thresholds and the nreas®bviously, it seems clear that
certain degree of variance between the elemerdas @nsemble will give to it more
power to predict, but which are these thresholdiwithe diversity, where the
ensemble gain strength. As an example, two conipleliferent algorithms that
produce extremely different outputs do not creatpowerful ensemble, but the
contrary. Hence, how much different should be tigerahm between them within
the ensemble is still a mystery.

There are many measures approved by the scieoifitnunity, most of them come
from Kuncheva and Whitaker (2003), to calculate dheersity between classifiers
or within the ensemble, and many more are beingldped at present, but we
consider that there are still not science overethér lot of mysteries, a lot of
incongruences, a lot of eager to measure somethiaigeven is not completely
explained. How can you find in the literature foetlast ten years, more than ten
different measure to calculate the same thing®2dtrs to us that many efforts are
being done in this direction to clarify the terndahe way to used and measure, but
it is still insufficient.

Then, to finally answer the question about whyRi®C ensemble produces the best
outputs, we were analysing how the algorithms witthie ensemble work. RDC or
RDA, as it was defined by Friedman (1989), is aulagzed version of the
discriminant analysis. The ensemble of RDC takesynimear combinations from
LDC to QDC as defined. So the objects, in our gagels, could be classified by
using a common covariance to all of them as happethe LDC, a unique
covariance to each of them like occur in the QD@wrything which is between of
both classifiers. So, we can argue that the suaokefiis ensemble resides in the
versatility to build covariance matrices a la cameorder to explain the behaviour
of the variables and also do better prediction.
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Finally, having a look over the maps that were pomdl by using the all the
classifiers ensembles, including the map generatad the best single classifier
(LDC) and a google map image of the study areai(@dl3), we can see how the
differences on classification are independent efdbgree of accuracy.

Figure 13. LCLU maps, from Landsat image classifisdall ensembles analysed and

google map imageFrom left to right and from up to the bottom, fallmg the scores of
global accuracy from lower to higher these map®rglto: Bagging Discriminant (1),
LDC (2), SVM ensemble (3), Random Forest (4), Boodbéscriminant (5), Boosted
Trees(6) and RDC ensemble (7), respectively.

Looking at the maps, it is hard to say which isniep with the best appearance. At
a first glance, it could be said that the secohe, fourth and the seventh maps
(following the order in the figure 13) show a ma@mpact structure. Their global
accuracies values are 82%, 83,2% and 85,6%, resggct

For further research it would be taken in consiti@naa deep study about diversity

and the different diversity measures, and alsotietbenplementation of the SVM

ensemble by using feature selection, which seerafféogreat results.
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Annex | — Confusion Matrix of the Classifiers End#es

ACCURACY MATRIX ML LDC DQDC KNN PARZEN CART BMP TOTAL ACCURACY BY CLASS
1.1 Artificial Discontinuous Areas 78 73 63 73 74 69 78 73
2.1 Irrigated agriculture 80
2.2 Rain-fed agriculture 74 73 73 66 68 65 73 70
2.3 Rice fields 87 76 7 80 80 77 72 78
3.1 Deciduous Forest
3.2 Broad-leaves Forest
3.4 Grassland
3.5 Shrub
4 Bare Soil
5 Wet lands
6 Water bodies

TOTAL ACCURACY BY CLASSIFIER

Table 7. Global accuracy of LCLU maps of more reprgative single classifiers (built from LANDAU pect data).



Bare Soil
Wetlands
Water body
Urban Area
Irrigated agri.
Rainfed agri.
Rice field
Broad-leav. F
Deciduous F
Grassland
Shrub

~N o »~ O

21
22
23
31
32
34
35

Shrub -

Bare Sail Wetlands ~ Water body ~ Urban Area Irrigated agri. Rainfed agri.  Rice field  Broad-leav. F Deciduous F  Grassland
4 6 7 12 21 22 23 31 32 34 35
35 0 0 0 0 2 0 0 0 0
0 15 0 0 0 0 2 0 0 0 0
0 6 65 0 0 0 0 0 0 0
0 0 0 38 11 0 0 0 0 0
0 1 0 0 42 0 9 3 0 0 0
0 0 0 9 0 50 0 0 0 2 0
0 12 0 0 0 0 27 0 1 0 0
0 0 0 1 1 0 0 27 4 1 0
0 0 3 0 0 0 2 9 37 0 1
0 0 0 0 0 7 1 1 0 53 9
0 0 0 1 1 1 0 2 1 4 53

Table 8. Error matrix of LCLU map get from BaggiDgscriminant ensemble.
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Bare Soil
Wetlands
Water body
Urban Area
Irrigated agri.
Rainfed agri.
Rice field
Broad-leav. F
Deciduous F
Grassland
Shrub

~N o »~ O

21
22
23
31
32
34
35

Shrub -

Bare Sail Wetlands ~ Water body ~ Urban Area Irrigated agri. Rainfed agri.  Rice field  Broad-leav. F Deciduous F  Grassland
4 6 7 12 21 22 23 31 32 34 35
35 0 0 0 0 2 0 0 0 0
0 15 0 0 0 0 2 0 0 0 0
0 6 65 0 0 0 0 0 0 0
0 0 0 38 11 0 0 0 0 0
0 1 0 0 42 0 9 3 0 0 0
0 0 0 9 0 50 0 0 0 2 0
0 12 0 0 0 0 27 0 1 0 0
0 0 0 1 1 0 0 27 4 1 0
0 0 3 0 0 0 2 9 37 0 1
0 0 0 0 0 7 1 1 0 53 9
0 0 0 1 1 1 0 2 1 4 53

Table 9. Error matrix of LCLU map get from BoostiDgscriminant ensemble.
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Bare Soil
Wetlands
Water body
Urban Area
Irrigated agri.
Rainfed agri.
Rice field
Broad-leav. F
Deciduous F
Grassland
Shrub

Bare Soil Wetlands Water body Urban Area Irrigated agri. Rainfed agri. Rice field Broad-leav. F  Deciduous F  Grassland Shrub -

4 6 7 12 21 22 23 31 32 34 35
34 0 0 0 0 2 0 0 0 0 0
0 36 5 0 0 0 0 0 0 0 0
1 3 52 0 0 0 0 0 0 0 0
0 0 0 45 0 20 0 0 0 2 0
0 0 0 0 39 0 4 3 0 0 0
0 0 1 3 0 47 0 0 0 0 0
0 3 1 0 1 0 36 0 0 0 0
0 0 0 0 1 0 0 31 2 1 0
0 0 1 0 0 0 3 6 39 0 2
0 0 0 0 0 3 1 1 0 54 13
0 0 0 1 0 0 0 2 2 3 46

Table 10. Error matrix of LCLU map get from Boostihrees ensemble.
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Bare Soil
Wetlands
Water body
Urban Area
Irrigated agri.
Rainfed agri.
Rice field
Broad-leav. F
Deciduous F
Grassland
Shrub

Bare Soil Wetlands Water body Urban Area Irrigated agri. Rainfed agri. Rice field Broad-leav. F  Deciduous F  Grassland Shrub -

4 6 7 12 21 22 23 31 32 34 35
32 0 0 0 0 3 0 0 0 0 1
0 36 6 0 0 0 1 0 0 0 0
1 3 52 0 0 0 0 0 0 0 0
2 0 0 46 0 19 0 0 0 1 0
0 0 0 1 41 0 5 2 0 0 0
0 0 1 1 0 46 0 0 0 0 0
0 3 0 0 0 0 35 1 0 0 0
0 0 0 0 0 0 0 31 1 1 3
0 0 1 0 0 0 2 6 40 0 1
0 0 0 0 0 4 1 1 0 55 12
0 0 0 1 0 0 0 2 2 4 43

Table 11. Error matrix of LCLU map get from RandbBorest ensemble.
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Bare Soil
Wetlands
\Water body
Urban Area
Irrigated agi.
Rainfed agri.
Rice field
Broad-leav. F
Deciduous F
Grassland
Shrub

Bare Soil Wetlands Water body Urban Area Irrigated agri. Rainfed agri. Rice field Broad-leav. F  Deciduous F  Grassland  Shrub -

4 6 7 12 21 22 23 31 32 34 85
34 0 0 0 0 2 0 0 0 0 0
0 29 0 0 0 0 5 0 0 0 0
0 4 63 0 0 0 0 0 0 0 0
0 0 0 44 0 7 0 0 0 0 0
0 1 0 0 42 0 7 3 0 0 0
0 0 1 5 0 57 0 0 0 4 0
0 2 0 0 0 0 26 0 0 0 0
0 1 0 0 0 0 0 34 2 1 1
0 0 1 0 0 0 3 3 38 0 1
0 0 0 0 0 5 1 1 0 51 8
0 0 0 1 1 0 0 1 3 4 53

Table 12. Error matrix of LCLU map get from RDC enble.
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Annex Il — Ensembles implementation Code, an exampl

RDC ensemble code, implemented in Matlab.

1. Algorithm definition:

function  outclass = rdc(sample,training,group,type,prior,al pha)

% Input 'type’ is not to be used
type = [J;
% grp2idx sorts a numeric grouping var ascending, a nd a string
grouping
% var by order of first occurrence
[gindex,groups,glevels] = grp2idx(group);
nans = find(isnan(gindex));
if ~isempty(nans)
training(nans,:) = [J;
gindex(nans) = [];
end
ngroups = length(groups);
gsize = hist(gindex,1:ngroups);
nonemptygroups = find(gsize>0);
nusedgroups = length(nonemptygroups);
if ngroups > nusedgroups
warning(message( 'stats:classify:EmptyGroups' );
end
[n,d] = size(training);
if size(gindex,1) ~=n

error(message( ‘stats:classify:TrGrpSizeMismatch' );
elseif  isempty(sample)
sample = zeros(0,d,class(sample)); % accept any empty array but

force correct size
elseif  size(sample,2) ~=d
error(message( 'stats:classify:SampleTrColSizeMismatch' );
end
m = size(sample,1);

% if nargin < 4 || isempty(type)
% type ='linear"
% elseif ischar(type)

% types =

{'linear','quadratic','diaglinear’,'diagquadratic’, ‘mahalanobis'};
% type = internal.stats.getParamVal(type,types, ‘TYPE");

% else

% error(message('stats:classify:BadType");

% end

% Default to a uniform prior
if nargin <5 || isempty(prior)
prior = ones(1, ngroups) / nusedgroups;
prior(gsize==0) = 0;
% Estimate prior from relative group sizes
elseif  ischar(prior) && strncmpi(prior, ‘empirical’ Jlength(prior))
%~isempty(strmatch(lower(prior), ‘empirical’))
prior = gsize(:)' / sum(gsize);



% Explicit prior
elseif  isnumeric(prior)

if min(size(prior)) ~= 1 || max(size(prior)) ~= ngrou ps
error(message( 'stats:classify:GrpPriorSizeMismatch' );
elseif  any(prior < 0)

error(message( ‘stats:classify:BadPrior' );

end

%drop empty groups
prior(gsize==0)=0;
prior = prior(:)' / sum(prior); % force a normalized row vector
elseif  isstruct(prior)
[pgindex,pgroups] = grp2idx(prior.group);

ord = NaN(1,ngroups);
for i=1:ngroups
j = find(strcmp(groups(i), pgroups(pgindex)))
if ~isempty(j)
ord(i) = j;
end
end
if any(isnan(ord))
error(message( 'stats:classify:PriorBadGrpup’ );
end
prior = prior.prob(ord);
if any(prior < 0)

error(message( ‘stats:classify:PriorBadProb’ );
end
prior(gsize==0)=0;
prior = prior(:)' / sum(prior); % force a normalized row vector
else
error(message( 'stats:classify:BadPriorType' );
end
% Add training data to sample for error rate estima tion

if nargout>1
sample = [sample; training];

mm = m+n;
else

mm =m;
end

gmeans = NaN(ngroups, d);
for k = nonemptygroups
gmeans(k,:) = mean(training(gindex==k,:),1);

end

% Linear

% computed without unpermuting. Instead use SVD to find rank of R.
[Q,R] = gr(training - gmeans(gindex,:), 0);

R = R/ sqgrt(n - nusedgroups); % SigmaHat = R*R

% Quadratic

D = NaN(mm, ngroups);

logDetSigma = zeros(n,1);

for k = nonemptygroups

[Q,RK] = gr(bsxfun(@minus,training(gindex==k,:) ,gmeans(k,:)),

0);

Rk = Rk / sqgrt(gsize(K) - 1); % SigmaHat = R*R
% the average between Rk and R

Rk = alpha*Rk + (1-alpha)*R;
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s = svd(RK);
if any(s <= max(gsize(k),d) * eps(max(s)))

error(message( ‘stats:classify:BadQuadVar'
end
logDetSigma(k) = 2*sum(log(s)); % avoid over/underflow
A = bsxfun(@minus, sample, gmeans(k,:))/Rk;
D(:;,k) = log(prior(k)) - .5*(sum(A .* A, 2) + | ogDetSigma(k));
end
% find nearest group to each observation in sample data
[maxD,outclass] = max(D,[],2);
%Convert outclass back to original grouping variabl e type

outclass = glevels(outclass,:);
end

2. Accuracy Assessment:

load( '../data/mat/landsat_a.mat' );

%% The inputs

nparts = 200;

pfeat = 0.8;

ptrain = 1.0;

freplace = 0; % feature replacement
treplace = 1; % training unit replacement

%% Processing

ntrain = size(datatr,1);

k = floor(pfeat*size(datatr,2));
nbands

m = floor(ptrain*size(datatr,1));

% alpha ranging from 0 to 1 in 0.01

alpha =1];
factor = 1/nparts;
for i=0:nparts
alpha = [alpha; factor * i];
end

outclasses = [J;
for i= 1:length(alpha)
fidx = randsample(nbands,k,freplace);
tidx = randsample(ntrain,m,treplace);
outclass = rdc(datats(:,fidx),datatr(tidx,fidx)
(.0.alpha(i);
outclasses = [outclasses outclass];
end

outclass = mode(outclasses,?2);
%% Validate the model

labelf = [];
for i= 1:length(labelts)

% should be <= n. of features, i.e.

% n. of training samples

Jabeltr(tidx),
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if outclass(i)==labelts(i,1) || outclass(i)==labelts(
labelf = [labelf; outclass(i)];
else
labelf = [labelf; labelts(i,1)];
end
end

[C codes] = confusionmat(outclass,labelf);
OA = sum(diag(C))/sum(C(3));

PA = diag(C)"./sum(C,1);

UA = diag(C)./sum(C,2);

EM=C;

EM = [EM UA];

EM = [EM; PA OA];

EM = [[codes; 0] EM];
EM = [0 codes' 0; EM];

3. LCLU map creation:

%% Input data

matname = '.\data\mat\Landsat_A.mat’ ;
load(matname);
%% Process stuff

% This is my random forest function
map = rdc(image,datatr,labeltr,[] ,5 ,0.005);

% reshape this into a map format
map = reshape(map,nrows,ncols);

%% Output it

imwrite(uint8(map), ".\data\single_maps\landsat_RDCL.tif’
'../data/single_maps/landsat_ RDC1.tfw'

worldfilewrite(refmat,
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