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ABSTRACT. In this paper we consider the conformal type (parabolicity or non-parabolicity)
of complete ends of revolution immersed in simply connected space forms of constant sec-
tional curvature. We show that any complete end of revolution in the 3-dimensional Eu-
clidean space or in the 3-dimensional sphere is parabolic. In the case of ends of revolution
in the hyperbolic 3-dimensional space, we find sufficient conditions to attain parabolicity
for complete ends of revolution using their relative position to the complete flat surfaces of
revolution.
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1. INTRODUCTION.

Let Σ be a complete and non-compact surface. Let D ⊂ Σ be an open precompact
subset of Σ with smooth boundary. An end E of Σ with respect to D is a connected
unbounded component of Σ \ D. An end E is parabolic ([MP04, Li00, Gri99]) if every
bounded harmonic function on E is determined by its boundary values.

This paper is concerned with the study of the conformal type (parabolicity or non-
parabolicity) of complete ends of revolution immersed in the 3-dimensional Euclidean
space R3, in the 3-dimensional hyperbolic space H3, or in the 3-dimensional sphere S3.
Let us denote by M3(κ) the simply connected space form of constant sectional curvature
κ ∈ R. Hence, M3(1) = S3, M3(0) = R3, M3(−1) = H3. An end of a complete surface
in M3(κ) is a complete end of revolution if there exists a geodesic in M3(κ) such that the
end is invariant by the group of rotations of M3(κ) that leaves this geodesic point-wise
fixed. More precisely, an end of revolution will be the rotation along a geodesic ray γ of
M3(κ) of a generating smooth curve β : [0,∞) → M2(κ) contained in a totally geodesic
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2 V. GIMENO AND I. GOZALBO

FIGURE 1. The c-cone (or the set of points at a fixed distance from a ge-
odesic) and the horosphere are the only complete flat surfaces immersed
in H3. Everyone of these flat surfaces divides H3 in two parts. If an
end of revolution is contained on a c-cone, or on (inside) a horosphere
(horoball), the end is parabolic.

hypersurface M2(κ) where the ray γ belongs. In order to guarantee the smoothness and
that the end is the end of a complete surface we require that the generating curve β be
regular, with infinite longitude and does not intersect the geodesic ray γ.

The conformal type of a Riemannian manifold has been largely studied. In particular
in [Tro99] sufficient and necessary conditions for the parabolicity of a manifold with a
warped cylindrical end were provided, in [Gri99] rotationally symmetric manifolds were
analyzed, and in the examples of [HP11, MP10] certain surfaces of revolution in R3 have
been studied from an extrinsic approach. Our first result characterizes the conformal type
of complete ends of revolution in R3 or in S3

Theorem A. Any complete end of revolution in R3, or in S3, is a parabolic end.

The conformal classification of ends of revolution in H3 becomes more complicated.
In the hyperbolic space there is no restriction on the conformal type of ends of revolution.
Actually, in Section 9 we will show examples of parabolic and non-parabolic ends in H3.
In the half space model of the hyperbolic space,

(1.1) H3 :=
{

(x1, x2, x3) ∈ R3 : x3 > 0
}
, gH3 =

1

x2
3

(
dx2

1 + dx2
2 + dx2

3

)
,

we can provide a sufficient condition for parabolicity using a c-cone. Given c ∈ R+, a
c-cone is the rotation along the z3 axis of curve

(1.2) β : (0,∞)→ H3, β(t) = (t, 0, ct).

Any c-cone divides the hyperbolic space H3 in two parts (see figure 1). One part on the
c-cone and the other part down the c-cone. Using this partition property of the c-cones we
can state the following Theorem

Theorem B. Let E be a complete end of revolution in H3. Suppose that the end E is
contained on a c-cone for some c > 0. Then, the end E is parabolic.

An other sufficient condition can be provided using horospheres

Theorem C. Let E be a complete end of revolution in H3. Suppose that the end E is
contained on the horosphere {x3 = z} for some z > 0. Then, the end E is parabolic.

By using the above Theorem we can characterize the conformal type of ends of revolu-
tion immersed inside of a compact set of the hyperbolic space.

Corollary D. Let E be a complete end of revolution in H3 contained in a compact set of
H3. Then, E is a parabolic end.

Moreover, theorem C allow us to know that complete non-parabolic ends of revolution
in H3 approaches to the {x3 = 0} plane.
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Corollary E. Let E be a complete and non-parabolic end of revolution in H3. Then,

inf
p∈E

x3(p) = 0.

The conformal type of a surface is related with the transcience or recurrence of the
Brownian motion. The simplest way to construct Brownian motion on a surface is to
construct first the heat kernel which will serve as the density of the transition probability.

Given a surface Σ with Laplacian 4, the heat kernel on Σ is a function p(t, x, y) on
(0,∞)× Σ× Σ which is the minimal positive fundamental solution to the heat equation

(1.3)
∂v

∂t
= 4v.

In other words, the Cauchy problem

(1.4)


∂v

∂t
= 4v

v|t=0 = v0(x)

has solution

(1.5) v(x, t) =

∫
Σ

p(t, x, y)v0(y)dA(y),

where dA is the volume element of Σ. The Brownian motion on a surface is called recur-
rent if it visits any open set at arbitrarily large moments of time with probability 1, and
transcient otherwise. The Brownian motion on Σ is transcient (see [Gri99, Ahl52, Has60])
if ∫ ∞

1

p(t, x, x)dt <∞

Otherwise, the Brownian motion on Σ is recurrent. Given a complete and non-compact
surface Σ and an open precompact set D ⊂ Σ, the Brownian motion is recurrent, if and
only if, every end of Σ with respect to D is parabolic.

Another property of the Brownian motion to be considered in this paper is stochastic
completeness. This is a property of a stochastic process to have infinite lifetime. In other
words, a process is stochastically complete if the total probability of the particle being
found in the state space is constantly equal to 1. For the Brownian motion this means

(1.6)
∫

Σ

p(t, x, y)dA(y) = 1,

for any t > 0. Namely, the heat kernel is an authentic probability measure. For complete
ends of revolution we can state

Theorem F. Let Σ be complete and non-compact surface of finite topological type im-
mersed in M3(κ) with κ ∈ R. Suppose that there exists a compact subset Ω ⊂ Σ of Σ
such that every end of Σ with respect to Ω is an end of revolution in M3(κ). Then, Σ is
stochastically complete.

Hoffman and Meeks proved in [HM90] that a properly immersed minimal surface in
R3 disjoint from a plane is a plane. Otherwise stated, if M is a minimal surface properly
immersed in R3 and for some c > 0, M ∩ {z > c} 6= ∅, then either M ∩ {z = c} 6= ∅, or
M is a plane parallel to {z = c}.

For the hyperbolic space, Rodriguez and Rosenberg proved in [RR98] that every con-
stant mean curvature one surface M , properly embedded in a horoball B ⊂ H3 such that,
M ∩ ∂B = ∅, is a horosphere. As a surprising corollary of Theorem F we obtain

Theorem G. Let M be a complete non-compact surface of revolution properly immersed
in H3. Suppose M ∩B 6= ∅ for some horoball B ⊂ H3 then,

(1) if M has negative sectional curvature, M ∩∂B 6= ∅ (otherwise stated, M touches
the horosphere ∂B).



4 V. GIMENO AND I. GOZALBO

(2) If M has constant non-positive sectional curvature and M ∩ ∂B = ∅, M is a
horosphere.

(3) If M has constant mean curvature with ‖ ~H‖ ≤ 1, and M ∩ ∂B = ∅, M is a
horosphere.

1.1. outline of the paper. The structure of the paper is as follows
In Section 2 we introduce the definitions of complete end of revolution and we study

the relation with the isometry and isotropy group of M3(κ). In Theorem 2.3 and corollary
2.5 we prove that any complete end of revolution can be considered as a submanifold
smoothly immersed in M3(κ), and intrinsically each end of revolution is endowed with
a warped product metric. Indeed, in Corollary 2.7 is proved that any end of revolution
is isometric to a rotationally symmetric 2-dimensional manifold where a geodesic ball is
subtracted. That allow us, by using the well known criteria for parabolicity of rotationally
symmetric model manifolds, to obtain Theorem 2.11 and Corollary 2.12 where sufficient
and necessary conditions for the parabolicity in terms of the warped function of each end
of revolution are provided. In Subsection 2.4 making use of conformal models of M3(κ)
we obtain the explicit expressions of such warping functions. With these techniques we
can prove Theorems A, B, C, F and G in Sections 3, 4, 5, 6, and 7 respectively. Finally,
Section 9 deals with several examples of application of the main Theorems.

2. PRELIMINARIES.

2.1. Isotropy group and Ends of revolution in M3(κ). The only (up to scaling) 3-
dimensional simply connected Riemannian manifolds with a 6-dimensional isometry group
are:

(1) The Euclidean space R3 with vanishing curvature.
(2) The hyperbolic space H3 with constant sectional curvature on each tangent plane

κH3 = −1.
(3) The sphere S3 with constant sectional curvature on each tangent plane κS3 = 1.

In this paper we denote by M3(κ), the simply connected space form of constant sectional
curvature κ ∈ R. On each point p ∈M3(κ) the isotropy subgroup stab(p) of the isometry
group at p is O(3), actually, see [Pet98] for instance, R3 =

(
R3 oO(3)

)
/O(3), S3 =

O(4)/O(3), H3 = O(1, 3)/O(3).
Given a point p ∈ M3(κ), and an unit vector v ∈ TpM3(κ). We will denote by γv the

geodesic curve starting at p with direction v, namely

(2.1) γv : R→M3(κ), t→ expp(tv).

Since any isometry ϕ ∈ stab(p) fixes p, the pushfordward ϕ∗ : TpM3(κ) → TpM3(κ)
induces an automorphism in TpM3(κ). That allow us to obtain the faithful linear isotropy
representation ρ : stab(p)→ GL(TpM3(κ)). Let us define

(2.2) Rv := {ϕ ∈ stab(p) : ϕ∗(v) = v, det(ϕ∗) = 1} .
If we choose the orthonormal basis {v,E1, E2} of TpM3(κ), for any ϕ ∈ Rv there exists
θ ∈ [0, 2π) such that

(2.3) ρ(ϕ) =

1 0 0
0 cos(θ) − sin(θ)
0 sin(θ) cos(θ)


ThenRv is a Lie group isomorphic (and diffeormorphic) to SO(2) and can be understood
as a rotation along γv because for any ϕ ∈ Rv we have ϕ ◦ γv(t) = ϕ(exp(vt)) =
exp(ϕ∗(v)t) = exp(vt) = γv(t). We can show not only that the points of γv are left fixed
by the action ofRv , but actually that γv is the set of fixed points ofRv . In other words,

Proposition 2.1. Let p be a point of M3(κ), let v be a vector in TpM3(κ). Then, Rv acts
freely on M3(κ) \ (γv(R)).
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Proof. We are going to prove that the set of fixed points forRv is precisely γv(R). Observe
that, by using Theorem 5.1 of [Kob95], each connected component of the set of fixed points
of Rv is a closed totally geodesic submanifold of M3(κ). Moreover, we can deduce that
the set of fixed points has only one connected component C0 3 p. Because the connected
component C0 of the set of fixed points which contains p contains γv(R) as well, and it
therefore contains the cut points of p (if κ > 0). But by corollary 5.2 of [Kob95] any other
connected component besides C0 of the set of fixed points should be formed by cut points
of p (which belong to C0). Hence, we conclude that the set of fixed points of Rv has only
one connected totally geodesic submanifold which contains p and γv(R).

We can prove now that C0 = γv(R). Because otherwise since C0 is a totally geodesic
submanifold, we should have an other vector v2 ∈ TpM3(κ) non proportional to v, such
that for the geodesic γv2(t) = expp(v2t)

(2.4) ϕ ◦ γv2(R) = γv2(R), ∀ϕ ∈ Rv.
But, since the geodesic curve ϕ ◦ γv2 at p is tangent to ϕ∗(v2), that means that

(2.5) ϕ∗(v2) = v2, ∀ϕ ∈ Rv.
Set v2 = v1

2v + v2
2E1 + v2

2E3 the decomposition of v2 in the basis {v,E1, E2}, hence by
using the representation given in (2.3),

(2.6)

1 0 0
0 cos(θ) − sin(θ)
0 sin(θ) cos(θ)

v1
2

v2
2

v3
2

 =

v1
2

v2
2

v3
2

 , ∀θ ∈ [0, 2π).

Namely, v2
2 = v3

2 = 0, and hence, v2 = v1, but that is a contradiction because we have
assumed dim〈{v, v2}〉 = 2. �

The above proposition implies that the canonical projection π : M3(κ) \ γv(R) →
(M3(κ) \ γv(R))/Rv induces a Rv-principal fiber bundle (see [KN96] for instance).
Hence, for any q ∈M3(κ) \ γv(R) the orbit space

(2.7) Oq := {ϕ(q) : ϕ ∈ Rv}

is a smooth submanifold of M3(κ) \ γv(R) and Oq
diff.
≈ π−1(π(q))

diff.
≈ SO(2)

diff.
≈ S1.

Given p ∈M3(κ), v ∈ TpM3(κ) and E1 ∈ TpM3(κ) with E1 ⊥ v, let us define the totally
geodesic half-plane Π+

v,E1
by

(2.8) Π+
v,E1

:= {expp(vt1 + E1t2) : t1 ∈ R, t2 > 0}

Observe that for any ϕ ∈ Rv ,

ϕ(Π+
v,E1

) = Π+
v,ϕ∗(E1)

because ϕ is an isometry and hence commutes with the exponential map.

Definition 2.2 (End of revolution). Given a point p ∈ TpM3(κ), two perpendicular vectors
v, w ∈ TpM of length 1, and given a curve β : [0,∞) → Π+

v,w. An end of revolution E
along γv with generating curve β is the set

(2.9) E := {ϕ(β(t)) : t ∈ [0,∞) andϕ ∈ Rv}

In the following Theorem we shall prove that any end of revolution given by the above
definition can be understood as a smooth submanifold with boundary immersed in M3(κ),
moreover such an end is intrinsically a warped product.

Theorem 2.3. Given p ∈ M3(κ), v ∈ TpM3(κ). Let f : S1 → Rv be a diffeomorphism.
Then, given a smooth and regular curve β : [0,∞)→ Π+

v,w, for some w ∈ TpM3(κ) with
〈w, v〉 = 0, the map

(2.10) α : [0,∞)× S1 →M3(κ), (t, θ)→ α(t, θ) = f(θ)
(
β(t)

)
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is an immersion. Moreover, there exists a diffeomorphism f̃ : S1 → S1 and a positive
function w : R1 → R1 such that

(2.11) α∗(gM3(κ)) = ‖β̇ ◦ π1‖2π∗1gR1 + (w ◦ π1)
2
(
f̃ ◦ π2

)∗
gS1

where π1 and π2 are the projections

π1 : [0,∞)× S1 → [0,∞), π2 : [0,∞)× S1 → S1

and gR1 , gS1 are the canonical metrics of R1 and S1 respectively.

Proof. First of all we have to prove that rank(α∗) = 2. Given (t0, θ0) ∈ [0,∞)× S1, the
tangent space T(t0,θ0)[0,∞)× S1 can be decomposed as

(2.12) T(t0,θ0)[0,∞)× S1 = Tt0 [0,∞) ⊕ Tθ0S1.

For any x ∈ Tt0R1, α∗(x) is tangent to the plane Π+
v,f(θ0)∗(w), because

(2.13) α∗(x) =
d

dt
α(t0 + xt, θ0)

∣∣∣∣
t=0

=
d

dt
f(θ0) (β(t0 + xt))

∣∣∣∣
t=0

and since β is a curve in Π+
v,w, then f(θ0)β is a curve in Π+

v,f(θ0)∗(w). Moreover,

α∗(x) = f(θ0)∗

(
xβ̇(t0)

)
then α∗(x) 6= 0 if x 6= 0 because the generating curve β is regular (β̇ 6= 0). When
we consider y ∈ Tθ0S1, then α∗(y) is tangent to the orbit space Oα(t0,θ0) because for
γ : (−ε, ε)→ S1, with γ(0) = θ0, γ̇(0) = y,

(2.14) α∗(y) =
d

dt
α(t0, γ(t))

∣∣∣∣
t=0

=
d

dt
f(γ(t)) (β(t0))

∣∣∣∣
t=0

∈ Tα(θ0,t0)Oα(θ0,t0).

Moreover, the curve γ induces the 1-parametric subgroup f(γ(t)) = exp(f∗(y)t)f(θ0)
and its action induces a never vanishing vector on α(t0, θ0) whenever y 6= 0 because the
action of Rv is freely on M3(κ) \ γv(R) (see proposition 4.1 of [KN96]). Then ϕ in an
immersion.

In order to deal with the induced metric ϕ∗(gM3(κ)) observe that by using the decom-
position of equation (2.12) we have only three cases

Case I: two horizontal vectors , Suppose x ∈ Tt0 [0,∞) then,

(2.15)

α∗
(
gM3(κ)

)
(x, x) = 〈α∗(x), α∗(x)〉M3(κ)

=
〈
f(θ0)∗

(
xβ̇(t0)

)
, f(θ0)∗

(
xβ̇(t0)

)〉
M3(κ)

=‖β̇(t0)‖2‖x‖2

Case II: one horizontal and one vertical vector if x ∈ Tt0 [0,∞) and y ∈ Tθ0S1, then

α∗
(
gM3(κ)

)
(x, y) = 〈α∗(x), α∗(y)〉M3(κ) = 0

because

Proposition 2.4. The orbit space Oα(t0,θ0) is perpendicular to Π+
v,f(θ0)∗w

.

Proof. Since Cut(p)∩
(
M3(κ) \ γv (R)

)
= ∅, for any q ∈M3(κ) \ γv(R) we have a well

defined

(2.16) v(q) := exp−1
p (q).

To show that Π+
v,f(θ0)∗w

is perpendicular to Oα(t0,θ0) let us consider the following ba-
sis {expp∗(v), expp∗(W ), expp∗(ν)} of Tα(t0,θ0)M3(κ), where here we have used W :=
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f(θ0)∗(w) in order to simplify the notation, and {v,W, ν} is an orthonormal basis of
TpM3(κ) and expp∗ is the differential of the exponential map, namely

(2.17)

expp∗(v) =
d

dt
expp (v(α(t0, θ0)) + vt)

∣∣∣∣
t=0

expp∗(W ) =
d

dt
expp (v(α(t0, θ0)) +Wt)

∣∣∣∣
t=0

expp∗(ν) =
d

dt
expp (v(α(t0, θ0)) + νt)

∣∣∣∣
t=0

hence, expp∗(v) and expp∗(W ) are tangent to Π+
v,W and moreover, by using the Gauss

lemma (see [dC92]), expp∗(ν) ⊥ Π+
v,W and {expp∗(v), expp∗(W ), expp∗(ν)} is an or-

thonormal basis of Tα(t0,θ0)M3(κ). Now, let us consider the following two functions

f1 : M3(κ) \ γv (R)→ R, f1(x) = 〈exp−1
p (x), exp−1

p (x)〉
f2 : M3(κ) \ γv (R)→ R, f2(x) = 〈v, exp−1

p (x)〉

since for any ϕ ∈ Rv ,

f1(ϕ(x)) =〈exp−1
p ϕ(x), exp−1

p ϕ(x)〉
=〈ϕ∗ exp−1

p (x), ϕ∗ exp−1
p ϕ(x)〉 = 〈exp−1

p (x), exp−1
p (x)〉

=f1(x)

and,

f2(ϕ(x)) =〈v, exp−1
p (ϕ(x))〉 = 〈v, ϕ∗ exp−1

p (x)〉
=〈ϕ∗v, ϕ∗ exp−1

p (x)〉 = 〈v, exp−1
p (x)〉

=f2(x)

then, Oα(t0,θ0) is perpendicular to∇f1 and∇f2. Now, we are going to show that∇f1 and
∇f2 span Tα(t0,θ0)Π

+
u,W . Set u ∈ TpM3(κ), and consider the curve

(2.18) β(t) = expp(v(α(t0, θ0)) + ut)

hence, β(0) = α(t0, θ0) and β̇(0) = expp∗(u). Moreover
(2.19)

〈β̇(0),∇f1〉 =
d

dt
f1 (β (t))|t=0 =

d

dt
|v(α(t0, θ0)) + ut|2

∣∣∣
t=0

= 2〈u, v(α(t0, θ0))〉.

〈β̇(0),∇f2〉 =
d

dt
f2 (β (t))|t=0 =

d

dt
〈v(α(t0, θ0)) + ut, v〉|t=0 = 〈u, v〉.

Then, when we focus on the basis {expp∗(v), expp∗(W ), expp∗(ν)} of Tα(t0,θ0)M3(κ)

(2.20)
(
∇f1

∇f2

)
=

(
2〈v, v(α(t0, θ0))〉 2〈v(α(t0, θ0)),W 〉

1 0

)
·
(

expp∗(v)

expp∗(W )

)
Finally, Taking into account that α(t0, θ0) ∈ Π+

v,W then there exist t > 0 such that
〈v(α(t0, θ0)),W 〉 = t 6= 0, therefore

(2.21) 〈{∇f1,∇f2}〉 = 〈{expp∗(v), expp∗(W )}〉 = T〈v(α(t0,θ0)),W 〉Π
+
v,W .

�

Case III: two vertical vectors. Observe in this case that for every t0 the map f1 : Rv →
Oβ(t0) given by f1(θ) = θβ(t0), defines a diffeoromphism from Rv to Oβ(t0). We can
pull-back the metric to Oβ(t0) (an hence to Rv) by using the inclusion i : Oβ(t0), in such
a way that the 1-dimensional manifold Oβ(t0) with metric tensor i∗(gM3(κ)) is isometric
to the 1-dimensional manifold Rv with metric tensor gR = (i ◦ f1)∗(gM3(κ)). But we are
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going to show that the metric gR is a left invariant metric on Rv . Given θ ∈ Rv , let v, w
be two vectors of TθRv , and let γ1 and γ2 be two curves such that

γ1(0) = γ2(0) = θ, γ̇1(0) = v, γ̇2(0) = w

SinceRv acts by isometries,

gR(Lϕ∗v, Lϕ∗w)Lϕ(θ) =

〈
d

dt
(ϕγ1(t))

∣∣∣∣
t=0

,
d

dt
(ϕγ2(t)))

∣∣∣∣
t=0

〉
ϕ(θ(β(t0)))

=

〈
ϕ−1
∗

d

dt
(ϕγ1(t)(q))

∣∣∣∣
t=0

, ϕ−1
∗

d

dt
(ϕγ2(t)(q))

∣∣∣∣
t=0

〉
θ(β(t0))

=

〈
d

dt
(ϕ−1ϕγ1(t)(q))

∣∣∣∣
t=0

,
d

dt
(ϕ−1ϕγ2(t)(q))|t=0

〉
θ(β(t0))

=

〈
d

dt
(γ1(t)(q))

∣∣∣∣
t=0

,
d

dt
(γ2(t)(q))|t=0

〉
θ(β(t0))

=〈f1∗(v), f1∗(w)〉θ(β(t0)) = gR(v, w)θ.

But sinceRv is isomorphic (and diffeomorphic) to SO(2) with a left-invariant metric, then
gR is the round metric up to a scale factor. Hence,Rv is a homotetia of S1 then

(2.22) α∗
(
gM3(κ)

)
(y, y) =w2(t0)(f̃)∗(gS1) (y, y) .

for any y ∈ Tθ0S1. �

Corollary 2.5. Under the assumptions of the above Theorem, can be found a local coor-
dinate system {t, θ} of [0,∞)× S1 such that

α∗(g3
M(κ)) = dt2 + w2(t)dθ2.

2.2. Rotationally symmetric model spaces. Rotationally symmetric model spaces, are
generalized manifolds of revolution using warped products. Let us recall here the following
definition of a model space.

Definition 2.6 (See [GW79, Gri99, Gri09]). A w−model space Mn
w is a simply-connected

n-dimensional smooth manifold Mn
w with a point ow ∈ Mn

w called the center point of the
model space such that Mn

w−{ow} is isometric to a smooth warped product with baseB1 =
( 0, Λ) ⊂ R (where 0 < Λ ≤ ∞ ), fiber Fn−1 = Sn−1

1 (i.e., the unit (n−1)−sphere with
standard metric), and positive warping function w : ( 0, Λ ) → R+. Namely the metric
tensor gMn

w
is given by:

(2.23) gMn
w

= r∗
(
g( 0,Λ)

)
+ (w ◦ π)2Θ∗

(
gSn−1

1

)
,

r : Mn
w → ( 0, Λ) and Θ : Mn

w → Sn−1
1 being the projections onto the factors of the

warped product, and g( 0,Λ) and gSn−1
1

the standard metric tensor on the interval and the
sphere respectively.

Despite the freedom in the choice of the w function in the above definition, there exist
certain restrictions around r → 0. In order to attain Mn

w, a smooth metric tensor around ow,
the positive warping function w should hold the following equalities (see [GW79, Pet98]):

(2.24)

w(0) = 0 ,

w′(0) = 1 ,

w(2k)(0) = 0 ,

where w(2k)(r) are the even derivatives of w.
The parameter Λ in the above definition is called the radius of the model space. If

Λ = ∞, then ow is a pole of Mn
w (i.e., the exponential map expow : TowMn

w → Mn
w is a

diffeomorphism).
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Observe that a rotationally symmetric model space Mn
w is rotationally symmetric at

ow ∈Mn
w in the sense that the isotropy subgroup at ow of the isometry group isO(n). More

commonly, one regards the functions (r,Θ) as global coordinate functions on Mn
w −{ow}

and the expression of the metric tensor (2.23) is written as gMn
w

= dr2 + (w(r))
2
dΘ2,

where dr2 denotes the standard metric on the interval and dΘ2 denotes the standard metric
on Sn−1

1 ( dΘ2 = gSn−1
1

). In this context, {r,Θ} are called geodesic polar coordinates
around ow.

In view of the definitions of ends of revolution in M3(κ), Corollary 2.5 and the defini-
tion of a rotationally symmetric model manifold we can state.

Corollary 2.7. Let E be an end of revolution in M3(κ), let w be the warping function
given by corollary 2.5. Then for every positive radius ρ > 0 there exists a W ∈ C∞[0,∞)
with

W (x) = w(x− ρ), ∀x ≥ ρ
such that E is isometric to M2

W \ Bρ(oW ) where Bρ(oW ) is the geodesic ball of radius ρ
centered at oW ∈M2

W .

Proof. We only have to prove the following lemma

Lemma 2.8. Given a positive ρ > 0 and a positive function w ∈ C∞[0,∞), the function
can be extended to a function W ∈ C∞[0,∞) such that

W (x) = w(x− ρ), ∀x ≥ ρ
W (0) = 0 ,

W ′(0) = 1 ,

W (2k)(0) = 0 ,

W (x) > 0, ∀x > 0 .

Proof. We can choose ε > 0 such that ε < ρ. We can define moreover the function
F : [ ε2 , ε] ∪ [ρ,∞)→ R+ given by

F (x) :=

{
x if ε

2 ≤ x ≤ ε
w(x− ρ) if x ≥ ρ.

Since F is a C∞ function from the closed set C := [ ε2 , ε] ∪ [ρ,∞) of (0,∞) to R+ and
F has a continuous extension to (0,∞), then by using the extension lemma for smooth
maps (see Corollary 6.27 of [Lee03]), there exists a C∞ function F̃ : R+ → R+ such that
F̃|C = F . Finally we can define the function W : [0,∞)→ [0,∞) by

W (x) :=

{
x if x ≤ ρ
F̃ (x) if x ≥ ρ.

�

�

2.3. Recurrence and non explosion of ends of revolution. Conditions for recurrence
and non-explosion of the Brownian motion on a Riemannian manifold have been largely
studied (see [Gri99] [Ich82a] [Ich82b] [Ahl35], [Nev40] for example). In the particular
case of rotationally symmetric model manifolds

Theorem 2.9. [Gri99] Let Mn
w be a model manifold with Λ =∞ (so that Mn

w is geodesi-
cally complete and non-compact). Then Mn

w is recurrent if and only if

(2.25)
∫ ∞ dt

wn−1(t)
=∞
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Theorem 2.10. [Gri99] Let Mn
w be a model manifold with Λ =∞. Then Mn

w is stochasti-
cally complete if and only if

(2.26)
∫ ∞ ∫ t

0
wn−1(s)ds

wn−1(t)
dt =∞

Actually (see [GH14] proof of Theorem 1.5) if
∫∞ ∫ t

0
wn−1(s)ds

wn−1(t) dt = ∞ then we can
construct a 1-superharmonic and radial function v in M \Bnρ (ow) (that is −4u+ u ≥ 0)
such that v(ρ) = 1, v′(0) = 0, and v(x)→∞ as x→∞.

There are sufficient conditions to attain parabolicity for rotationally symmetric model
manifolds as well

Theorem 2.11 (see [Gri99]). Let Mn
w be a rotationally symmetric model manifold. Sup-

pose that ∫ ∞ tdt∫ t
0
w(s)ds

=∞,

then Mn
w is recurrent.

In view of Corollary 2.7 we can state

Corollary 2.12. Let E be an end of revolution in M3(κ) isometric to the rotationally
symmetric model manifold M2

w \Bρ(ow) for some radius ρ > 0, then E is parabolic if and
only if

(2.27)
∫ ∞
ρ

dt

w(t)
=∞

Moreover, if

(2.28)
∫ ∞
ρ

∫ t
0
w(s)ds

w(t)
dt =∞

then, there exist a compact K ⊂ E and 1-superharmonic function such that v(x) → ∞
when x→∞.

We will need moreover the following proposition

Proposition 2.13 (see Theorem 1.3 of [GH14]). Let M be a connected manifold and K ⊂
M be a compact set. Assume that there exist a 1-superharmonic function in m \K such
that v(x)→∞ as x→∞. Then M is stochastically complete.

2.4. Conformal models of M3(κ) and ends of revolution. The real space forms R3, S3

and H3 can be defined as the 3-dimensional real space forms M3(κ) of constant sectional
curvature κ = 0, 1 and −1 respectively. By using Corollary 2.7 each end of revolution
is isometric to a rotationally symmetric model manifold M2

w \ Bρ(ow) where we have
subtracted some ball Bρ(ow). The proof of the Theorems A,B,F makes use of Corollary
2.12 were is related the conformal type and the stochastic completeness with the properties
of the warping function w. Hence, in order to apply Corollary 2.12 we need to know the
warping function w of such rotationally symmetric models M2

w.
From now on we are going to work with conformal models of M3(κ) (see [Lee97]),

namely

(2.29)

R3 :=
{

(x1, x2, x3) ∈ R3 : g = dx2
1 + dx2

2 + dx2
3

}
H3 :=

{
(x1, x2, x3) ∈ R3, x3 > 0 : g−1 =

1

x2
3

(
dx2

1 + dx2
2 + dx2

3

)}
S3 − {N} :=

{
(x1, x2, x3) ∈ R3 : g1 =

4
(
dx2

1 + dx2
2 + dx2

3

)
(1 + x2

1 + x2
2 + x2

3)
2

}
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Indeed, M3(κ) can be seen as R3 endowed with a conformal metric:

(2.30) M3(κ) :=
{

(x1, x2, x3) ∈ R3 : gκ = ηκ(x) · g
}

with

(2.31) ηκ(x) :=


1
x2
3

if κ = −1

1 if κ = 0
4

(1+x2
1+x2

2+x2
3)

2 if κ = 1

Observe that x3-axis in such models is a geodesic curve. And for any point x ∈ M3(κ),
with x = (0, 0, x3),

Rθ :=

 cos θ − sin θ 0
sin θ cos θ 0

0 0 1


is the subgroup of the isotropy group of x such that the geodesic curve γ(t) = (0, 0, x3 +t)
remains fixed under the action of Rθ. Taking into account moreover that the (x1, x3)-
plane is a totally geodesic submanifold we can construct ends of revolution in M3(κ) in
the following way:

Definition 2.14. Let Γ be a regular curve in the (x1, x3)-plane. We define an end of
revolution E := RθΓ as the action of Rθ to curve Γ. Here we parameterize the curve Γ as

Γ := γ(s) = (γ1(s), 0, γ2(s))

The end of revolution can be parametrized therefore as

(2.32) E := f(s, θ) = (γ1(s) cos θ, γ1(s) sin θ, γ2(s))

Remark a. Note that by using Theorem 2.3 if we impose γ1(s) > 0, the map given in
formula (2.32) can be considered as an immersion from [0,∞)× S1 to M3(κ).

Lets recall that every regular curve admits a reparametrization by arc length. Then, from
the metrics defined in (2.29) and considering that the parametrization of the immersion
given in (2.32) satisfies ‖fs(s, θ)‖2 = 1, it is easy to see that the metric inherited by the
end from each ambient space M3(κ) can be written as

(2.33) gE = ds2 + w2
κ(s)dθ2

where

(2.34) wκ(s) :=


γ1(s)
γ2(s) if κ = −1

γ1(s) if κ = 0
2γ1(s)

1+γ2
1(s)+γ2

2(s)
if κ = 1

Indeed, taking ηκ(s) from definition (2.31) we can rewrite the inherited metric as

(2.35) gE = ds2 + η2
κ(s)w2

0(s)dθ2

Hence we can summarize with the following proposition

Proposition 2.15. Let E be an end of revolution of M3(κ) parametrizated by

f(s, θ) = (γ1(s) cos θ, γ1(s) sin θ, γ2(s))

with s ∈ [0,∞), θ ∈ [0, 2π]. Suppose γ(s) = (γ1(s), 0, γ2(s)) is a regular curve
parametrized by arc length and suppose moreover that γ1 > 0. Then, for ρ > 0, E is
isometric to M2

w \Bρ(ow), where M2
w is the rotationally symmetric model space given by

warping function w satisfying

(2.36)


w(t+ ρ) = wκ(t) for t ≥ 0
w(0) = 0
w′(0) = 0
w(2k)(0) = 0
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with wκ given in definition (2.34). Hence by applying corollary 2.12 E is parabolic if and
only if

(2.37)
∫ ∞
ρ

dt

w(t)
=

∫ ∞
0

ds

wκ(s)
=∞

and if

(2.38)
∫ ∞
ρ

∫ t
0
w(s)ds

w(t)
dt =

∫ ∞
0

∫ ρ
0
w(s)ds+

∫ t
0
wκ(s)ds

wκ(t)
dt =∞

then, there exist a compact setK ⊂ E and 1-superharmonic function such that v(x)→∞
when x→∞.

From Theorem 2.11 we can state

Corollary 2.16. Let E be an end of revolution in M3(κ) if∫ ∞ tdt∫ t
0
wκ(s)ds

=∞,

then E is parabolic.

3. PROOF OF THEOREM A

Theorem A states that any end of revolution in R3 or in S3 is a parabolic end. Here we
split the prove in these two settings

3.1. End immersed in R3.

Proof. Lets recall that the generating curve γ(s) was parameterized by its arc length. This
implies that (γ̇1)2(s) ≤ 1. Using definition (2.34) we find this equivalent to

−1 ≤ ẇ0(t) ≤ 1

Integrating the latter we obtain

−t ≤ w0(t)− w0(0) ≤ t

and thus w0(t) ≤ t + w0(0). By using the criterion for parabolicity given by proposition
2.15

(3.1)
∫ ∞

0

1

w0(s)
ds = lim

R→∞

∫ R

0

1

w0(s)
ds ≥ lim

R→∞

∫ R

0

1

t+ w0(0)
dt =∞.

Which means that each complete end of revolution E, when immersed in R3, is of para-
bolic conformal type independently of the curve γ(s). �

3.2. End immersed in S3.

Proof. Applying the criterion for parabolicity at proposition 2.15 and the expression (2.34)
for the function w1(s) we have to prove that the following integral is divergent∫ ∞

0

1

w1(s)
ds =

∫ ∞
0

1 + γ2
1(s) + γ2

2(s)

2γ1(s)
ds.

For any ε > 0, we can split the interval where we integrate (I = [0,∞)) in two parts:
I+ = {t ∈ I : γ1(t) ≥ ε} and I− = {t ∈ I : γ1(t) < ε}, such that I+ ∪ I− = I ,
I+ ∩ I− = ∅ and since

∫
I
dx =∞, thus

∫
I+
dx+

∫
I−
dx =∞. Then we have two cases.

Case I:
∫
I+
dx =∞ , so as we have seen:∫

I

1

w1(s)
ds ≥

∫
I+

1 + γ2
1(s) + γ2

2(s)

2γ1(s)
ds ≥ 1

2

∫
I+

γ1(s)ds ≥ 1

2
ε

∫
I+

ds =∞
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Case II:
∫
I+
dx <∞ (

∫
I−
dx =∞) , then∫

I

1

w1(s)
ds ≥

∫
I−

1 + γ2
1(s) + γ2

2(s)

2γ1(s)
ds ≥

∫
I−

1

2γ1(s)
ds

≥
∫
I−

1

2ε
ds ≥ 1

2ε

∫
I−

ds =∞

Which means again that the end is parabolic independently of the curve γ(s). �

4. PROOF THEOREM B

Theorem B states that every end of revolution on a c-cone is a parabolic end. Observe
that if the end is on a c-cone then the generating profile curve γ(s) = (γ1(s), 0, γ2(s))
satisfies

(4.1)
γ2(s)

γ1(s)
≥ c.

Substituting the function w−1(s) given by (2.34) in the criterion for parabolicity given in
proposition (2.15), we get that the end of the surface will be parabolic because∫ ∞

0

1

w−1(s)
ds =

∫ ∞
0

γ2(s)

γ1(s)
ds ≥

∫ ∞
0

c ds =∞.

This finishes the proof of Theorem B. However, we can state something more general. let
us denote I+ := {t ∈ I : γ2(t)

γ1(t) ≥ c} and I− := {t ∈ I : γ2(t)
γ1(t) < c}. Then,∫

I

1

w−1(s)
ds =

∫
I+

γ2(s)

γ1(s)
ds+

∫
I−

γ2(s)

γ1(s)
ds ≥ c

∫
I+

ds+

∫
I−

γ2(s)

γ1(s)
ds.

Hence if
∫
I+
ds =∞, the end will still be parabolic. Therefore

Theorem 4.1. Let E be an end of revolution in H3. Suppose that the generating curve of
E satisfies ∫

I+

ds =∞.

Then, the end is parabolic.

5. PROOF OF THEOREM C

The first step to prove Theorem C is to prove previously the following proposition

Proposition 5.1. Let E be a complete end of revolution immersed in H3. Suppose that E
is a non-parabolic end, and γ : [0,∞)→ H3 is the profile curve of E parametrized by arc
length in the half space model of the hyperbolic space given by

γ(s) = (γ1(s), 0, γ2(s))

then
sup

s∈[0,∞)

γ1(s) <∞,

Proof. Since γ1 is a positive and smooth function, then,

(5.1) log γ1(s)− log γ1(0) =

∫ s

0

d

dt
(log γ1(t)) dt =

∫ s

0

γ̇1(t)

γ1(t)
dt.

But taking into account that γ is parametrizated by arc length, namely,

(γ̇1(s))2 + (γ̇2(s))2

(γ2(s))2
= 1,

then,
γ̇1(s) ≤ |γ̇1(s)| ≤ γ2(s)
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and hence, inequality (5.1) can be rewritten as

(5.2) log γ1(s)− log γ1(0) ≤
∫ s

0

γ2(t)

γ1(t)
dt

By using the function w−1(s) given by (2.34) in the criterion for parabolicity given in
proposition 2.15

(5.3)
∫ ∞

0

1

w−1(s)
ds =

∫ ∞
0

γ2(s)

γ1(s)
ds <∞.

And hence,

(5.4) log γ1(s)− log γ1(0) <

∫ ∞
0

γ2(t)

γ1(t)
dt <∞.

�

Proof of Theorem C. Theorem C states that any complete end of revolution contained on a
horosphere {x3 = z} is a parabolic end. Since the end is on the horosphere {x3 = z} then

(5.5)
∫ ∞

0

1

w−1(s)
ds =

∫ ∞
0

γ2(s)

γ1(s)
ds ≥ z

∫ ∞
0

1

γ1(s)
ds.

Hence the end is parabolic because otherwise if we suppose that E is non-parabolic, by
using proposition 5.1,

(5.6)
∫ ∞

0

1

w−1(s)
ds ≥ z

∫ ∞
0

1

sups∈[0,∞) γ1(s)
ds =∞.

Then by using the criterion for parabolicity given in proposition 2.15 the endE is parabolic
(contradiction). �

6. PROOF OF THEOREM F

Recall that Theorem F states

Theorem. Let Σ be complete and non-compact surface of finite topological type immersed
in M3(κ) with κ ∈ R. Suppose that there exists a compact subset Ω ⊂ Σ of Σ such that
every end of Σ with respect to Ω is an end of revolution in M3(κ). Then, Σ is stochastically
complete.

Proof. When Σ is immersed in R3 or in S3 the stochastic completeness of its ends is
straight forward according that every parabolic surface is stochastically complete (see
[Gri99]for instance). For surfaces Σ in H3 such that every of its ends with respect to
some compact Ω ⊂ Σ is an end of revolution in H3, we are going to show that there exist
a 1-superharmonic function satisfying the hypothesis of proposition 2.13 (and hence Σ is
stochastically complete). In order to construct such a function we are going to use the
following proposition

Proposition 6.1. Let E be an end of revolution in H3, then, there exist a compact set
K ⊂ E and 1-superharmonic function such that v(x)→∞ when x→∞.

Proof. From (2.34) we have that

w−1(s) =
γ1(s)

γ2(s)

hence,
ẇ−1(s)

w−1(s)
=
γ̇1(s)

γ1(s)
− γ̇2(s)

γ2(s)

From the condition that γ(s) is parameterized by arc length we have that |γ̇1(s)| ≤ γ2(s)
and |γ̇2(s)| ≤ γ2(s). Then
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(6.1)
ẇ−1(s)

w−1(s)
≤ γ2(s)

γ1(s)
+
γ2(s)

γ2(s)
=

1

w−1(s)
+ 1

For any c > 0 we can now split the interval I = [0,∞) in two parts, I = I+ ∪ I− such
that I+ := {s ∈ R : γ2(s)

γ1(s) ≥ c} and I− = {s ∈ R : γ2(s)
γ1(s) < c}. With I+ ∩ I− = ∅,∫

I
ds =

∫
I+
ds+

∫
I−
ds =∞.We have again two cases:

Case I:
∫
I+
ds =∞. Then∫ ∞ 1

w−1(s)
ds =

∫
I+

1

w−1(s)
ds+

∫
I−

1

w−1(s)
ds ≥

∫
I+

cds+

∫
I−

1

w−1(s)
ds

= c ·
∫
I+

ds+

∫
I−

1

w−1(s)
ds =∞

Hence, by applying corollary 2.12 the proposition follows.
Case II:

∫
I+
ds <∞ (

∫
I−
ds =∞). for s > ρ,

(6.2)

w(s)− w(ρ) =

∫ s

ρ

ẇ(r)dr =

∫
[ρ,s]∩I+

ẇ(r)dr +

∫
[ρ,s]∩I−

ẇ(r)dr

<

∫
[ρ,s]∩I+

w′(r)dr + (1 + c)

∫
[ρ,s]∩I−

w(r)dr

where we have considered that in I− by using inequality (6.1), ẇ(r) < (1 + c)w(r).
Then,

1 <
w(ρ)

w(s)
+

∫
[ρ,s]∩I+ w

′(r)dr

w(s)
+

(1 + c)
∫

[ρ,s]∩I− w(r)dr

w(s)
.

Integrating in [ρ,R],
(6.3)

R− ρ <
∫ R

ρ

w(ρ)

w(s)
ds+

∫ R

ρ

∫
[ρ,s]∩I+ w

′(r)dr

w(s)
ds+

∫ R

ρ

(1 + c)
∫

[ρ,s]∩I− w(r)dr

w(s)
ds

≤
∫ ∞
ρ

w(ρ)

w(s)
ds+

∫ ∞
ρ

∫
[ρ,s]∩I+ w

′(r)dr

w(s)
ds+ (1 + c)

∫ ∞
ρ

∫ s
ρ
w(r)dr

w(s)
ds

taking into account that by using inequality (6.1), w′(r) ≤ 1 + w(r), then for any R > ρ,

(6.4)

R− ρ <w(ρ)

∫ ∞
ρ

1

w(s)
ds+

∫ ∞
ρ

∫
[ρ,s]∩I+(1 + w(r))dr

w(s)
ds

+ (1 + c)

∫ ∞
ρ

∫ s
ρ
w(r)dr

w(s)
ds

≤

(
w(ρ) +

∫
I+

dr

)∫ ∞ 1

w(s)
ds+ (2 + c)

∫ ∞
ρ

∫ s
ρ
w(r)dr

w(s)
ds.

Letting now R tent to infinity we conclude that or∫ ∞
0

1

w(s)
ds =∞

or ∫ ∞
ρ

∫ s
ρ
w(r)dr

w(s)
ds.

But in any case the proposition follows by using proposition 2.15. �
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Now by applying the above proposition in each connected component of Σ\Ω (call them
{Ei}) there exist a compact set Ki ⊂ Ei and a 1-superharmonic function vi in Ei \ Ki

such that vi(x)→∞ as x→∞. Defining a compact C as

C = Ω ∪i Ki

and the function ṽ : Σ \ C → R by

ṽ(x) := vi(x), if x ∈ Ei.

we conclude that ṽ is 1-superharmonic function in Σ \ C and ṽ(x) → ∞ as x → ∞.
Hence, by applying proposition 2.15 the Corollary is proved. �

7. PROOF OF THEOREM G

Recently in [BdLPS13] is proved that any non-compact surface Σ which is stochasti-
cally and geodesically complete, properly immersed into a horoball of the hyperbolic space
B ⊂ H3 has

(7.1) sup
x∈Σ
‖ ~H‖ ≥ 1,

and

(7.2) sup
x∈Σ

KG ≥ 0.

Hence, there are no surfaces of revolution which are negatively curved and properly
immersed into an horoball (statement (1) of Theorem G). Moreover, if Σ is a cmc-surface,
Σ is a cmc one surface and therefore by using [RR98] is a horosphere. On the other hand
if Σ has constant non-positive sectional curvature, then KG = 0. But the only complete
flat surface contained in a horoball is the horosphere (see Theorem 3 of [GMM00] for
instance).

8. MOVEMENT OF THE CENTROID OF A CURVE IN H2 AND ITS APPLICATIONS TO THE
CONFORMAL TYPE

Given a regular curve γ : [0,∞) → H2 ⊂ H3, parametrized by arc length in the half
space model of the hyperbolic space

γ(s) = (γ1(s), 0, γ2(s)), with γ1 > 0 and γ2 > 0

We shall say that the segment γ([0, s]) has centroid xg(γ([0, s])), given by

xg(γ([0, s])) :=

∫ s
0
w−1(t)dt

s

Theorem 8.1. Suppose that the centroid of a regular curve γ : [0,∞)→ H2 satisfies

xg(γ[0, s]) ≤ C s

for some C > 0 and any s ≥ s0 for some s0 > 0. Then the end of revolution given by

f(θ, s) := Rθγ

is a parabolic end.

Proof. Observe that

(8.1)

∫ ∞ tdt∫ t
0
w(s)ds

≥
∫ ∞
s0

dt

xg(γ([0, t]))
≥
∫ ∞ dt

Ct
=∞.

And the Theorem is proved by using corollary 2.16. �
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Definition 8.2. We shall say that a regular curve γ : [0,∞) → H2, parametrized by
arc length γ(s) = (γ1(s), 0, γ2(s)), (where we have used the half space model of the
hyperbolic space and we have assumed γ1 > 0, γ2 > 0), has confined centroid if the limit
lims→∞ xg(γ([0, s])) exists and

lim
s→∞

xg(γ([0, s])) <∞.

Theorem 8.3. Suppose that f a regular curve γ : [0,∞) → H2 has confined centroid.
Then the end of revolution given by

f(θ, s) := Rθγ

is a parabolic end.

Proof. Since γ has confined centroid, for each ε > 0 there exist R large enough such that
for any t > R

(8.2)

∫ t
0
w−1(s)ds

t
≤ xg(γ) + ε.

Therefore

(8.3)

∫ ∞
R

tdt∫ t
0
w(s)ds

≥
∫ ∞
R

tdt

(xg(γ) + ε)t
=∞.

And the Theorem is proved by using corollary 2.16. �

9. EXAMPLES OF APPLICATION

We would like to highlight some examples with relevant properties of complete ends of
revolution in M3(κ).

9.1. Surfaces immersed into a ball of R3. The topic of complete immersions into a ge-
odesic balls of R3 has been largely studied from the Labyrinth example of Nadirashvili
(cf. [Nad96]). From the conformally point of view the Brownian motion of any complete
bounded minimal surface in R3 is transcient (non-recurrent) (see [BM07] for instance).
Moreover, the Brownian movement of a submanifold is transcient (see [Gim14]) if the
submanifold admits a complete immersion within a geodesic ball of radius R with mean
curvature vector field ~H bounded by

‖ ~H‖ < 1

R

Taking into account that by Theorem A any end of revolution in R3 is a parabolic end we
can state

Corollary 9.1. Let Σ be a surface isometrically immersed into a geodesic ball BR ⊂ R3.
Suppose that Σ has at least one end of revolution in R3. Then, the mean curvature vector
field H satisfies

sup
x∈Σ
‖ ~H(x)‖ ≥ 1

R
.

Remark b. Jorge and Xavier proved in [JX81], that every submanifold M whose scalar
curvature is bounded from below immersed in a geodesic ball BR ⊂ Rn of radius R
satisfies

sup
M
‖ ~H‖ ≥ 1

R

Proof of Corollary 9.1. Suppose by the contrary that

sup
x∈Σ
‖ ~H(x)‖ < 1

R
.
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FIGURE 2. A parabolic surface in a ball of R3 and its generating curve αR,a(t).

Then, by using Corollary 2.7 of [Gim14], Σ has positive Cheeger constant h(Σ) > 0,
in particular the end of revolution E has also positive Cheeger constant h(E) > 0, and
therefore E has positive fundamental tone λ∗(E) which implies that E is non-parabolic
(see [Gri99]) in contradiction with Theorem A. �

In the particular case of minimal surfaces, Corollary 9.1 implies that there does not exist
bounded surfaces of revolution. Actually, that agrees with the classical result of Bonnet
which states that, up to rigid motions, in R3 the only minimal surfaces of revolution are
the catenoid and the plane.

A natural question is to ask for the existence of recurrent surfaces immersed into a
geodesic ball of R3. We can guarantee the existence of such a surfaces and it can be seen
through the following self made example.

Example 9.2. Consider the curve Γ : R→ R3 parametrized as (see also figure 2):

αR,a(t) =

(
(R− a)t2

(t2 + 1)
+ a, 0, sin

(
(R− a)t3

(t2 + 1)
+ at

))
When it is rotated over the (0, 0, x3) axis, it generates a complete surface of revolution

in R3 which is bounded, i.e. it can be kept inside a cylinder R × S1 with radius R and
height h = 1. By using Theorem A this surface is recurrent. Note also that the mean
curvature of this surface is unbounded.

9.2. Surfaces in H3 with transcient Brownian movement. The spherical catenoids im-
mersed in H3 are example of surfaces of revolution in H3 with transcient (non-recurrent)
Brownian movement. Spherical catenoids have been studied in [dCD83], [Mor81] or
[Seo11] and, specifically using the Upper Halfspace Model in [BSE10].

Example 9.3 (Spherical catenoids). Spherical catenoids are the minimal complete surfaces
of revolution generated by the rotation of the family of curves

γa(s) =

(
eΛa(s) tanh(ya(s)), 0,

eΛa(s)

cosh(ya(s))

)
where

ya(s) := a+

∫ s

0

cosh(2a) sinh(2t)

(cosh(2a)2 cosh(2t)2 − 1)
1
2

dt.

and

Λa(s) :=
√

2 sinh(2a)

∫ s

0

(cosh(2a) cosh(2t)− 1)
1
2

cosh2(2a) cosh2(2t)− 1
dt.

The warping function is thus given by

w−1(s) =
γa1(s)

γa2(s)
= sinh(ya(s))
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FIGURE 3. Half Spherical Catenoids immersed in H3: Σ0.05 and Σ0.5.
Observe that the catenoid lies under a horosphere, the part of the profile
curve lying over an arbitrary line t → (t, 0, c · t) has finite length (The-
orem 4.1), each one of the two ends approaches to the plane {x3 = 0}
(Corollary E), and supx1 <∞ (Proposition 5.1).

and hence the following integral can be showed as a divergent integral.∫ ∞ 1

w−1(s)
ds =

∫ ∞ 1

sinh(ya(s))
ds <∞

proving that each one of the ends of the surface is non-parabolic. However, transcience of
spherical catenoids can be proved taking into account that spherical catenoids are minimal
surfaces, and every minimal surface of H3 is transcient (see [MP03] for instance).

Observe (see figure 3) that by Theorem 4.1, the part of the curve γa(s) lying over an
arbitrary line t→ (t, c · t) has to be of finite length.

9.3. Surfaces in H3 with recurrent Brownian motion. To construct a surface of revolu-
tion in H3 with recurrent Brownian motion can be achieved, by using our Theorem B, if
we construct a surface such that every end is of revolution and every end is on a c-cone for
some c > 0. In our example we are using clothoids.

Example 9.4. The clothoids or spirals of Cornu are curves generated by pairs of functions
of the form

clothoid[n, a][t] = a

(∫ t

0

sin

(
sn+1

n+ 1

)
ds, 0,

∫ t

0

cos

(
sn+1

n+ 1

)
ds

)
and commonly used in construction (cf. [Gra98]). By changing t→ et, in case a = n = 1,
we obtain a complete curve which can be easily immersed in H2. The surface of revolution
obtained when rotating the curve over the vertical axes appears to have two parabolic ends
(see figure 4). Note that the immersion of the surface is not proper.

Example 9.5 (horosphere). An other interesting example of surface of revolution is the
horosphere which in the upper half space model of H3 is just the x3 = z plane. An end of
revolution can be obtained rotating the parametrized by arc length curve

γ : [0,∞)→ H3, γ(s) = (z s+ 1, 0, z)

along the x3-axis. Observe that

w−1(s) =
γ1(s)

γ2(s)
= s+

1

z
.
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FIGURE 4. Clothoid or spiral of Cornu: the curve, the curve reparame-
terized, and the rotation with parameters a = 1, n = 1.

If we observe the movement of the centroid

xg(γ([0, s]) =

∫ s
0
w−1(s)ds

s
=
s

2
+

1

z

Hence, given s0 > 0, for any s ≥ s0 and denoting C := ( 1
2 + 1

zs0
),

xg(γ([0, s]) = s(
1

2
+

1

zs
) ≤ C s

By Theorem 8.1 the horosphere is a recurrent surface. This result can be achieved directly
by using Theorem C or by the fact that since the horosphere is a flat surface, it has finite
total curvature and hence (by using [Ich82a]) the Brownian movement is recurrent.

9.4. Surfaces of revolution in H3 with one parabolic end and one non-parabolic end.
The following example uses vertical lines instead of horizontal lines as in the horospheres

FIGURE 5. The cylinder immersed in H3 with parameters b = 2, c = 1.
This surface has two ends, one parabolic and the other non-parabolic.

Example 9.6 (cylinders). The family of parameterized curves in H3

βb,c : (−∞,∞)→ H3, βb,c(t) = (b, 0, c · et)

can be rotated over the vertical axes (0, x3) to get a cylinder (see figure 5). This surface of
revolution in H3 has two ends of revolution in H3. One upper endE+ given by the rotation
of the parametrized by arc length curve

γE+ : [0,∞)→ H3, γb,c(s) = (b, 0, c · es)

And an other end E− obtained by the rotation of the parametrized by arc length curve

γE− : [0,∞)→ H3, γb,c(s) = (b, 0, c · e−s)
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Observe that the end E+ is on the c
b -cone, and hence by Theorem B is a parabolic end. On

the other hand the end E− has

w−1(s) =
b

c
es

thus ∫ ∞
0

1

w−1(s)
ds =

∫ ∞
0

c

b
e−sds =

c

b
<∞

the end E− is therefore non-parabolic by using proposition 2.15.
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