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Proportional integral derivative (PID) controllers are commonly used in process industries due to their simple structure and high
reliability. Efficient tuning is one of the relevant issues of PID controller type. The tuning process always becomes a challenging
matter especially for multivariable system and to obtain the best control tuning for different time scales system.This motivates the
use of singularly perturbation method into the multivariable PID (MPID) controller designs. In this work, wastewater treatment
plant and Newell and Lee evaporator were considered as system case studies. Four MPID control strategies, Davison, Penttinen-
Koivo, Maciejowski, and Combined methods, were applied into the systems. The singularly perturbation method based on Naidu
and JianNiu algorithmswas applied intoMPID control design. It was found that the singularly perturbed system obtained byNaidu
method was able to maintain the system characteristic and hence was applied into the design of MPID controllers. The closed loop
performance and process interactions were analyzed. It is observed that less computation time is required for singularly perturbed
MPID controller compared to the conventional MPID controller. The closed loop performance shows good transient responses,
low steady state error, and less process interaction when using singularly perturbed MPID controller.

1. Introduction

Multivariable PID Control. Among the controller variety, PID
becomes the controller that is most applied in a physical
system [1]. The reason is that it has a characteristic that offers
simplicity, clear functionality, and ease of use [2]. However,
Ho et al. [3] reported that only one-fifth of PID control loops
are in good condition. The others are not, where 30% of
PID controllers are not able to perform well due to lack of
tuning parameters, 30% due to the installation of a controller
system operating manual, and 20% due to the use of default
controller parameters.

In recent years, many researchers have paid attention
to the MPID controller design for various systems such
as in Industrial Scale-Polymerization Reactor [4], Coupled

Pilot Plant Distillation Column [5], Narmada Main Canal
[6], Quadruple-Tank Process [7], Boiler-Turbine Unit [8],
and Wood-Berry Distillation Column [9]. A research by
Kumar et al. [4] had proposed a synthesis method of PI
controllers based on approximation of relative gain array
(RGA) concept to multivariable process. The method was
further improved by relative normalize gain array concept
(RNGA). Controller based on RNGA concept provides a
better performance than RGA concept. Both concepts use the
nonstandard PID controller which requires Maclaurin series
expansion [10]. In the work by Sarma and Chidambaram [5],
PI/PID controllers based on Davison and Tanttu-Lieslehto
method extended to nonsquare systems with right-half
plane zero were applied. Results show that the Davison
method gives better performance with less settling time than

Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2015, Article ID 818353, 22 pages
http://dx.doi.org/10.1155/2015/818353



2 Mathematical Problems in Engineering

Tanttu-Lieslehto method. However, both methods are not
applicable for square system.

Essentially, there are many integral controllers that are
designed for nonlinear system [11, 12]. However, most of the
existing techniques do not guarantee the desired transient
performances in the presence of nonlinear parameter vari-
ations and unknown external disturbances [13]. In a previ-
ous study, Martin and Katebi [14] had proposed Davison,
Penttinen-Koivo, Maciejowski, and Combined method as a
control tuning design for ship positioning. These controls
strategies are based on PID controller which is used to
control multivariable system. Due to the effectiveness and
simplicity of those proposed controllers, Wahab et al. [15]
had used those methods as tuning strategies for wastewater
treatment plant (WWTP). The controllers were designed
based on steady state of a linear system and static model
inverse. The reliability of the proposed method was tested
to a nonlinear WWTP. The response shows that good result
was obtained from Davison until the Combined method.
In the work by Balaguer et al. [16], a comparison between
MPID controller with figure of merit controller was done for
WWTP based on open-loop, closed-loop, and open-closed
loop controller structure analysis. The MPID control tuning
based on Davison and Penttinen-Koivo method was carried
out by minimizing the residuals of both controllers obtained
from the data. However, the dynamic nature of WWTP
which involves ill condition characteristic causes difficulties
in finding the optimumMPID tuning parameter.The system’s
behavior that involves slow and fast variables causes the
control tuning strategies to not easily meet specification for
multiple control variables at the same time.

A lot of approaches have been proposed to control
multivariable system. Some of the approaches are able to deal
with a high order multivariable system. However, a simple
controller design has always become a desired controller
where it is certainly can be accepted by the industry. By that,
the required cost to run the system will be minimized as well.
Realizing the simple controller design by other researchers
[14–16], those methods were applied in this project and
improved by adopting singularly perturbationmethod (SPM)
to the controller designs by considering the dynamic matrix
inverse.

Singularly Perturbed Multivariable Controller. Analysis and
synthesis of singularly perturbed control have received much
thoughtfulness over the past decades by many people from
numerous arenas of studies [17–21]. Singularly perturbation
method is able to decompose and simplify the higher order
of the full order system into slow and fast subsystems [17,
22, 23], which are known as singularly perturbation system.
Definitely,most of the control systems are dynamic, where the
decomposition into stages is dictated by multitime scale. In
this situation, the slow subsystem corresponds to the slowest
phenomena and the fast subsystem corresponds to the fastest
phenomena. It basically has two different parts of eigenvalue
represented for slow and fast dynamic subsystems [24], where
slow subsystem corresponds to small eigenvalue and fast
subsystem corresponds to large eigenvalue [25].

This work is focused on the analysis of singularly pertur-
bation system on two different case studies given. Singularly
perturbed control of multivariable system is comprised of
two steps. First, the multivariable system is decomposed
into slow and fast subsystems. Then, the optimal composite
singularly perturbed controller is designed [25–28]. There
are many approaches that have been developed concerning
the control of singularly perturbation system.The approaches
use different conditions on the properties of the used func-
tions, different assumptions, different theorems, and different
lemma [13, 21, 29] which are specifically based on the systems
behaviour.

In a study by Rabah and Aldhaheri [24], singularly
perturbation system has been modelled by using a real
Schur form method. It shows that any two-time scale system
can be altered into the singularly perturbed form via a
transformation into an order real Schur form (ORSF). It is
based on two steps, transformation of matrix A into an ORSF
using an orthogonalmatrix and then application of balancing
algorithm to an ORSF. Li and Lin [17] had addressed the
composite fuzzy multivariable controller to nonlinear sin-
gularly perturbation system. The composite controller was
obtained from the combination of slow and fast subsystems. It
was tested to a DC motor driven inverted pendulum system
and it provides realistic and satisfactory simulation results.
Multivariable control by Kim et al. [30] used successive
Galerkin approximation (SGA) method. This method causes
the complexity in computations to increase with respect to
the order of the system. Therefore, singularly perturbation
method was adopted to decompose the original system into
slow and fast subsystems. Result shows that the use of the
method greatly reduces the computation complexity and it is
more effective than the original SGA method.

To the best of author knowledge, there are two methods
to obtain the singularly perturbation system, which are by
analytical [21, 29–31] and linear analysis [32–35]. Singularly
perturbation system obtained based on linear analysis is dis-
cussed and has been applied in this research. By exploiting the
properties of singularly perturbation system to the dynamic
matrix inverse of MPID control tuning methodology, an
easy multivariable tuning method should be established. In
Section 2, the time scale analysis is presented to determine
the behavior of the system. Section 3 described the methods
to obtain singularly perturbation system based on Naidu and
Jian Niu method. The sequences of MPID controller based
on Davison, Penttinen-Koivo, Maciejowski, and Combined
methods are discussed in Section 4. Section 5 presented the
optimization method which is based on particle swarm opti-
mization (PSO). The case studies and the performance of the
proposed methods for two case studies are investigated and
discussed thoroughly in Sections 6 and 7. Finally, conclusions
are given in Section 8.

2. Time Scale Analysis

To apply singularly perturbation method to the controller
designs, the considered system must consist of a two-time
scale characteristic. The two-time scale characteristic can be
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determine by rearranging the eigenvalue of the system in
increasing order which will give

𝑒 (𝐴) = {𝑝
𝑠1, . . . , 𝑝𝑠𝑚, 𝑝𝑓1, . . . , 𝑝𝑓𝑛} , (1a)

𝑒 (𝐴
𝑠
) = {𝑝

𝑠1, . . . , 𝑝𝑠𝑚} , (1b)

𝑒 (𝐴
𝑓
) = {𝑝

𝑓1, . . . , 𝑝𝑓𝑛} , (1c)

where 𝑒(𝐴), 𝑒(𝐴
𝑠
), and 𝑒(𝐴

𝑓
) are a total, slow, and fast

eigenspectrum of the system, respectively. 𝑝
𝑠1

is a smallest
eigenvalue of the slow eigenspectrum, 𝑝

𝑠𝑚
is a largest eigen-

value of the slow eigenspectrum, 𝑝
𝑓1

is a smallest eigenvalue
of the fast eigenspectrum, and 𝑝

𝑓𝑛
is a largest eigenvalue of

the fast eigenspectrum:
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. (2)

The system is said to possess a two-time scale characteristic,
if the largest absolute eigenvalue of the slow eigenspectrum
is much smaller than the smallest absolute eigenvalue of the
fast eigenspectrum. This is proven by

𝜀 =





𝑝
𝑠𝑚











𝑝
𝑓1







≪ 1, (3)

where 𝜀 is a measure of separation of time scales that
represents an intrinsic property.

3. Singularly Perturbation Method (SPM) for
MIMO System

Industrial processes possess “𝑛” number of inputs and out-
puts variables, where interaction phenomena exist. Interac-
tion phenomena that occur among the inputs and outputs
variables of multivariable process cause great difficulties in
MPID controller design. Usually, it is solved by tuning the
most important loop whereas other loops are detuned by
keeping the interactions of that loop adequate. To compensate
the interaction phenomena, one of the loops is forced to
performpoorly.This detuningmethod is far from the optimal
[4]. In this work, to account for the interaction phenomena,
instead of using the original process transfer function to the
MPID controller design, that transfer function is rearranged
by separating the slow and fast eigenvalues using SPM.

3.1. Naidu Method. In this section we propose a procedure
for a separation of slow and fast subsystem. The considered
linear equations for two-time scale continuous system with
the output vector possessing two widely separated groups of
eigenvalues are

�̇� = 𝐴11𝑥+𝐴12𝑧 +𝐵1𝑢, (4a)

𝜀�̇� = 𝐴21𝑥+𝐴22𝑧 +𝐵2𝑢, (4b)

𝑦 = 𝐶1𝑥+𝐶2𝑧, (4c)

where𝑥 and 𝑧 are slow and fast variables in𝑝 and 𝑞dimension
and 𝑦 is a measured output. Matrices 𝐴

𝑖𝑗
, 𝐵
𝑖
, and 𝐶

𝑖
are

constant matrices of appropriate dimensions. Consider the
problem as in (4a) to (4c). The system possesses a two-
time scale property. Preliminary to separation of slow and
fast subsystem, the system consists of 𝑚 number of small
eigenvalue (close to the origin) for slow subsystem and 𝑛

number of fast eigenvalue (far from the origin) for the fast
subsystem. The number of slow and fast eigenvalues needs
to be identified based on eigenvalue location. Fast eigenvalue
of the system is only essential during a short period of time.
Then, it is insignificant and the characteristic of the system
can be described by degenerating system known as a slow
subsystem.

By letting 𝜀 = 0, slow subsystem is obtained as

�̇�slow = 𝐴11𝑥slow +𝐴12𝑧slow +𝐵1𝑢slow, (5a)

0 = 𝐴21𝑥slow +𝐴22𝑧slow +𝐵2𝑢slow, (5b)

𝑦slow = 𝐶1𝑥slow +𝐶2𝑧slow. (5c)

By assuming 𝐴
22
as a nonsingular matrix, (5b) becomes

𝑧slow = −𝐴22
−1

(𝐴21𝑥slow +𝐵2𝑢slow) . (6)

Using equation (6) in (5a), �̇�slow is represented as

�̇�slow = 𝐴 slow𝑥slow +𝐵slow𝑢slow, (7)

where

𝐴 slow = 𝐴11 −𝐴12𝐴22
−1

𝐴21,

𝐵slow = 𝐵1 −𝐴12𝐴22
−1

𝐵2.
(8)

Using (6) in (5c), 𝑦slow is represented as

𝑦slow = 𝐶slow𝑥slow +𝐷slow𝑢slow, (9)

where

𝐶slow = 𝐶1 −𝐶2𝐴22
−1

𝐴21,

𝐷slow = −𝐶2𝐴22
−1

𝐵2.
(10)

To obtain fast subsystem, it can be assumed that the slow
variables are constant at fast transients, where

𝑥slow = 𝑥 = constant,

�̇�slow = 0.
(11)

From (4b) and (6),

𝜀 (�̇� − �̇�slow) = 𝐴22 (𝑧 − 𝑧slow) + 𝐵2 (𝑢 − 𝑢slow) . (12)

Let
𝑧fast = (𝑧 − 𝑧slow) ,

𝑢fast = (𝑢 − 𝑢slow) ,

𝑦fast = (𝑦−𝑦slow) ,

𝐴 fast = 𝐴22,

𝐵fast = 𝐵2,

𝐶fast = 𝐶2.

(13)
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The fast subsystem is obtained as

𝜀�̇�fast = 𝐴 fast𝑧fast +𝐵fast𝑢fast, (14a)

𝑦fast = 𝐶fast (𝑧 − 𝑧slow) , (14b)

𝑦fast = 𝐶fast𝑧fast. (14c)

The composite system which consists of slow and fast subsys-
tem is achieved using two-stage linear transformation which
can be referred in an article written by Chang [36]:

𝐴 spm = [

𝐴 slow 𝑍12

𝑍21 𝐴 fast
] , (15a)

𝐵spm = [

𝐵slow

𝐵fast
] , (15b)

𝐶spm = [𝐶slow 𝐶fast] , (15c)

𝐷spm = 𝐷, (15d)

where

𝑍12 = zeros (𝑚, 1) , (15e)

𝑍21 = zeros (1, 𝑚) . (15f)

The state space form of composite system is represented in
(15a) to (15f).

3.2. Jian Niu Method. The two-time scale system can also be
solved using other method. This section presents singularly
perturbationmethod based on JianNiu. In order to apply Jian
Niu method, transfer function matrix should be transform
into a state space model:

𝐺 (𝑠) = [

𝐺11 (𝑠) 𝐺12 (𝑠)

𝐺21 (𝑠) 𝐺22 (𝑠)

] . (16)

To illustrate the two-time scale decomposition, (16) is consid-
ered. Equation (16) can have this form

�̇� = 𝐴𝑥+𝐵𝑢, (17a)

𝑦 = 𝐶𝑥, (17b)

where

𝐴 = diag [𝐴11, 𝐴12, 𝐴21, 𝐴22] , (17c)

𝐵 =

[

[

[

[

[

[

𝐵11 0
0 𝐵12

𝐵21 0
0 𝐵22

]

]

]

]

]

]

, (17d)

𝐶 = [

𝐶11 𝐶12 0 0
0 0 𝐶21 𝐶22

] (17e)

(𝐴
𝑖𝑗
, 𝐵
𝑖𝑗
, 𝐶
𝑖𝑗
) is a state space form of 𝐺

𝑖𝑗
(𝑠). Equations (17a)

and (17b) can be represented as

[

[

[

[

[

𝜀�̇�1

𝜀�̇�2
�̇�3

�̇�4

]

]

]

]

]

=

[

[

[

[

[

[

𝜀𝐴11 0 0 0
0 𝜀𝐴12 0 0
0 0 𝐴21 0
0 0 0 𝐴22

]

]

]

]

]

]

[

[

[

[

[

𝑥1

𝑥2
𝑥3

𝑥4

]

]

]

]

]

+

[

[

[

[

[

[

𝜀𝐵11 0
0 𝜀𝐵12

𝐵21 0
0 𝐵22

]

]

]

]

]

]

[

𝑢1

𝑢2
] ,

[

𝑦1

𝑦2
] = [

𝐶11 𝐶12 0 0
0 0 𝐶21 𝐶22

]

[

[

[

[

[

𝑥1

𝑥2
𝑥3

𝑥4

]

]

]

]

]

,

(18)

where 𝜀 is a very small positive constant. Equations (18) can
be considered as

�̇� = 𝐴11𝑥+𝐴12𝑧 +𝐵1𝑢, (19a)

𝜀�̇� = 𝐴21𝑥+𝐴22𝑧 +𝐵2𝑢, (19b)

𝑦 = 𝐶1𝑥+𝐶2𝑧 +𝐷𝑢. (19c)

Equations (19a) to (19c) are the linear equations for two-time
scale continuous system, similar just like (1a) to (1c) where

𝐴11 = [

𝐴21 0
0 𝐴22

] , (19d)

𝐴12 = [

0 0
0 0

] , (19e)

𝐴21 = [

0 0
0 0

] , (19f)

𝐴22 = [

𝜀𝐴11 0
0 𝜀𝐴12

] , (19g)

𝐵1 = [

𝐵21 0
0 𝐵22

] , (19h)

𝐵2 = [

𝜀𝐵11 0
0 𝜀𝐵12

] , (19i)

𝐶1 = [

0 0
𝐶21 𝐶22

] , (19j)

𝐶2 = [

𝐶11 𝐶12

0 0
] , (19k)

𝐷 = [

0 0
0 0

] . (19l)
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This method is discussed in several literatures [33, 35]. The
slow subsystem is denoted as

�̇�slow = 𝐴 slow𝑥slow +𝐵slow𝑢slow, (20a)

𝑦 = 𝐶slow𝑥slow +𝐷slow𝑢slow. (20b)

And the fast subsystem is

�̇�fast = 𝐴 fast𝑧fast +𝐵fast𝑢fast, (21a)

𝑦 = 𝐶fast𝑧fast +𝐷fast𝑢fast, (21b)

where

𝐴 slow = 𝐴11 −𝐴12𝐴22
−1

𝐴21, (22)

𝐵slow = 𝐵1 −𝐴12𝐴22
−1

𝐵2, (23)

𝐶slow = 𝐶1 −𝐶2𝐴22
−1

𝐴21, (24)

𝐷slow = 𝐷−𝐶2𝐴22
−1

𝐵2, (25)

𝐴 fast = 𝐴22, (26)

𝐵fast = 𝐵2, (27)

𝐶fast = 𝐶2, (28)

𝐷fast = 𝐷, (29)

𝐺slow (𝑠)=𝐶slow (𝑠𝐼 −𝐴 slow)
−1

𝐵slow +𝐷slow, (30)

𝐺fast (𝑠)=𝐶fast (𝑠𝐼 −𝐴 fast)
−1

𝐵fast +𝐷fast. (31)

The transfer functions for slow and fast subsystem are
denoted by (30) and (31), respectively. The composite model
is signified as a sum of slow and fast subsystem and a very
little item 𝑂(𝜀) [37]

𝐺composite (𝑠) = 𝐺slow (𝑠) +𝐺fast (𝑠) −𝐷slow +𝑂 (𝜀) , (32)

where

𝑂 (𝜀) = [

0 0
𝑂21 (𝜀) 𝑂22 (𝜀)

] . (33)

4. Multivariable PID Controller Design

Owing to the industrial process control involved with
multivariable system, MPID controller design technique is
necessary. It is a powerful control technique for solving
coupling nonlinear system [38]. The conventional MPID
controller designs technique is based on static inverse model
[15]. This technique is difficult to obtain the desired control
performance. Therefore, an enhancement is presented based
on the dynamic inverse matrix and singularly perturbation
method to the designs of MPID controller. Essentially, this
enhancement has been considered in the previous work
reported in [39] and it shows that the enhancement is able
to control dynamic system where the output is able to track

the set point change and produced less proses interaction.
Nevertheless, it only considered that three controller designs
instead of four and the selection of parameter tuning are
done without optimization technique. In this paper, there are
four enhanced MPID controller designs which are Davison,
Penttinen-Koivo,Maciejowski, andCombinedmethodwhere
it is applied to the both original and singularly perturbed
system with all of the parameter tuning being obtained based
on particle swarm optimization. All of these four designs
technique are applied to wastewater treatment plant and
Newell and Lee evaporator.

4.1. Davison Method. Multivariable control design based on
Davison method simply applies the integral term, which
causes decoupling rise at low frequencies

𝐾 = 𝐾
𝑖

1
𝑠

𝑒 (𝑠) . (34)

The controller expression is represented by (34) [16], where
𝐾
𝑖
and 𝑒(𝑠) are integral feedback gain and controller error,

respectively,

𝐾
𝑖
= 𝜇𝐺 (𝑠)

−1
. (35)

Since this research is focused on dynamic control, 𝐾
𝑖
is

defined as in (35), where 𝜇 is the only controller tuning
parameter, which undoubtedly needs to be tuned progres-
sively until the finest solution is discovered. Due to the
involvement of the inverse system, the control design is only
applicable for squarematrix. If the system involves time delay,
the time delay needs to be eliminated.

4.2. Penttinen-Koivo Method. This method is somewhat
advanced and then the method proposed by Davison. In
Penttinen-Koivo method, a proportional term is introduced.
It comprises both integral and proportional term. Indirectly,
this causes decoupling to take place at low and high frequen-
cies. Davison and Penttinen-Koivo method are only similar
in terms of an integral term which is linearly related to the
inverse of plant dynamics

𝐾 = (𝐾
𝑝
+𝐾
𝑖

1
𝑠

) 𝑒 (𝑠) . (36)

The controller expression is represented in (36) [16], where
𝐾
𝑝
,𝐾
𝑖
, and 𝑒(𝑠) are proportional gain, integral feedback gain,

and controller error correspondingly

𝐾
𝑝

= (𝐶𝐵)
−1

𝜌,

𝐾
𝑖
= 𝜇𝐺 (𝑠)

−1
.

(37)

Dynamic terms of 𝐾
𝑝
and 𝐾

𝑖
are expressed in (37), where 𝜌

and 𝜇 are the tuning parameters for both proportional and
integral feedback gain.

4.3. Maciejowski Method. Maciejowski method applies all
proportional, integral, and derivative gains in its controller
design. Formaciejowskimethod, the tuningwas done around
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the bandwidth frequency, 𝜔
𝐵
. Consequently, the interaction

is reduced and good decoupling characteristic is provided
around the frequency [15]. However, due to the needs of plant
frequency analysis experiment, this method is quite difficult
to be used throughout the industry [15]

𝐾 = (𝐾
𝑝
+𝐾
𝑖

1
𝑠

+𝐾
𝑑
𝑠) 𝑒 (𝑠) . (38)

The controller expression is represented by (38), where 𝐾
𝑝
,

𝐾
𝑖
,𝐾
𝑑
, and 𝑒(𝑠) are proportional, integral feedback, derivative

gains, and controller error

𝐾
𝑝

= 𝜌𝐺 (𝑗𝑤
𝑏
)
−1

,

𝐾
𝑖
= 𝜇𝐺 (𝑗𝑤

𝑏
)
−1

,

𝐾
𝑑
= 𝛿𝐺 (𝑗𝑤

𝑏
)
−1

.

(39)

Dynamic terms of𝐾
𝑝
,𝐾
𝑖
, and𝐾

𝑑
are expressed in (39), where

𝜌, 𝜇, and 𝛿 are Maciejowski tuning parameters. Due to a
complex gain obtained from the calculation of 𝐺(𝑗𝑤

𝑏
)
−1, a

real approximation of 𝐺(𝑗𝑤
𝑏
)
−1 is necessary which can be

done by solving the following optimization problem:

𝑀(𝑁,Θ) = [𝐺 (𝑗𝑤
𝑏
)𝑁− 𝑒

𝑗Θ

]

𝑇

[𝐺 (𝑗𝑤
𝑏
)𝑁− 𝑒

𝑗Θ

] ,

Θ = diag (𝜃1, . . . , 𝜃𝑛) ,

(40)

where 𝑁 is a constant that is used to minimize 𝑀.

4.4. CombinedMethod. In order to overcome theweakness of
the Maciejowski method which requires rigorous frequency
analysis, a new method was proposed by Wahab et al. [15].
It is the result of the previous controllers where methods
by Davison, Penttinen-Koivo, andMaciejowski are combined
together:

𝐾 = (𝜌𝑄+𝜇𝑄

1
𝑠

) 𝑒 (𝑠) . (41)

Equation (41) represents the proposed control design, where
𝜌, 𝜇, and 𝑒(𝑠) are the tuning parameters and controller error:

𝑄 = [𝛼𝐺 (𝑠) + (1−𝛼)𝐶𝐵]
−1 (42)

𝑄 is defined in (42). 𝛼 is also a tuning parameter.Thismethod
keeps some properties in Maciejowski method but excludes
the needs of frequency analysis [15].

5. Optimized Singularly Perturbed MPID
Parameter Tuning

To ensure a fair comparison, the optimum parameter tuning
for each of controller designs is measured by using particle
swarm optimization (PSO). PSO optimizes a problem by
having a population (swarm) of candidate solutions (birds)
which is known as particles that are updated from iteration to
iteration [40].These particles aremoved into the search space
seeking for a food according to its own flying experience and

its companion flying experience. It can be expended tomulti-
dimensional search. Each particle (solution) is characterized
by its position and velocity, and every one of them searches
for better positions within the search space by changing its
velocity [41]. Each particle preserves the track of its current
position within the search space. This value is identified as
the particle’s local best known position (pbest) and leads to
the best known position (gbest), which is defined as enhanced
positions that are found by the other particles. By that, the
finest solution is attained

V (𝑡 + 1) = (𝑤 ∗ V (𝑡)) + (𝑐1 ∗ 𝑟1 ∗ (𝑝 (𝑡) − 𝑥 (𝑡)))

+ (𝑐2 ∗ 𝑟2 ∗ (𝑔 (𝑡) − 𝑥 (𝑡))) ,

𝑥 (𝑡 + 1) = 𝑥 (𝑡) + V (𝑡 + 1) .

(43)

Equation (43) represents the update equations of new veloc-
ity and new position, where V(𝑡 + 1), 𝑥(𝑡 + 1), 𝑤, V(𝑡),
𝑐
1
, 𝑐
2
, 𝑟
1
, 𝑟
2
, 𝑝(𝑡), 𝑥(𝑡), and 𝑔(𝑡) correspond to the velocity at

time 𝑡 + 1, new particle position, inertia weight, current
velocity at time 𝑡, cognitive weight, global weight, random
variable within the range of 0 ≥ 𝑟

1
< 1, random variable

within the range of 0 ≥ 𝑟
2
< 1, pbest, and gbest.

The overall performance of PSO can be increased by
proper selection of inertia weight, 𝑤. Lower value of 𝑤

provides a good ability for local search and higher value of
𝑤 provides a good ability for global search [41]:

𝑤 = 𝑤max − iter ⋅
𝑤max − 𝑤min

itermax
. (44)

To achieve a respectable performance, 𝑤 is determined
according to (44), where 𝑤max is the maximum value of
inertia weight, 𝑤min is the minimum value of inertia weight,
iter is the current number of iteration, and itermax is the max-
imum number of iteration. Most of the previous researchers
have used 𝑤max = 0.9 and 𝑤min = 0.4, where significant
enhancement of PSO is achieved [42, 43]:

ITSE = ∫

𝑇

0
𝑡𝑒

2
(𝑡) 𝑑𝑡. (45)

Fitness function which is also known as cost function is rep-
resented by (45), where 𝑒(𝑡) is a system error. The procedure
of PID parameter optimization by using PSO is summarized
as follows:

(1) Initialization: initialize a population of particles with
arbitrary positions and velocities on X dimensions
in the problem space. Then, randomly initialize pbest
and gbest.

(2) Fitness: calculate the desired optimization fitness
function in X dimensions for every particle.

(3) pbest: compare calculated fitness function value for
every particle in the population. If current value is
smaller than pbest, and then update pbest as current
particle position.

(4) gbest: determine the best success particle position
among all of the individual best positions and desig-
nate as a gbest.
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(5) New velocity and position: update the velocity and
position of the particle based on (43).

(6) Repeat step (2) all over again until a criterion is
encountered.

6. Case Studies

In the next subsections, an introduction to the case studies
is presented. First, an overview of the wastewater treatment
plant (WWTP) is provided and the Newell and Lee evapora-
tor model is explained.These two case studies are considered
to demonstrate the performance of the proposed methods.

6.1. Case Study I: Wastewater Treatment Plant (WWTP).
Wastewater treatment plant is designed either for carbon
removal or for carbon and nitrogen removal. In this project,
the carbon removal scenario is considered. The control
plant outputs are substrate and dissolved oxygen. Scanty
provision of substrate affects the growth of microorganisms
that are responsible for treating the wastewater and too many
provisions lead to a drop in the microorganisms growth
rate. The standard amount of substrate is around 51mg/L
[44]. Meanwhile, insufficient dissolved oxygen will cause the
degradation of the pollutants and the plant to become less
efficient. Too much dissolved oxygen can cause excessive
consumption of energy where it will increase the cost for the
treatment. Other than that, it also can cause too much sludge
production. The amount of dissolved oxygen concentration
needs to be controlled so that it is in the range of 1.5mg/L–
4.0mg/L [45]. The aim of this case study is to control
the concentration of substrate and dissolved oxygen at the
desired value by manipulating the manipulate variables of
dilution rate and air flow rate, respectively. The state space
formof the nonlinearwastewater treatment plant is linearized
from [39] as follows:

[

[

[

[

[

[

�̇�

̇𝑆

̇DO

�̇�
𝑟

]

]

]

]

]

]

= 𝐴

[

[

[

[

[

𝑋

𝑆

DO
𝑋
𝑟

]

]

]

]

]

+𝐵[

𝐷

𝑊

] (46a)

[

𝑌
𝑆

𝑌DO
] = 𝐶

[

[

[

[

[

𝑋

𝑆

DO
𝑋
𝑟

]

]

]

]

]

+𝐷[

𝐷

𝑊

] , (46b)

where the state is composed by 𝑋, the biomass, 𝑆, the
substrate, DO, the dissolved oxygen, and 𝑋

𝑟
, the recycled

biomass. The input variables are 𝐷, the dilution rate, and 𝑊,
an air flow rate. Matrices 𝐴, 𝐵, 𝐶, and 𝐷 are given by

𝐴 =

[

[

[

[

[

[

−0.0990 0.1234 0.2897 0.0495
−0.0508 −0.3219 −0.4457 0
−0.0254 −0.0949 −1.9748 0
0.1320 0 0 −0.0660

]

]

]

]

]

]

, (47a)

𝐵 =

[

[

[

[

[

−87.1159 0
134.0243 0
−9.2834 0.0699
0.0001 0

]

]

]

]

]

, (47b)

𝐶 = [

0 1 0 0
0 0 1 0

] , (47c)

𝐷 = [

0 0
0 0

] . (47d)

These 𝐴, 𝐵, 𝐶, and 𝐷 matrices are used in the design
of singularly perturbed MPID control and tested into the
nonlinear wastewater treatment plant.

6.2. Case Study II: Newell and Lee Evaporator. This subsection
presents the Newell and Lee evaporator system which is
considered as a second case study.The objective is to evaluate
the effectiveness and the performance of the proposed singu-
larly perturbed MPID controllers for different system. Here,
unstable system is considered. Similar to the first case study,
the four different methods of MPID are implemented, which
is Davison, Penttinen-Koivo, Maciejowski, and Combined
methods. The plant to be controlled is given by the following
state space model [46]:

[

[

[

[

�̇�2

�̇�2

�̇�2

]

]

]

]

= 𝐴
[

[

[

𝐿2

𝑋2

𝑃2

]

]

]

+𝐵
[

[

[

𝐹2

𝑃100

𝐹200

]

]

]

, (48a)

[

𝑌
𝐿2

𝑌
𝑃2

] = 𝐶
[

[

[

𝐿2

𝑋2

𝑃2

]

]

]

+𝐷
[

[

[

𝐹2

𝑃100

𝐹200

]

]

]

, (48b)

where the state is composed by 𝐿
2
, the separator level, 𝑋

2
,

the product composition, and 𝑃
2
, an operating pressure. The

input variables are 𝐹
2
, the product flow rate, 𝑃

100
, the steam

pressure, and 𝐹
200

, the cooling water flow rate. The outputs
to be controlled are 𝑌

𝐿
2

, separator level, and 𝑌
𝑃
2

, operating
pressure. Matrices 𝐴, 𝐵, 𝐶, and 𝐷 are given by

𝐴 =
[

[

[

0 0.00418 0.007512
0 −0.10000 0
0 −0.02091 −0.05580

]

]

]

, (49a)

𝐵 =
[

[

[

−0.05000 −0.00192 0
−1.25000 0 0

0 0.00959 −0.00183

]

]

]

, (49b)

𝐶 = [

1 0 0
0 0 1

] , (49c)

𝐷 =

[

[

[

[

0 0
0 0
0 0

]

]

]

]

. (49d)
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7. Results and Discussion

This section presents the results and discussion for both case
studies. It will include the results of singularly perturbed
MPID control based on four proposed methods, which
are Davison, Penttinen-Koivo, Maciejowski, and Combined
method for both full order and singularly perturbed system.
The first section shows the MPID control based on particle
swarm optimization. The obtained optimum tuning parame-
ters are presented. The second section shows the simulation
results for control of the closed loop system during substrate
and dissolved oxygen set point change, while the last section
provides the resultwhich shows the stability of the closed loop
system.

7.1. Results for the Case Study 1: Wastewater Treatment
Plant (WWTP). The eigenvalue of the open loop wastewater
treatment plant is as follows:

𝑒 (𝐴) = {−0.0076, − 0.2009, − 0.2579, − 1.9953} ,
𝑒 (𝐴
𝑠
) = {−0.0076, − 0.2009, − 0.2579} ,

𝑒 (𝐴
𝑓
) = {−1.9953} .

(50)

As a result

𝜀 =

|−0.2579|
|−1.9953|

= 0.1293 ≪ 1.
(51)

Since 𝜀 is less than 1, the system is said to possess a two-time
scale characteristic. The eigenvalue at −1.9953 is considered
as a fast response

𝐴SPS/Naidu

=

𝐴11 = 𝐴slow 𝐴12 = 𝑍12
↙ ↙

[

[

[

[

[

0 0.1234 0.2897 0
−0.0508 −0.3219 −0.4457 0
−0.0254 −0.0949 −1.975 0

0 0 0 −0.0660

]

]

]

]

]

↖ ↖

𝐴21 = 𝑍21 𝐴22 = 𝐴fast

(52a)

𝐵SPS/Naidu =

𝐵1 = 𝐵slow

↙

[

[

[

[

[

−87.1159 0
134.0243 0
−9.2834 0.0699
0.0001 0

]

]

]

]

]

↖

𝐵2 = 𝐵fast

(52b)

𝐶SPS/Naidu =

𝐶1 = 𝐶slow
↙

[

0 1 0 0
0 0 1 0

]

↖

𝐶2 = 𝐶fast

(52c)

𝐷SPS/Naidu = [

0 0
0 0

] ← 𝐷. (52d)

By using algorithm discussed in Section 3.1, the original
system which refers to (47a) to (47d) is represented in state
space form of singularly perturbed system as indicated in
(52a) to (52d). This state space form is used to design the
controller tuning, while the simulation and performance of
the system are based on the original system. From the state
space form in (52a) to (52d), it is clearly shown that the
eigenvalues of the system are grouped into two distinct and
separate sets, which causes the time consumed to obtain
the MPID tuning parameters reduce. All eigenvalues of the
singularly perturbed system are remained at the left-half
plane, which is −1.9955, −0.2798, −0.0214, and −0.0660. It is
indicated that the system is boundary input boundary output
(BIBO) stable

𝐺Jian Niu−𝑆/𝐷 = 𝐺Jian Niu−11 (𝑠) =

𝑠 + 134.1
𝑠 + 0.0508

, (53a)

𝐺Jian Niu−𝐶/𝐷 = 𝐺Jian Niu−21 (𝑠) =

𝑠 + 134.1
𝑠 + 0.0508

, (53b)

𝐺Jian Niu−𝑆/𝑊 = 𝐺Jian Niu−12 (𝑠) = − 0.0, (53c)

𝐺Jian Niu−𝐶/𝑊 = 𝐺Jian Niu−22 (𝑠) = − 0.05. (53d)

Based on the algorithms explained in Section 3.2, the JianNiu
method is successfully able to represent the original system
into composite of singularly perturbed system as in (53a)
to (53d), where the only existing eigenvalue is located at
−0.0508. Since it is in the left-half plane, the system is BIBO
stable. To validate the models from both methods, singularly
perturbation method obtained by Naidu and Jian Niu, the
magnitude and phase plot between the original system and
singularly perturbed system are plotted as shown in Figure 1.

Based on Figure 1, singularly perturbed system based
on Naidu algorithm provides better dynamic response com-
pared to the singularly perturbed system based on Jian Niu
algorithm, where the dynamic response is much identical to
the original system. The close approximation between the
original system and singularly perturbed system by Naidu
in the frequency responses analysis exhibits the authority of
model and essentially leads to adequate control performance
of the controller design. Hence, a singularly perturbed system
by Naidu is used in dynamic matrix inverse of MPID
controller designs.

In the considered WWTP, there are two controlled vari-
ables and twomanipulated variables. Interaction phenomena
may occur between these two controls and manipulate vari-
ables. Each manipulated variable can affect both the control
variables. The process interaction among the variables may
cause the closed loop system to become destabilized and the
controller tuning is more challenging. In order to minimize
the process interaction, the selection of suitable control and
manipulated variables pairing is importance. In this case,
there are two possible controller pairings.

The relative gain array (RGA) analysis has been used in
quantifying the level of interactions in amultivariable system.
It is also used to determine the best input output pairing and
that pairing should be avoided. Tomeasure the ability of RGA
in providing a realistic pairing recommendation, the RGA for
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Figure 1: Bode analysis for different methods.

linearizedmodels was calculated. RGA of a nonsquarematrix
is defined in (54). The results are displayed in a matrix form,
where columns are for each input variable and rows for each
output variable.This matrix form can be used in determining
which relative gains are associated to which input output
variables

RGA = Λ = 𝐺RGA × (𝐺RGA
†

)

𝑇

, (54)

where

𝐺RGA = Gain matrix =

[

[

[

[

[

[

−87.1159 0
134.0243 0
−9.2834 0.0699
0.0001 0

]

]

]

]

]

]

,

𝐺RGA
†

= Pseudo inverse of gain matrix

= [

−0.0034 0.0052 0.0000 0.0000
−0.4528 0.6966 14.3062 0.0000

] .

(55)

Therefore

RGA = Λ =

[

[

[

[

[

[

0.2970 0
0.7030 0
−0.0000 1.0000
0.0000 0

]

]

]

]

]

]

. (56)

From the RGA obtained, it can be concluded that dissolved
oxygen cannot be pairedwith dilution rate due to the negative

relative gain. It corresponds to the worst case, and this is
highly undesirable. Biomass, substrate, and recycle biomass
on the other hand cannot be paired with air flow rate due to
the zero relative gain, which means that air flow rate does not
have any effect on biomass, substrate, and recycle biomass.
In RGA analysis, the closer the value of RGA element to
one is, the configuration is more likely to work, where less
interaction exists. Hence, it is concluded that a good pair of
dissolved oxygen and air flow rate and substrate and dilution
rate are recommended.

Since MPID controller designs are involved with sev-
eral tuning parameter, PSO was adopted. Due to the PSO
characteristic which cannot give a unique solution at every
attempt [47], 10 trials of simulation for original and sin-
gularly perturbed system of each MPID controller design
were conducted. A result with minimum error was selected.
Table 1 shows the obtained optimum PID tuning parameter
using ITSE fitness function for both systems: original and
singularly perturbed system. The results are corresponding
to Davison, Penttinen-Koivo, Maciejowski, and Combined
method, respectively. Based on the results presented, it clearly
shows that singularly perturbed system is able to provide
easiness in tuning strategy in terms of computation time
where it required less computation time compared to the
original system. Table 1 shows that singularly perturbed
MPID based on eachmethod is able to reduce more than half
of computation time required by original system.

Figures 2 to 5 show the comparison between output
response and interaction based on Penttinen-Koivo method
for original and singularly perturbed system. Based on
the Figures 2 and 4, Penttinen-Koivo based on singularly
perturbed system is able to produce better output responses
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Table 1: Optimum PID parameter for WWTP based on PSO.

Method Original system Singularly perturbed system
𝛼 𝜇 𝜌 Time (s) 𝛼 𝜇 𝜌 Time (s)

Davison — 0.9723 1173.7 — 0.7949 355.5019
Penttinen-Koivo — 1.7730 0.5741 49.7979 — 1.2010 0.7925 10.4767
Maciejowski — 9.8842 5.3998 247.4416 — 1.6729 9.4042 69.9072
Combined 0.8843 7.8907 9.5949 370.6488 0.7927 9.4458 7.5924 132.5115
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Figure 2: Substrate responses between original and singularly
perturbed system during set point change.

with less overshoot and fast settling time. Meanwhile, more
oscillation is produced by output responses based on original
system. The interaction among the output variables for
Penttinen-Koivo based on singularly perturbed system is also
reduced as shown in Figures 3 and 5.

Due to the better closed loop performance, reduced
process interaction, and less time consuming obtained by
the Penttinen-Koivo method based on singularly perturbed
system compared to the original system, singularly perturbed
system was implemented thoroughly in the case of the con-
troller performance evaluations among others three methods
accordingly. To measure the performance quality of four sin-
gularly perturbed MPID controller designs, pseudorandom
binary sequence (PRBS) was injected as the input signal to
the system. PRBS was injected to determine and to test the
tracking ability of the proposed singularly perturbed MPID
controller designs for each step change. From the responses
obtained, all four designs are able to track each step change
where the Combined method provides the best response.
Figures 6 and 7 show the output responses for both substrate
and dissolved oxygen concentration.

To provide a clear view of the set point tracking ability
and process interaction, the system was also injected with
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Figure 3: Process interaction between original and singularly
perturbed system during substrate change.
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Figure 4: Dissolved oxygen responses between original and singu-
larly perturbed system during set point change.
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Figure 5: Process interaction between original and singularly
perturbed system during dissolved oxygen change.
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Figure 6: Concentration of substrate based on PRBS input.

step input. The simulation was carried out during substrate
and dissolved oxygen set point change. For each change, the
step input was injected at 𝑡 = 10 h and 𝑡 = 50 h, respectively.
Figures 8 and 9 show the simulation results for substrate
and dissolved oxygen for each proposed singularly perturbed
MPID controller design.The responses are set with respect to
the step change in the substrate input from 41.2348mg/L to
51.2348mg/L.

Figure 8 shows that all singularly perturbed MPID
controller designs are able to keep the concentration of
the substrate close to the desired value. It shows that the
control based on Combined method is able to provide the
finest control effect among the others’ method in terms of
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Figure 7: Concentration of dissolved oxygen based on PRBS input.
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Figure 8: Closed loop responses of substrate during substrate set
point change.

settling time and maximum amplitude, where it is able to
achieve settling point during 11 h compared to the others
which settle during 44 h, 21 h, and 14 h, respectively. Due to
the control characteristic which only applies integral gain,
control action based on Davison method provides a response
with the highest percentage of overshoot (%OS). By using
Penttinen-Koivo method, the output response shows better
improvement.The presence of both integral and proportional
gain is able to minimize the percentage of overshoot (%OS)
and offer a better settling time (𝑇

𝑠
). However, proportional

gain needs to be tunedwisely. High value of proportional gain
can cause the system to become unstable, while small value of
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Figure 9: Process interactions during substrate set point change.

proportional gainmay reduce the sensitivity of the controller.
Compared to the Davison and Penttinen-Koivo method,
Maciejowski method gives the best performance with small
percentage of overshoot (%OS) and faster settling time (𝑇

𝑠
). It

is proven that control performance at the selected frequency
was able to improve the closed loop response. An important
feature in Maciejowski method is the selection of frequency.
Frequency must be selected properly to avoid instability.
Among all methods, the Combined method exhibited the
best tracking to the substrate changes. This method exhibits
a faster response than other control designs, but it requires a
long time to obtain the tuning parameters.

Since the considered case study involves multivariable
system, process interaction may occur. Interactions between
the system variables occur because each manipulated vari-
able in the multivariable system certainly will affect the
controlled variables. Here, dilution rate and air flow rate
will affect the response of both substrate and dissolved
oxygen concentration. Evidently, when changing one of the
inputs for dilution rate or air flow rate, both outputs will
be affected, and this means that there is significant coupling
in the system. Figure 9 shows the interaction responses for
each proposed singularly perturbed MPID controller design
that occurs during substrate change. The response obtained
has proven that substrate and dissolved oxygen are coupled
since the step changes in the substrate disturb the dissolved
oxygen correspondingly. If there is no process interaction,
dissolved oxygen should not be affected when the substrate
is changed. Fortunately, process interaction was reduced for
each controller design where the Combine method provides
less interaction, which indicates by the lowest maximum
amplitude and less oscillation.

Figures 10 and 11 show the closed loop responses of
manipulate variable, which are dilution rate and air flow
rate during the substrate set point change, respectively.
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Figure 10:Dilution rate responses during substrate set point change.
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Figure 11: Air flow rate responses during substrate set point change.

Large variation exhibits in the response of dilution rate and
air flow rate based on Davison method. Penttinen-Koivo
and Combined method exhibit moderate variations, while
Combined method exhibits smallest variations but with high
peak value at one of the points.

Figures 12 and 13 show the simulation results for dissolved
oxygen and substrate to the step change in the dissolved
oxygen input. From Figure 12, it is clearly shown that the
trajectory of the output is improved by each method that has
been applied. It is proportionate with the responses during
substrate set point change. All the systems step response
settles at a final value of 4.1146mg/L, which is the final value
of the unit step input. Figure 12 shows that the responses
produced by the Davison and Penttinen-Koivo methods do
not asymptotically approach the final value, where overshoot
appears in the final value.Themaximumvalues of the outputs
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Figure 12: Closed loop responses of dissolved oxygen during
dissolved oxygen set point change.

are 4.8649mg/L and 4.2830mg/L, respectively, for each of
Davison and Penttinen-Koivo methods. The output response
yield by Davison method consists of 37.52% of overshoots.
However, Penttinen-Koivo method has improved the output
response by reducing the overshoot to 8.42%. Meanwhile,
the responses acquired from Maciejowski and Combined
methods asymptotically approach the final value. These
methods provide slightly similar effect in terms of maximum
amplitude and settling time. There is no overshoot of the
final value and there are no oscillations in the response. The
outputs reach the final value at around 𝑡 = 0.2 h and 𝑡 = 0.4 h
for both Maciejowski and Combined methods, respectively.
Figure 13 shows that interactions also occur during dissolved
oxygen set point change. Similar to the responses during
substrate set point change, process interaction exists and it
is improved by each method proposed by Davison up to the
Combined method, respectively.

Figures 14 and 15 show the closed loop responses of
manipulate variable, which are dilution rate and air flow rate
during the dissolved oxygen set point change, respectively.
The characteristic of the closed loop responses for each of
singularly perturbed MPID controller design is summarized
in Table 2.

The stability of a system can be determined directly from
its transfer function or fromCLCP. Figure 16 shows the closed
loop poles and zeros plot for each singularly perturbedMPID
control design. It is mark a pole location by a cross (x) and
a zero location by a circle (o). Based on the plot figure, all
poles are located on the left-half plane that guarantees a
stable system.However, to ensure the reliability of the stability
analysis, Routh-Hurwitz analysis was performed. The results
show that all methods are able to produce a stable sys-
tem.
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Figure 13: Process interactions during dissolved oxygen set point
change.
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Figure 14: Dilution rate responses during dissolved oxygen set point
change.

7.2. Results for the Case Study II: Newell and Lee Evaporator.
The eigenvalue of the open loop Newell and Lee evaporator is
as follows:

𝑒 (𝐴) = {0, − 0.0558, − 0.1000} ,

𝑒 (𝐴
𝑠
) = {0} ,

𝑒 (𝐴
𝑓
) = {−0.0558, − 0.1000} .

(57)
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Table 2: Characteristic of closed loop response for WWTP.

Output Method Rise time, 𝑇
𝑟
(h) Settling time, 𝑇

𝑠
(h) Percentage overshoot (%OS) Steady state error (%)

Substrate, 𝑆

Davison 2.0 44 45.65 0.152
Penttinen-Koivo 1.8 21 8.65 0.092
Maciejowski 0.9 14 5.65 0.032
Combined 0.1 11 0 0.012

Dissolved oxygen, DO

Davison 1.0 14 62.49 0.03
Penttinen-Koivo 1.2 5.5 21.58 0.03
Maciejowski 0.1 0.2 0 0.17
Combined 0.1 0.4 0 0.02
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Figure 15: Air flow rate responses during dissolved oxygen set point
change.
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Figure 16: Closed loop pole-zero plot.

As a result

𝜀 =

|0|
|−1.9953|

= 0 ≪ 1.
(58)

Since 𝜀 is less than 1, the system behaved as a two-time scale
characteristic. There is one slow variable which is indicated
by eigenvalue of 0 and two fast variables which are indicated
by the eigenvalue at −0.0558 and −0.1000. Based on the
algorithm discussed in Section 3.1, the original system of
Newell and Lee evaporator can be represented in singularly
perturbed system. The eigenvalues for singularly perturbed
system are 0, −0.0558, and −0.1000, which is similar to the
original system

𝐴SPS/Naidu =

𝐴11 = 𝐴slow 𝐴12 = 𝑍12

↙ ↙

[

[

[

0 0 0
0 −0.1 0
0 −0.02091 −0.0558

]

]

]

↖ ↖

𝐴21 = 𝑍21 𝐴22 = 𝐴fast

(59a)

𝐵SPS/Naidu =

𝐵1 = 𝐵slow

↙

[

[

[

−0.06706 −0.0002464
−1.25000 0

0 −0.00183

]

]

]

↖

𝐵2 = 𝐵fast

(59b)

𝐶SPS/Naidu =

𝐶1 = 𝐶slow

↙

[

1 0 0
0 0 1

]

↖

𝐶2 = 𝐶fast

(59c)

𝐷SPS/Naidu = [

0 0
0 0

] ← 𝐷. (59d)
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Figure 17: Bode analysis for original and singularly perturbed system.

Equations (59a) to (59d) represent the singularly perturbed
system of Newell and Lee evaporator in state space form.
To verify the singularly perturbed system with the original
system, the Bode diagram is plotted as shown in Figure 17.
As seen from Figure 17, singularly perturbed system shows
a fairly good tracking with the original system over the
low, middle, and high frequencies ranges. The response
of the singularly perturbed system is almost identical to
the original system. The close approximation between both
systems demonstrates the validity of the obtained singularly
perturbed system and principally leads to satisfactory control
performance.

In this case, there also exists two possible control and
manipulate variables paring. By using (54), the RGA for
Newell and Lee evaporator was obtained as

RGA = Λ =
[

[

[

0.0028 0.0178
0.9972 0

0 0.9822

]

]

]

. (60)

Based on the analysis of RGA, it can be concluded that
separator level cannot be paired with cooling water flow rate,
and operating pressure cannot be paired with product flow
rate, respectively. This is due to the zero relative gain. A
change of coolingwater flow ratewill not give any significance
to the separator level, and change of product flow rate will not
give any significance to the operating pressure. From theRGA
analysis, it is highly recommended to pair product flow rate
with separator level and cooling water flow rate is paired with
operating pressure. Since the value is nonzero and positive,
the pairing is possible.

Similar as in case study I, 10 trials of PSO simulation
for original and singularly perturbed system of each MPID

controller design were conducted. However, due to the
unstable open loop response, Maciejowski method cannot
be implemented to this multivariable system as it requires
information from stable open loop response. Table 3 shows
the obtained optimum PID parameter based on PSO for
evaporator system. By applied Davisonmethod, both systems
are able to provide similar tuning parameter with similar
error for 10 number of run. However, it can be seen the
advantage of singularly perturbed system which required
less computation time compared to the original system. For
Penttinen-Koivo and Combined method, the computation
time is reduced more than triple times with the adaptation
of singularly perturbed system in MPID control.

Figures 18 to 21 show the comparison between output
responses based on Penttinen-Koivo method for each Newell
and Lee evaporator, original and singularly perturbed system.
Figure 18 shows the separator level responses between orig-
inal and singularly perturbed system during separator level
change. The response belonging to the original system has a
poor performance as compared to the singularly perturbed
system with high oscillation during step up and step down
response. The output response achieved by the singularly
perturbed system is with less overshoot and fast settling time.
Figure 19 shows the interaction response during separator
level change. It can be seen that the interaction was reduced
by the adaptation of singularly perturbed system in MPID
control. Figure 20 shows the operating pressure response
between original and singularly perturbed system during
operating pressure change. It can be observed that the singu-
larly perturbed system has better performance as compared
to the original system with fast settling time, while Figure 21
shows the interaction response during operating pressure
change. Due to the good responses exhibited from the
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Table 3: Optimum PID parameter for evaporator system based on PSO.

Method Original system Singularly perturbed system
𝛼 𝜇 𝜌 Time (s) 𝛼 𝜇 𝜌 Time (s)

Davison — 0.0300 — 746.1308 — 0.0300 — 134.7652
Penttinen-Koivo — 0.0500 0.0726 147.8473 — 0.0500 2.2488 22.0722
Combined 0.0223 0.1000 1.8896 568.1792 0.0363 0.7703 0.7609 167.2869

Table 4: Step point change.

Separator level change Operating pressure change
Step time 120 250 270 400
Initial value 0 0 0 0
Final value 1.5 −1.5 0.2 −0.2
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Figure 18: Separator level responses between original and singularly
perturbed system.

control based on singularly perturbed system, this systemwas
implemented thoroughly into the Davison, Penttinen-Koivo,
and Combined method. The simulation was performed by
setting the set point input values as follows:

value of separator level: 1m,
value of operating pressure: 50.5 kPa.

The simulation was executed in two-variable change,
which is during separator level and operating pressure step
point change.The step point change of the separator level and
operating pressure is listed in Table 4.

Figures 22 and 23 show the closed loop performance for
the separator level and operating pressure to the sequential
step point changes in separator level set point. The step
point changes were sequentially introduced into the system
at 𝑡 = 120 s and 𝑡 = 250 s, respectively. In the simulation
study, the comparisons of the closed loop performances
were done between Davison, Penttinen-Koivo, Combined,
and multivariable controller designed proposed by Fauzi,
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Figure 19: Process interaction between original and singularly
perturbed system during separator level change.

which is based on multiobjective optimization approach
using surrogate modelling. Fauzi’s method was compared as
they also have been involved with the similar Newell and
Lee evaporator system. However, the details concerning to
the controller designed are not presented and can be referred
in [46]. Figure 22 shows that the output performance based
on Davison method provides a response with 11.67% and
8.02% overshoot during the step up and step down input,
respectively. These values are higher compared to other con-
troller methods. However, it is still able to track the set point
input given. The output performances based on Penttinen-
Koivo and Combined methods are quiet similar. Combined
method provides faster rise and settling time during the step
up input, whereas the Penttinen-Koivo provides faster rise
and settling time during the step down input. However, the
Combined method provides the best performance with low
percentage of overshoot, which specify by the lowest value
of maximum amplitude and steady state error. Among the
four methods, the method proposed by Fauzi is the poorest.
At the early stage, the response is relatively good. Once the
step down input is injected, the response shows unstable
characteristic where it fails to settle at the given set point
input. The response is considered as unstable since the gain
error increases as time increases. Figure 23 compares the
interactions that occur during the separator level set point
change. It is clearly shown that Davison method produces
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Figure 20: Operating pressure responses between original and
singularly perturbed system.
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Figure 21: Process interaction between original and singularly
perturbed system during operating pressure change.

large interactions with high maximum amplitude and more
oscillation.The sluggishness in the performance is due to the
controller algorithm which only involves integral gain. It can
be observed that the Combined method is able to reduce the
interaction effects well compared to the other methods. The
interaction produced by the Combined method is the lowest.
Penttinen-Koivomethod produces interaction slightly higher
than the Combined method, while Fauzi method offers quiet
high interaction.

Figures 24 and 25 show the closed loop responses of
manipulate variable, which are product flow rate and cooling
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Figure 22: Responses of separator level during separator level set
point change.
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Figure 23: Process interactions during separator level set point
change.

water flow rate during the separator level set point change
respectively. For Davisonmethod, large variations of product
flow rate and cooling water flow rate are obtained, while
Penttinen-Koivo and Combined method consist of small
variations but high peak value. Among the four methods,
Mohd Fauzi method exhibits the largest variations.

Figures 26 and 27 show the simulation responses for
the operating pressure and separator level to the sequential
step point changes in operating pressure set point. Based on
Figure 26, Penttinen-Koivo and Combined methods provide
a response which is mostly identical to the given set point.
During step up input, Penttinen-Koivo method consists of
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Figure 24: Product flow rate responses during separator level set
point change.
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Figure 25: Cooling water flow rate responses during separator level
set point change.

slightly high steady state errors than the Combined method.
The difference is only about 1.40%. Meanwhile, the difference
is approximately 0.1% during step down input. Even though
the response by Davison method required long computation
time for the rise and settling, the response is accomplished to
settle at the set point value. But the response is relatively slow
and consists of high percentage overshoot and steady state
error. Figure 26 also shows that the output performance based
on Davison method provides a response with 10% overshoot
during the step up and step down input. These values are
higher compared to other controller methods. However, it is
still able to track the set point.Theoutput performances based
on Penttinen-Koivo and Combined methods are almost
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Figure 26: Responses of operating pressure during operating
pressure set point change.

similar. Penttinen-Koivo provides faster rise and settling
time during the step up and step down input. However, the
Combined method provides the best performance with the
lowest steady state error. Meanwhile, the resulting response
by Fauzi obviously shows unstable characteristic. At the
beginning, the response already shows that the system is
in a state of uncontrollable. After the step down input was
injected, the response gradually decreased. At time 𝑡 =
800 s, the response of operating pressure is at −366.7 kPa.
An increase in simulation time will lead the response to
be infinity. Figure 27 shows the response of interactions
during operating pressure set point change. Among the four
methods, Penttinen-Koivo and Combined methods offer the
least interaction. It can be seen that the interaction is reduced
with the Penttinen-Koivo and Combined methods compared
to the Davison and Fauzi methods which consist of high
maximum amplitude.

Figures 28 and 29 show the closed loop responses of
corresponding manipulated variable, which are product flow
rate and cooling water flow rate during operating pressure set
point change, respectively. The variation of both manipulate
variables is similar during separator level set point change,
where control based on Mohd Fauzi method exhibits a
response with the largest variations.

The characteristic of closed loop response for evapora-
tor system of all the comparative methods for singularly
perturbed MPID control during the separator level and
operating pressure set point change is tabulated in Table 5.
The good performance of the Combined method is read-
ily apparent. The best performance is given by Combined
method, followed by Penttinen-Koivo, Davison, and Fauzi
method.

Figure 30 shows the closed loop pole-zero plots for
the proposed singularly perturbed MPID controller designs
applied to the Newell and Lee evaporator. It can be seen that
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Table 5: Characteristic of closed loop response for evaporator system.

Output Method
Rise time, 𝑇

𝑟
(s) Settling time, 𝑇

𝑠
(s) Percentage overshoot (%OS) Steady state error, 𝑒ss (%)

Step Step Step Step
Up Down Up Down Up Down Up Down

Separator level, 𝐿
2

Davison 34.5 43.3 — 117 11.67 8.02 0.2 —
Penttinen-Koivo 1.1 1.2 5.9 2.19 5.20 0.23 0.03 0.01

Combined 0.9 1.6 5.4 7.5 3.67 — 0.01 0
Fauzi 8.1 0.8 ∗ ∗ 7.40 3.71 ∗ ∗

Operating pressure, 𝑃
2

Davison 30.3 34.4 — 139.6 10 10 — 0.5
Penttinen-Koivo 0.7 1.3 1 1.8 — — 1.45 0.15

Combined 1 1.9 2 3.1 — — 0.05 0.05
Fauzi 2.5 2.4 ∗ ∗ 15 ∗ ∗ ∗

∗Unstable.
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Figure 27: Process interactions during operating pressure set point
change.

all eigenvalues are located at the left-half plane of the s-plane.
This indicates that the closed loop system is generally stable.
A real pole in the left-half plane defines an exponentially
decaying component in the homogenous response. The rate
of the decay is determined by the eigenvalue location. Eigen-
values far from the origin in the left-half plane correspond
to the components that decay rapidly, while eigenvalues
near the origin correspond to slowly decaying components.
Referring to Table 5, the rise and settling time of the response
based on Penttinen-Koivo method are the most faster. It is
proportional to the poles location indicated in Figure 30.

8. Conclusion

DesigningMPID control tuning based on original and singu-
larly perturbed system for multiinput multioutput (MIMO)
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Figure 28: Product flow rate responses during operating pressure
set point change.

processes is presented. Simulation results lead to the infer-
ence that, with the appropriate parameter tuning, a satis-
factory singularly perturbed MPID control performance can
be accomplished to control a nonlinear model of wastewater
treatment plant. Ill-defined system like wastewater treatment
plant which usually faces difficulties in control system, due to
the natural behavior of two-time scale characteristic, can be
efficaciously controlled by the implementation of singularly
perturbed system into the MPID controller designs. Among
the four methods, the Combined method yields somewhat
better results with respect to decoupling capabilities, closed
loop performances, and process inteaction.

For the second case study, Davison, Penttinen-Koivo, and
Combined method were successfully applied to the nonlin-
ear model of Newell and Lee evaporator. The well-tuned
parameters of the controller designs were obtained using PSO
approach. Simulation results show that the implementation
of singularly perturbed system to the dynamic matrix inverse
of Davison, Penttinen-Koivo, and Combined method has
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Figure 29: Cooling water flow rate responses during operating
pressure set point change.
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Figure 30: Closed loop pole-zero plot of Newell and Lee evaporator.

consistently provided a good performance. Among these
three methods, Combined method provides the best control
performance. Penttinen-Koivo method offers just a slightly
poor control performance than the Combined method.
Nevertheless, Maciejowski method is unable to be applied to
Newell and Lee evaporator system as the open loop system
is unstable which causes the information required by the
controller design cannot be retrieved. It is observed that the
proposed controller by [46] has weak performance for both
separator level and operating pressure output control with
high interaction.

Based on the system case studies, we can conclude that
the control strategies proposed in these systems are capable
of attaining the desired control performance and practically

realizable where it is relevant to two-time scale system with
a stable open loop system. The attained output responses
consist of less percentage overshoot, fast settling time, and
low steady state error, and the process interaction between
the variables of the system is also reduced.
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