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Abstract The use of models to predict the power con-

sumption of a system is an appealing alternative to

wattmeters since they avoid hardware costs and are

easy to deploy. In this paper, we present a systematic

methodology to build models with a reduced number

of features in order to estimate power consumption at

node level. We aim at building simple power models

by performing a per-component analysis (CPU, mem-

ory, network, I/O) through the execution of four stan-

dard benchmarks. While they are executed, we collect

information from all the available hardware counters

and resource utilization metrics provided by the sys-

tem. Based on correlations among the recorded metrics

and their correlation with the instantaneous power, our

methodology allows i) to identify the significant met-

rics; and ii) to assign weights to the selected metrics in
order to derive reduced models. The reduction also aims

at extracting models that are based on a set of hardware

counters and utilization metrics that can be obtained

simultaneously and, thus, can be gathered and com-

puted on-line. The utility of our procedure is validated

using real-life applications on an Intel Sandy Bridge ar-

chitecture.
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1 Introduction

The clock frequency of microprocessors was increasing

for several decades allowing us to improve the systems

performance following the Dennard scaling, which for-

mulates the ability to maintain a constant power den-

sity while reducing the size of the transistors. However,

after the breakdown of this law around 2006 power con-

sumption came in the spotlight, since shrinking the size

of the transistors creates a greater thermal runaway

and, consequently, a higher power consumption. In this

line, reducing power consumption has been identified as

an essential challenge that the HPC (High Performance

Computing) community has to face in order to pave the

way towards the Exascale era [1].

One of the firsts steps to address the energy chal-

lenge is to foster a deep understanding of the power con-

sumed by the major components of the system (CPU,

memory, network, I/O) by measuring and modeling it.

According to [18], we consider the following charac-

teristics as important for power models:

– Accuracy. The models should be precise enough to

evaluate strategies for reducing energy consumption.

– Simplicity. The prediction should be computed fast,

avoiding significant overhead on the target machine

and being easy to understand.

– Inexpensiveness. The framework/devices employed

to collect measures and to apply models should not

be expensive nor time consuming.

– Portability. The model should be applicable to many

platforms/architectures.
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A model featuring the aforementioned character-

istics could easily be exploited to make power-aware

scheduling with the aim of reducing the power con-

sumption while preserving performance. Nevertheless,

information about the system and its actual power con-

sumption is needed in order to provide good estimations

at runtime. Nowadays, microprocessors offer more than

200 performance counters, each quantifying a specific

hardware event such as L1 cache misses. A vast effort

has been spent to build tools that permit to retrieve

these performance monitoring counters and power con-

sumption information about the system. PAPI (“Per-

formance Application Programming Interface”) [16] or

LIKWID1, present new APIs in order to extract infor-

mation about the processor’s events from the hardware

performance counters.

However, only a handful of the CPU counters can

be captured simultaneously and certain behavior of the

architecture, e.g, I/O, network usage and actual power

consumption at node level need to be acquired from an-

other source. Therefore, monitoring tools like top, htop

or iotop provide valuable operating system statistics.

In the last years, the process of relating power con-

sumption to the applications’ behavior has been im-

proved with the establishment of power measurement

tools, e.g., pmlib [2] and PowerPack [10].

Building accurate and simple power models is a cru-

cial task to further understand architectural power be-

havior, allowing the use of power saving techniques such

as advanced scheduling policies. The main contribu-

tions of this work are i) the building of models that

estimate the total instantaneous power consumed by a

platform using the hardware performance counters and

the resource utilization information; ii) a methodology

to systematically identify the most appropriate param-

eters to derive reduced power models; and iii) the vali-

dation of the models on a recent architecture.

The rest of the paper is organized as follows. In Sec-

tion 2, we describe related work in the area in order to

motivate the paper. Simplified power models and our

analytical methodology to derive reduced power mod-

els is described in Section 3. Afterwards, the models

are validated against different workloads in Section 4.

Finally, we complete this work with a few concluding

remarks 5.

2 Related Work

Work related to this paper can be classified into i) mod-

els for energy consumption based on hardware and soft-

1 http://code.google.com/p/likwid/

ware characteristics and ii) tools for estimating energy

metrics based on such models.

In the first group, several works can be found fol-

lowing different approaches. R. Bertran et al. describe

power models for multicore processors using performan-

ce counters [5] targeting only the CPU power consump-

tion to construct a linear power model that is later

validated with SPECcpu2006 suite. Meanwhile, in [4]

hardware counters and specific benchmarks to stress the

memory and the CPU are used to account the thread-

specific energy. Our work differs from those since we

aim at modeling at node level, just as targeted in [7]

where a methodology to estimate power consumption

using machine learning techniques is proposed. In their

work, a set of predefined “Key Performance Indicators”

is used to build a model that takes into account pro-

cessor usage, memory accesses and network utilization.

Although our target is similar, we follow a different

strategy; instead of selecting the performance indica-

tors a priori, we deploy a methodology based on em-

pirical observation to identify the most relevant ones.

Finally, Rivoire et. al [18] compare full system power

models and conclude that those taking into account OS

utilization metrics and performance counters are more

accurate.

In the second group, we identify tools that make

use of models. In [15], they present a simulator which

replays recorded utilization traces of applications and

uses a simplified power model based on utilization met-

rics to estimate the performance. Another example of

model application is presented in [13] with vEC (“Vir-

tual energy counters”). This tool can be used to esti-

mate energy consumption (CPU, bus, cache and mem-

ory) relying on the analytical model presented in [14].

It is applied on a UltraSPARC architecture. Finally,

authors in [9] present a power analysis per system com-

ponent and the “Mantis” tool, a real time predictor of

power consumption. It operates in three stages: 1) uti-

lization metrics and hardware counters are collected,

2) the model parameters are derived and fed accord-

ingly to this information, 3) the parameters are ad-

justed based on the executed workload.

Finally, the authors in [6] present a methodology to

reduce the number of power lines to be monitored from

internal DC wattmeters. They aim for building reduced

power models in order to estimate the total power con-

sumption of the platform. Their methodology clusters

correlated power lines and selects one representant per

cluster, which, in turn, will be a parameter of the final

model. Our work follows a similar approach, however

we expose a more sophisticated methodology that is

performed in two steps and we target hardware and

software metrics for modelling power.
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3 Analytical derivation of reduced models

Our motivation of building reduced models is given by

the impossibility to access many hardware counters at

once. Moreover, complex models processing too many

hardware and software counters could increase power

consumption, as has been observed in the recent litera-

ture [3]. Our aim is to discard redundant features from

the model, and to obtain accurate values for the coef-

ficients that remain valid for any application and core

count. In this paper, we construct linear models using

an algorithmic approach: After building the training

and validation sets, we perform a two-step workflow in

order to drop redundant features and reduce the com-

plexity of the model without compromising the accu-

racy of the model. Firstly, we filter and group features

exhibiting similar behavior and assign a representant to

each group. Then we sort the representants relative to

each group’s correlation to power. Finally, we pick the

best correlated features to derive reduced models.

3.1 Linear model

Let us consider that the total power consumption by

the system should be computed for time intervals of

length k. During the time interval t = ((t− 1) · k, t · k],

the power consumption PT (t) is given by Equation 1.

PT (t) ≈ c +

n∑
i=1

fi(t) · ci (1)

where fi(t) denotes the value of the i-th feature dur-

ing that interval and ci is a corresponding fixed model

coefficient. An estimate for a constant contribution to

power is given by c.

We aim at estimating the total instantaneous power

with a reduced number of features. These features are

individually selected to preserve the quality of the model

according to the characteristics described in Section 1.

Assuming a system offers n available features, f =

{f1, f2, . . . , fn}, we can replace (1) to use only r fea-

tures, being r � n, and re-computing the coefficients

so that the model is able to produce good estimations

of the total power consumption.

3.2 Building training and validation sets

In order to calibrate the fixed coefficients in Equation 1,

we use a multi-core server platform comprised of an In-

tel Xeon CPU “Sandy Bridge” E31275 processor with 4

cores running at 3.40 GHz (with the performance gov-

ernor and active Turbo Boost2), and 16 GB of DDR3

RAM (1333 MHz). From this platform, we collect the

following information:

1) Power consumption is captured in a frequency of

20 Hz from an external ZES-ZIMMER LMG450 watt-

meter, a highly advanced precision wattmeter, using the

pmlib framework [2].

2) Hardware counters are gathered at 10 Hz3 leverag-

ing likwid-perfctr command from the LIKWID tool

with the timeline option set. In this architecture, we

have identified 220 hardware counters that are accessi-

ble through PMC, FIXC and PWR registers. Among them,

PWR registers are used by the Intel RAPL interface,

therefore providing access to the estimated power con-

sumption of the socket [8].

3) Operating system statistics and temperature sen-

sors are also retrieved at 10 Hz using an instance of the

pmlib server reading CPU, memory, network and I/O

utilization and temperature. Operating system statis-

tics are retrieved using the psutil Python library. Tem-

perature sensors are accessed using the pysensors li-

brary interfacing the lm sensors kernel module. On

this architecture, the ACPI interface (virtual device)

and socket/core temperatures are available.

In order to emulate the different phases of an appli-

cation and for stressing the different components of the

architecture, we selected the following benchmarks:

– linpack: This pre-compiled linear algebra code from

Intel contains the optimized LINPACK benchmark4.

Internally using MKL libraries, it performs FPU/ALU

instructions in purpose of stressing the CPU.

– stream:5 This benchmark is intended to obtain the

best possible memory bandwidth by means of simple

vector kernels.

– iperf: This tool6 performs network throughput mea-

surements. We test both a server and a client run-

ning TCP throughput tests.

– IOR:7 This benchmark tool is is used for benchmark-

ing POSIX, performance to a local HDD.

To gather the data for training and validation, we

execute k-combinations with repetition (with k = 4

cores) of the aforementioned benchmarks for 60 s. For

each combination of benchmarks, we collect hardware

2 We cover Turbo Boost on purpose, as several HPC centers
enable it for specific workloads.
3 We consider 10 samples/s sufficient enough for our ex-

periments, ensuring negligible overhead on the total power
consumption due to monitoring processes [3].
4 https://software.intel.com/en-us/articles/

intel-math-kernel-library-linpack-download
5 https://www.cs.virginia.edu/stream/
6 https://iperf.fr/
7 http://sourceforge.net/projects/ior-sio/
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counters, OS statistics and temperature sensors. Since

we cannot measure all hardware counters simultane-

ously, an application is run more than 50 times each

time capturing another set of counters. Between the

runs of I/O sensitive benchmarks we clear the cache to

retain similar start conditions8. Next, we use Python

scripts to merge data, check for consistency and avail-

ability of all features, drop overflowing values9 and in-

terpolate the data of the features to the time stamps of

the measured power.

We derive averaged (node-level) values of features

that have been collected at core level. Finally, we build

a matrix in which the rows contain samples gathered of

each combination of benchmarks and the columns the

values of each feature collected. In total, n = 253 fea-

tures are captured for 78 benchmark runs in the train-

ing set and 21 runs in the validation set resulting in a

matrix of 112, 303× 253 (250 MiB CSV file).

3.3 Metric-filtering algorithm

The filtering step is implemented in the statistical tool

R and proceeds as follows:

1. As for the first step, we compute a correlation ma-

trix m of dimension n×n, where entry mij denotes

the linear dependence between feature i and j. Set

h = h0

2. We classify the features into a small number of dis-

joint clusters using the k-means algorithm, C =

{c1, c2, . . . , cr}. All features belonging to a cluster

must have a correlation threshold of h. Thus, k-

means is called in a loop fashion to form 1, 2, 3, . . . , n

clusters with the initial training set.

3. When a formed cluster has a correlation equal or

greater than h among all their features, we found

a relevant group: first, we remove all previous rep-

resentants from the cluster. Then the feature with

the highest sum of correlation is determined as rep-

resentant and stored in a separate list. All group

members except the representant are then purged

from the matrix. The representant is kept to ensure

we are not loosing a feature relevant for forming sub-

sequent clusters. We goto Step 2. If no more clusters

can be extracted we goto Step 4.

4. If h > 0.5, we reduce h to h = h · h0 in order to

capture less related features and goto Step 2. Oth-

erwise terminate: features that were not grouped so

far are also considered as representants.

8 Due to identical start conditions, we assume the counters
of repeated runs behave similarly. Based on our results, this
assumption seems justified.
9 About four samples per 600 contain overflowing counters.
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Fig. 1: Partial correlation matrix obtained from the

training set. Blue and red circles stand for positive and

negative correlations, respectively.

The purpose of the algorithm is to extract a represen-

tant for each cluster that is unique to any other feature.

As an example, Figure 1 shows a block of a correlation

matrix forming 5 clusters. The features of the top left

and bottom right are well correlated with each other

and behave similar in respect to other features. The big

group in the middle contains features showing slightly

different behavior in respect to other features.

3.4 Building reduced models

The last step of our methodology is to assemble reduced

models, using the subset of representative features ob-

tained in the previous step. The obtained representants

are sorted by correlation with respect to the measured

power consumption. In order to reduce the number of

combinations and derive reduced power models, we set

a second threshold f , taking only the f features with

the highest correlation to the measured power consump-

tion. This guarantees that only those that are highly

correlated with the target of the model will be part

of the reduced models. In fact, the linear least-square

method delivers good estimations without redundant

features but correlated to the estimated variable [17].

In order to estimate the corresponding coefficients,

we leverage multiple linear regression. Since there are r

representative features, there are r-combinations, i.e.,

cT =
∏r

s=1 #cs of representative counters. However,

taking into account that in this specific architecture

there are only 4 PMC and 3 FIXC registers that can be



An Analytical Methodology to Derive Power Models based on Hardware and Software Metrics 5

#g Corr. Group representant Other metrics

1 0.970 PWR PKG ENERGY (PKG ENERGY) SENSORS PHY ID 0,

PWR PP0 ENERGY, SENSORS CPU

2 0.906 CPU CLK UNHALTED CORE (UNHC) CPL CYCLES RING123,

CPU CLK UNHALTED CORE,

CPU CLK UNHALTED REF,

CPU CLOCK UNHALTED REF P

3 0.881 L1D BLOCKS BANK -

CONFLICT CYCLES (L1CC)

L1D BLOCKS BANK CONFLICT CYCLES,

L2 TRANS ALL REQUESTS

4 0.836 L2 RQSTS MISS (L2RM) L2 TRANS DEMAND DATA RD

5 0.832 L2 RQSTS ALL PF (L2RQ) L2 TRANS ALL PREF

6 0.826 HW PRE REQ DL1 MISS (DL1M) HW PRE REQ DL1 MISS,

L1D REPLACEMENT

7 0.812 L2 LINES OUT DEMAND CLEAN

(L2DC)

OFFCORE REQUESTS DEMAND DATA RD

8 0.810 UOPS DISPATCHED CORE (UOPSD) MEM UOP RETIRED LOADS,

UOPS DISPATCHED PORT PORT 2 LD,

UOPS DISPATCHED PORT PORT 3 LD,

UOPS DISPATCHED THREAD,

UOPS RETIRED ALL

9 0.801 INSTR RETIRED ANY (INRA) INST RETIRED PREC DIST,

INST RETIRED ANY P,

MEMLOAD UOPS RETIRED L1 HIT,

UOPS ISSUED ANY,

UOPS RETIRED RETIRE SLOTS

10 0.781 L2 LINES IN E (L2LI) L2 LINES IN ALL,

L2 RQSTS PF MISS,

L2 TRANS L2 FILL,

OFFCORE REQUESTS ALL DATA RD

11 0.773 UOPS DISPATCHED PORT PORT 0

(UOPS0)

UOPS DISPATCHED PORT PORT 1

12 0.762 RESOURCE STALLS RS (RSRS) CPU UTIL

13 0.753 UOPS DISPATCHED PORT PORT 2

(UOPS2)

UOPS DISPATCHED PORT PORT 3

14 0.744 L2 RQSTS ALL DEMAND DATA RD

(L2DD)

L2 RQSTS ALL DEM AND DATA RD HIT

15 0.675 INT MISC STALL CYCLES (INTS) RESOURCE STALLS ANY

Table 1: List of the 15 most correlated representants

in respect to power with h = 0.95 for the correlation

threshold between clusters.

read at once, apart from OS statistics and tempera-

ture, only combinations of groups of 4 representants are

tested. With our methodology, we automatically deter-

mined and extracted the top f = 15 representants in

respect to the correlation of their group to power con-

sumption. The correlation within a detected group is

initialized with h0 = 0.95. The automatically identified

representants and the features belonging to their group

are given in Table 1.

4 Validation

To assess the quality and benefit of the models created

by our methodology, we employ Quantum Espresso [11],

a software suite for ab initio quantum chemistry meth-

ods of electronic-structure calculation and materials mod-

eling, executing a set of 17 different experiments run-

ning on 4 cores of the machine using MPI. Also, our val-

idation set contains the compilation of the Linux kernel

v3.19.2 by executing make -j with 1 to 4 cores.

4.1 Basic models

In order to assess the obtained models, we used a set of

a simple baseline models:

– Average power. A (bad) prediction for power is the

mean value of the power. We expect that any model

to be considered valuable should perform better than

this naive approach.

– Single hardware counters. For example, the RAPL

counter PWR PKG ENERGY should provide good esti-

mations for system performance in a linear model.

– CPU utilization. Using the utilization statistics of

the CPUs, as reported by the OS, should provide

fair estimations, CPUs power consumption consti-

tutes more than 50% of the total power consump-

tion on typical systems [1].

– OS statistics. Statistics provided by the OS are com-

prised of utilization values from the memory subsys-

tem, I/O and network. Since utilization of compo-

nents is expected to correlate with their contribu-

tion to the power consumption, they may give good

estimations of the total power consumption.

– Temperature sensors. The Poole-Frenkel effect ex-

plains how the power-consumption of static leakage

power increases with the temperature. It is indepen-

dent of clockspeed and solely dependent on temper-

ature and voltage [12].

– CPU utilization, OS and sensors. Combinations of

previous metrics may improve the predictions.

4.2 Evaluation of the models

In order to evaluate the reliability of our approach, we

compare derived models against the set of basic models.

All models are created on the training set and evaluat-

ing on the validation data set. Table 2 collects statistics

of the prediction accuracy of each model. The Mean

and Max columns represent the average and maximum

value of the average absolute error, while Q1 and Q3

correspond to the first and third quartiles of the same,

respectively. Also root-mean-square error (RMSE) is in-

cluded, it is sensitive to huge absolute errors. The last,

the coefficient of determination, (R2) determines the

goodness of the fit provided by the model. It is a rough

estimate for the fraction of points that is explained by

the model, thus, an R2 of 1 indicates that the model

explains all observations, and 0 indicates the opposite.

Note that baseline models are represented from B0

to B5, reduced models working solely on hardware coun-

ters range M0 to M5, and combinations of the lat-

ter with OS statistics and temperature are represented

from D0 to D9 on the table. Also, since there is a large

number of combinations among the selected features

due to our methodology and also the number of hard-

ware counters that could be read at once, we selected

the most interesting models under those conditions.
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#m Model Q1 Mean Q3 Max RMSE R2

B0 AVG POWER 20.5 24.4 27.3 46.7 24.3 0.00
B1 CPU UTIL 11.3 13.6 17.1 59.7 15.1 0.61
B2 OS 27.9 31.3 34.4 90.5 31.2 0.88
B3 SENS 9.0 11.4 13.3 86.9 17.9 0.97
B4 OS + SENS 5.5 7.5 12.7 88.2 16.6 0.98
B5 RAPL PKG POWER 1.4 4.8 6.4 51.6 6.0 0.96
B6 CPL CYCLES RING123 14.4 19.2 24.6 98.1 22.2 0.89
B7 CPU CLK UNHALTED CORE 14.2 19.0 24.5 98.1 20.6 0.89
B8 MEM UOP RETIRED LOADS 8.6 16.8 25.2 99.2 21.0 0.74

M0 PKG ENERGY + L2DC + UOPS + INTS 0.7 1.5 2.9 50.8 4.5 0.98
M1 PKG ENERGY + L2DC + UNHC + DL1M 2.1 4.5 6.8 48.0 6.5 0.98
M2 UNHC + L2RM + L2DC + L2LI 2.3 5.0 9.2 77.3 10.0 0.96
M3 UNHC + L1CC + L2RQ + UOPSD 2.1 4.4 10.8 70.7 10.1 0.95
M4 L2RQ + RSRS + INTS + UOPS2 6.5 15.9 25.0 104.1 20.0 0.95
M5 INRA + UNHR + UNHC + L2RQ + RSRS + UOPS2 + INTS 9.4 15.2 23.0 88.0 18.5 0.96

D0 L2DC + UOPS0 + INTS + SENS 1.5 3.1 5.5 70.6 12.1 0.98
D1 L2DC + UOPS0 + INTS + SENS + OS 1.6 3.2 7.0 76.0 12.0 0.99
D2 UNHC + DL1M + L2DC + SENS 4.1 6.3 9.1 73.6 12.0 0.98
D3 UNHC + DL1M + L2DC + SENS + OS 1.1 2.5 4.9 79.9 11.8 0.99
D4 L2RQ + RSRS + UOPS2 + INTS + OS 4.1 8.5 14.9 97.4 13.2 0.96
D5 L2RQ + RSRS + UOPS2 + INTS + SENS 3.7 7.9 12.7 77.6 13.8 0.98
D6 L2RQ + RSRS + UOPS2 + INTS + SENS + OS 2.3 4.0 7.8 81.0 12.2 0.99
D7 INRA + UNHR + UNHC + L2RQ + RSRS + UOPS2 + INTS + OS 3.6 7.7 13.2 97.1 12.1 0.97
D8 INRA + UNHR + UNHC + L2RQ + RSRS + UOPS2 + INTS + SENS 5.9 10.8 16.3 92.0 15.8 0.98
D9 INRA + UNHR + UNHC + L2RQ + RSRS + UOPS2 + INTS + SENS + OS 2.1 6.1 9.1 84.9 12.8 0.99

Table 2: Absolute error of baseline, simple and combined models against the training and validation sets.

As can be seen, the naive baseline model B0, aver-

age power, leads to almost 0 R2, confirming this is a

bad estimate. Nevertheless, it achieves a mean error of

24.4 W and RMSE of 24.3 which serve as reference. Im-

proved baseline models (from B1 to B4), based on sen-

sors (SENS) improve the accuracy, while CPU utilization

only and the operating system aspects are not able to

explain the behavior of the validation set. In fact, the

OS behavior which also includes CPU utilization leads

to a worse model than B0, which is presumably due

to overfitting of the training data. On the other hand,

some selected hardware counters working alone (mod-

els from B6 to B7) are not enough to mimic power con-

sumption, their R2 ranges from 0.74 to 0.89 yet their

mean error is more than 16. The model built on top

of the RAPL interface achieves R2 of 0.96 and a mean

error of 4.8 W, which is considerable well.

Despite the goodness of the RAPL interface, for the

sake of portability our models should not always de-

pend on this counter. Finally, models created with our

algorithmic methodology that work solely with hard-

ware counters (from M0 to M5) provide a good R2,

ranging from 0.95 to 0.98. They provide similar accu-

racy than RAPL and if used together can improve the

accuracy down to 1.5 W. Although their high accuracy,

we learned that complementing them with OS statistics

and/or temperature sensors (models from D0 to D9),

we may even increase their accuracy. It is important

to remark that R2 alone is also not sufficient to assess

the model quality, for example, M3 and M4 achieve a

similar value but the mean error of the latter is higher.

As complementary information, Figure 2 plots power

traces in order to compare the real (green points) and

estimated (black points) power consumption using some

of the baseline cases, ranging from models that work

with only one feature to the most elaborated ones com-

bining hardware counters, OS statistics and tempera-

ture sensors. We include some benchmarks (training

set) but also cases from the validation set. Even though

the model shown in each row is created on our train-

ing set, we can see interesting differences in the quality

of the different models for predicting even the training

set. For example, CPU UTIL alone cannot be fitted well

to the power of the experiments.

Figure 3 shows statistics for the test set and the pre-

dicted average. The training set for this experiment is

either our general training set. For the training applica-

tions we also include the other set which excludes the

particular benchmark but includes all other data. The

difference between the prediction accuracy of p-train

and p-other is an indicator for the importance of a par-

ticular benchmark for building the model with the se-

lected features. It can be seen, for example, that iperf

client, IOR read and write are well predicted and do not

contribute much to the CPU CLK UNHALTED CORE model.

For the L2DC+UOPS0+ INTS+OS+SENS model, both IOR

read and write are more important. In either case, the

idle run is revealing important behavior that needs to

be trained. The model built on CPU CLOCK UNHALTED CORE

is not fitting the idle case well, it also overestimates the

power of the validation set. As expected this feature

alone is not sufficient.
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B1 0.61 13.6

CPU UTIL

B5 0.96 4.8

RAPL PKG POWER

B7 0.89 19.0

CPU CLK -

UNHALTED CORE

D1 0.99 3.2

L2DC+UOPS0+INTS+

SENS+OS

M0 0.98 1.5

PKG ENERGY+

L2DC+UOPS+INT

M5 0.97 15.2

INRA+UNHR+

UNHC+L2RQ+RSS+

UOPS2+INTS

M8 0.98 7.7

INRA+UNHR+

UNH+L2RQ+RSS+

UOPS2+INTS+OS

M9 0.99 6.1

INRA+UNHR+UNHC+

L2RQ+RSS+UOPS2+

INTS+OS+SENS

Idle linpack stream iperf client IOR read IOR write make q11 q16

Fig. 2: Real (green) and estimated (black) power consumption traces of some of the training and validation

benchmarks using models from the Table 2. The R2 and average error is given as reference after the model

number. Note that the X-axis represents the timeline of samples while the y-axis measures power from 38 to

150 W.
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(b) Training set with L2DC+UOPS0+INTS+OS+SENS
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(c) Training set with CPU CLK UNHALTED CORE
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(d) Training set with L2DC+UOPS0+INTS+OS+SENS
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Fig. 3: Statistics for the validation sets using the models CPU CLK UNHALTED CORE and L2DC+UOPS0+INTS+OS+SENS.
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5 Concluding remarks

We presented an effective methodology to determine

hardware and software metrics that are important when

building power models. With this, a system admin-

istrator could alternatively run a daemon, constantly

reading those metrics and estimating power consump-

tion, with negligible overhead on the system. Thus, in

practice, these models can eventually replace physical

wattmeters that are currently necessary to monitor ma-

chines on an HPC platform.

Our methodology is comprised of a simple but effi-

cient way to construct derived models. First, a calibra-

tion step with a few benchmarks is run in order to stress

different components of the architecture. It comprises

combinations of benchmarks with variation in number

of cores used. Each combination is run for 60 s and con-

tinuously repeated to collect all hardware and software

metrics available on the system. Additionally, we em-

ploy the R statistical tool to process all data in order to

automatically apply our filtering algorithm. Finally, we

manually combine a number of representants that can

be accessed at once on our test system to derive our

reduced model. Our model is architecture dependent,

so the methodology and the models generated should

be derived at platform level, however, the methodology

can be applied on other architectures.

The results demonstrate that the automatically de-

rived models are accurate. It can be observed, that by

selecting the most appropriate hardware counters, the

goodness of the fit measured in terms of R2 ranges from

0.96 to 0.99, with a mean error down to 3 W without

using RAPL counters. By adding OS statistics and es-

pecially temperature sensors to the model, the accuracy

can be increased potentially. On the contrary, simple

models based on temperature and/or OS statistics can

yet provide fairly acceptable estimations.

In the future, we aim to i) Integrate features for

DVFS and multi-socket machines to the model, ii) De-

velop a kernel module that can provide the estimated

power in the proc interface, iii) Automate the tool and

provide it as a free and portable package.
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