ON BALANCEDNESS AND D-COMPLETENESS OF THE SPACE OF SEMI-LIPSCHITZ FUNCTIONS

S. ROMAGUERA¹, J. M. SÁNCHEZ-ÁLVAREZ¹ and M. SANCHIS² *

¹ E.T.S. Ingenieros de Caminos, Departamento de Matemática Aplicada, IUMPA-UPV, Universidad Politécnica de Valencia, 46071 Valencia, Spain e-mail: sromague@mat.upv.es, jossnclv@mat.upv.es

² Departamento de Matemáticas, Universidad Jaume I, Campus de Riu Sec, 12071 Castellón, Spain e-mail: sanchis@mat.uji.es

(Received August 13, 2007; revised September 10, 2007; accepted September 11, 2007)

Abstract. Let (X,d) be a quasi-metric space and (Y,q) be a quasi-normed linear space. We show that the normed cone of semi-Lipschitz functions from (X,d) to (Y,q) that vanish at a point $x_0 \in X$, is balanced. Moreover, it is complete in the sense of D. Doitchinov whenever (Y,q) is a biBanach space.

1. Introduction

In the last years the study of real-valued semi-Lipschitz functions defined on a T_0 quasi-pseudo-metric space has received a certain attention [11, 12, 16, 18]. In particular, it was shown in [16] that the set of real-valued semi-Lipschitz functions defined on a T_0 quasi-pseudo-metric space (X,d) that vanish at a point $x_0 \in X$ can be structured as a normed cone. Applications of semi-Lipschitz functions to questions on best approximation, global attractors on dynamical systems, and concentration of measure can be found in [13, 16], [17] and [22], respectively.

^{*}The authors acknowledge the support of Plan Nacional I+D+I and FEDER, under grant MTM2006-14925-C02-01. The second listed author is also supported by a grant FPI from the Spanish Ministry of Education and Science.

Key words and phrases: semi-Lipschitz function, quasi-normed linear space, quasi-metric, balanced, biBanach, D-complete.

²⁰⁰⁰ Mathematics Subject Classification: 54E50, 54C35, 46B20, 46E15.

In [21], semi-Lipschitz functions that are valued in a quasi-normed linear space have been discussed. This study was motivated, in great part, by the fact that quasi-normed linear spaces provide suitable mathematical models in the theory of computational complexity (see [4, 5, 20]).

Here we obtain some new properties of the space $SL_0(d,q)$ of semi-Lipschitz functions defined on the quasi-metric space (X,d) with values in the quasi-normed linear space (Y,q) and that vanish at a point $x_0 \in X$. We show the somewhat surprising fact that $SL_0(d,q)$ is balanced in the sense of Doitchinov [2]. We also prove that it is complete in the sense of Doitchinov whenever (Y,q) is a biBanach space. As an application of these results to asymmetric functional analysis, we deduce that the dual space of a T_1 quasi-normed linear space is balanced and Doitchinov complete. It is interesting to recall that the study of balanced quasi-metric spaces from a fuzzy point of view has been recently started in [8, 19], and that, on the other hand, some applications of balanced (extended) quasi-metrics to theoretical computer science have been given in [14, 15].

Throughout this paper the letters \mathbb{R}^+ and \mathbb{N} will denote the set of non-negative real numbers and the set of positive integers numbers, respectively. Our basic reference for quasi-metric spaces is [3].

Next we recall some pertinent concepts.

As usual by a monoid we mean a semigroup (X, +) with neutral element. According to [9] a cone (semilinear space in [16]) is a triple $(X, +, \cdot)$ such that (X, +) is an Abelian monoid, and \cdot is a function from $\mathbb{R}^+ \times X$ to X such that for all $x, y \in X$ and $r, s \in \mathbb{R}^+$: (i) $r \cdot (s \cdot x) = (rs) \cdot x$; (ii) $r \cdot (x + y) = (r \cdot x) + (r \cdot y)$; (iii) $(r + s) \cdot x = (r \cdot x) + (s \cdot x)$; (iv) $1 \cdot x = x$.

A quasi-norm on a cone $(X, +, \cdot)$ is [16, 18] a function $q: X \to \mathbb{R}^+$ such that for all $x, y \in X$ and $r \in \mathbb{R}^+$: (i) $x = \mathbf{0}$ if and only if there is $-x \in X$ and q(x) = q(-x) = 0; (ii) $q(r \cdot x) = rq(x)$; (iii) $q(x + y) \leq q(x) + q(y)$.

If the quasi-norm q satisfies: (i') q(x) = 0 if and only if $x = \mathbf{0}$, then q is called a *norm* on the cone $(X, +, \cdot)$.

A $(quasi-)normed\ cone$ is a pair (X,q) such that X is a cone and q is a $(quasi-)norm\ on\ X$.

If $(X, +, \cdot)$ is a linear space and q is a quasi-norm on X, then the pair (X, q) is called a quasi-normed linear space (asymmetric normed linear space in [4]). Note that, in this case, the function $q^{-1}: X \to \mathbb{R}^+$ given by $q^{-1}(x) = q(-x)$ is also a quasi-norm on X and the function $q^s: X \to \mathbb{R}^+$ given by $q^s(x) = \max\{q(x), q(-x)\}$ is a norm on X. As in [6], we say that (X, q) is a $biBanach\ space$ if (X, q^s) is a Banach space.

An easy but crucial example of a biBanach space is the pair (\mathbb{R}, u) , where u is the quasi-norm on \mathbb{R} given by $u(x) = \max\{x, 0\}$ for all $x \in \mathbb{R}$. Note that $u^s(x) = |x|$ for all $x \in \mathbb{R}$, so (\mathbb{R}, u) is a biBanach space.

Let us recall that a quasi-pseudo-metric on a set X is a function $d: X \times X \to \mathbb{R}^+$ such that for all $x, y, z \in X$: (i) d(x, x) = 0; (ii) $d(x, z) \leq d(x, y) + d(y, z)$. If d satisfies the additional condition: (iii) d(x, y) = 0 if and only if x = y, then we will say that d is a quasi-metric on X.

We will also consider extended quasi-(pseudo-)metrics. They satisfy the above three axioms, except that we allow $d(x,y) = +\infty$.

If d is a(n extended) quasi-(pseudo-)metric, then the function d^{-1} defined on $X \times X$ by $d^{-1}(x,y) = d(y,x)$ is also a(n extended) quasi-(pseudo-)metric called the *conjugate* of d and d^s defined on $X \times X$ by $d^s(x,y) = \max\{d(x,y),d(y,x)\}$, is a(n extended) (pseudo-)metric on X.

A(n extended) quasi-(pseudo-)metric space is a pair (X, d) such that X is a set and d is a(n extended) quasi-(pseudo-)metric on X.

Each (extended) quasi-pseudo-metric d on a set X generates a topology $\tau(d)$ on X which has as a base the family of open d-balls $\{B_d(x,r): x \in X, r > 0\}$, where $B_d(x,r) = \{y \in X: d(x,y) < r\}$ for all $x \in X$ and r > 0. If the topology $\tau(d)$ is T_0 we say that (X,d) is a T_0 (extended) quasi-pseudo-metric space. Observe that if d is a(n extended) quasi-metric, then $\tau(d)$ is a T_1 topology on X.

It is well known that each quasi-norm q on a linear space X induces a T_0 quasi-pseudo-metric d_q on X given by $d_q(x,y) = q(x-y)$ for all $x,y \in X$.

2. The results

Let (X, d) be a quasi-metric space and let (Y, q) be a quasi-normed linear space. A function $f: X \to Y$ is called semi-Lipschitz if there is $k \ge 0$ such that $q(f(x) - f(y)) \le kd(x, y)$ for all $x, y \in X$.

Given the quasi-metric space (X, d) and the quasi-normed linear space (Y, q), fix $x_0 \in X$ and put

$$SL_0(d,q) = \left\{ f: X \to Y: f(x_0) = 0 \text{ and } \sup_{x \neq y} \frac{q(f(x) - f(y))}{d(x,y)} < \infty \right\}.$$

Clearly $SL_0(d,q)$ is exactly the set of all semi-Lipschitz functions from (X,d) to (Y,q) that vanishes at x_0 , and $(SL_0(d,q),+,\cdot)$ is a cone, where for each $f,g \in SL_0(d,q)$ and $r \in \mathbb{R}^+$ we define f+g and $r \cdot f$ in the usual pointwise way [21].

Observe that the definition of $SL_0(d,q)$ given here is slightly different from the ones given in [18]. This is due to the fact that quasi-metric spaces of [18] correspond to our T_0 quasi-pseudo-metric spaces.

Now for each $f, g \in SL_0(d, q)$ define

$$\rho_{d,q}(f,g) = \sup_{x \neq y} \frac{q((f-g)(x) - (f-g)(y))}{d(x,y)}.$$

Then $\rho_{d,q}$ is an extended quasi-metric on $SL_0(d,q)$ and the function $\|.\|_{d,q}: SL_0(d,q) \to \mathbb{R}^+$ given by $\|f\|_{d,q} = \rho_{d,q}(f,\mathbf{0})$, for all $f \in SL_0(d,q)$ is a norm on the cone $SL_0(d,q)$, (compare [16, 18, 21]).

In [2] Doitchinov introduced an important property of symmetry in quasimetric spaces, namely *balancedness*, to develop a satisfactory theory of completion. He observed that paradigmatic examples of quasi-metric spaces, like the Sorgenfrey line, the Kofner plane and the Pixley-Roy spaces are balanced, and proved that every balanced quasi-metric generates a Hausdorff and completely regular topology.

Recall that an extended quasi-metric space (X,d) is balanced provided that for each pair of sequences $(y_n)_n$, $(x_n)_n$ in X such that $\lim_{n,m\to\infty} d(y_m,x_n) = 0$, and each $x,y\in X$ and $r_1,r_2\in\mathbb{R}^+$ satisfying $d(x,x_n)\leq r_1$ and $d(y_n,y)\leq r_2$ for all $n\in\mathbb{N}$, it follows that $d(x,y)\leq r_1+r_2$. In this case, d is called a balanced extended quasi-metric.

We say that the normed cone $(SL_0(d,q), ||.||_{d,q})$ is balanced if the extended quasi-metric $\rho_{d,q}$ is balanced on $SL_0(d,q)$.

According to [2], by a Cauchy sequence in an extended quasi-metric space (X,d) we mean a sequence $(x_n)_n$ in X for which there is a sequence $(y_n)_n$ in X satisfying $\lim_{n,m\to\infty} d(y_m,x_n)=0$. The extended quasi-metric space (X,d) is said to be complete if every Cauchy sequence is convergent with respect to $\tau(d)$.

Then, Doitchinov proved that each balanced quasi-metric space (X, d) is isometrically isomorphic to a $\tau(d)$ and $\tau(d^{-1})$ -dense subspace of a balanced complete quasi-metric space.

Following the modern terminology [10], Cauchy sequences in the sense of Doitchinov will be called, in the sequel, D-Cauchy sequences and complete extended quasi-metric spaces will be called D-(sequentially) complete extended quasi-metric spaces. We say that the normed cone $(SL_0(d,q), \|.\|_{d,q})$ is D-complete if the extended quasi-metric $\rho_{d,q}$ is D-complete.

Theorem 1. Let (X,d) be a quasi-metric space, (Y,q) a quasi-normed linear space and $x_0 \in X$. Then $(SL_0(d,q), \|.\|_{d,q})$ is a balanced normed cone.

PROOF. Let $(f_n)_n$, $(g_n)_n$ be sequences in $SL_0(d,q)$ with

$$\lim_{n,m\to\infty} \rho_{d,q}(g_m, f_n) = 0,$$

and let $f, g \in SL_0(d, q)$ and $r_1, r_2 \in \mathbb{R}^+$ such that $\rho_{d,q}(f, f_n) \leq r_1$ and $\rho_{d,q}(g_n, g) \leq r_2$ for all $n \in \mathbb{N}$. Choose $x, y \in X$ with $x \neq y$. Then

$$q((f - f_n)(x) - (f - f_n)(y)) \le r_1 d(x, y),$$

and

$$q((g_n-g)(x)-(g_n-g)(y)) \le r_2 d(x,y),$$

for all $n \in \mathbb{N}$. Moreover, for an arbitrary $\varepsilon > 0$ there is $n_0 \in \mathbb{N}$ such that

$$q((g_n - f_n)(y) - (g_n - f_n)(x)) < \varepsilon d(y, x),$$

for all $n \geq n_0$. Consequently

$$q((f-g)(x) - (f-g)(y)) \le \{q((f-f_{n_0})(x) - (f-f_{n_0})(y)) + q((f_{n_0} - g_{n_0})(x) - (f_{n_0} - g_{n_0})(y)) + q((g_{n_0} - g)(x) - (g_{n_0} - g)(y))\}$$

$$< r_1 d(x, y) + \varepsilon d(y, x) + r_2 d(x, y).$$

Since ε is arbitrary, it follows that

$$q((f-g)(x) - (f-g)(y)) \le r_1 d(x,y) + r_2 d(x,y).$$

Therefore $\rho_{d,q}(f,g) \leq r_1 + r_2$. We conclude that $\left(SL_0(d,q), \|.\|_{d,q}\right)$ is balanced. \square

COROLLARY. Let (X,d) be a quasi-metric space, (Y,q) a quasi-normed linear space and $x_0 \in X$. Then $(SL_0(d,q),\tau(\rho_{d,q}))$ is a Hausdorff and completely regular topological space.

THEOREM 2. Let (X,d) be a quasi-metric space, (Y,q) a biBanach space and $x_0 \in X$. Then $(SL_0(d,q), \|.\|_{d,q})$ is D-complete.

PROOF. Let $(f_n)_n$ be a D-Cauchy sequence in $SL_0(d,q)$. Then, there is a sequence $(g_n)_n$ in $SL_0(d,q)$ such that $\lim_{n,m\to\infty}\rho_{d,q}(g_m,f_n)=0$. Thus, given $\varepsilon>0$ there is $n_0\in\mathbb{N}$ such that $\rho_{d,q}(g_m,f_n)<\varepsilon$ for all $n,m\geqq n_0$.

Now fix $x \in X$. Then

$$q((g_m - f_n)(x)) < \varepsilon d(x, x_0)$$
 and $q((f_n - g_m)(x)) < \varepsilon d(x_0, x)$,

so,

(*)
$$q^{s}((g_{m}-f_{n})(x)) < \varepsilon d^{s}(x,x_{0}) \text{ for all } n,m \ge n_{0}.$$

Therefore, for each $n, m \geq n_0$,

$$q^{s}((f_{n}-f_{m})(x)) \leq q^{s}((f_{n}-g_{n_{0}})(x)) + q^{s}((g_{n_{0}}-f_{m})(x)) < 2\varepsilon d^{s}(x,x_{0}),$$

and, since (Y,q) is a biBanach space, the sequence $(f_n(x))_n$ is convergent in (Y,q^s) . Then, we can construct a function $f: X \to Y$ such that $(f_n)_n$ is pointwise convergent to f with respect to the norm q^s . Observe that, by condition (*), the sequence $(g_n)_n$ is also pointwise convergent to f with respect to q^s .

We shall prove that $f \in SL_0(d)$ and that $\lim_{n\to\infty} \rho_{d,q}(f,f_n) = 0$. Indeed, first note that $f(x_0) = \mathbf{0}$ because $f_n(x_0) = \mathbf{0}$ for all $n \in \mathbb{N}$. Now, for the given $\varepsilon > 0$, for $n \ge n_0$ and for $x, y \in X$ with $x \ne y$, there exists $m \ge n$ such that

$$q^{s}((f-g_{m})(x)) < \varepsilon d(x,y)$$
 and $q^{s}((f-g_{m})(y)) < \varepsilon d(x,y)$.

Hence

$$\frac{q((f-f_n)(x)-(f-f_n)(y))}{d(x,y)}$$

$$\leq \frac{q((f-g_m)(x)-(f-g_m)(y))}{d(x,y)} + \frac{q((g_m-f_n)(x)-(g_m-f_n)(y))}{d(x,y)}$$

$$< \frac{q^s((f-g_m)(x))+q^s((f-g_m)(y))}{d(x,y)} + \varepsilon < 3\varepsilon.$$

It then follows that

$$\sup_{x \neq y} \frac{q(f(x) - f(y))}{d(x, y)} \leq 3\varepsilon + \sup_{x \neq y} \frac{q(f_{n_0}(x) - f_{n_0}(y))}{d(x, y)}.$$

Thus, we have shown that $f \in SL_0(d,q)$ and $\rho_{d,q}(f,f_n) \leq 3\varepsilon$ for all $n \geq n_0$. Consequently $(SL_0(d,q), \|.\|_{d,q})$ is D-complete. \square

As an application of the above results we next show that if (X, p) is a T_1 quasi-normed linear space (i.e. the quasi-pseudo-metric d_p induced by the quasi-norm p is actually a quasi-metric), then the dual space (X^*, p^*) of (X, p) is balanced and D-complete in the natural sense that we explain in the following.

Let us recall [1, 6] that if (X, p) is a quasi-normed linear space then the socalled *dual algebraic* of (X, p) is the cone X^* consisting of all linear real-valued functions on X that are upper semicontinuous on $(X, \tau((d_p)^{-1}))$. Equivalently, X^* consists of all linear real-valued functions on X that are lower semicontinuous on $(X, \tau(d_p))$ [18, p. 58]. It immediately follows [13, 18] that $X^* = L(X) \cap SL_0(d_p, u)$, where L(X) denotes the space of all linear real-valued functions on X and $SL_0(d_p, u)$ denotes the space of all semi-Lipschitz functions from (X, d_p) to the biBanach space (\mathbb{R}, u) (see Section 1) that vanish at $\mathbf{0}$. Note that in this case we have

$$\rho_{d_p,u}(f,g) = \sup_{x \neq y} \frac{((f-g)(x) - (f-g)(y)) \vee 0}{p(x-y)},$$

for all $f, g \in SL_0(d_p, u)$.

Let us also recall that p^* is the function from X^* to \mathbb{R}^+ defined by $p^*(f) = \sup \{ f(x) : p(x) \leq 1 \}$ for all $f \in X^*$ [1, 6], and thus (X^*, p^*) is a normed cone which is said to be the *dual space* of (X, p). Furthermore $p * (f) = ||f||_{d,u}$ for all $f \in X^*$ [18, p. 58], and clearly, $d_{p^*}(f, g) = \rho_{d_p,u}(f, g)$ for all $f, g \in X^*$, where, as in the case of quasi-normed linear spaces, we define $d_{p^*}(f, g) = \sup \{ (f - g)(x) : p(x) \leq 1 \}$.

Theorem 3. Let (X, p) be a T_1 quasi-normed linear space. Then (X^*, d_{p^*}) is a balanced D-complete extended quasi-metric space.

PROOF. By Theorems 1 and 2, $\left(SL_0(d_p,u), \rho_{d_p,u}\right)$ is a balanced D-complete extended quasi-metric space. Since balancedness is a hereditary property, then $\left(X^*, d_{p^*}\right)$ is balanced. It remains to show that $\left(X^*, d_{p^*}\right)$ is D-complete. To this end, let $(f_n)_n$ be a D-Cauchy sequence in (X^*, d_{p^*}) . Then $(f_n)_n$ is a D-Cauchy sequence in $\left(SL_0(d_p,u), \rho_{d,u}\right)$, so there is $f \in SL_0(d_p,u)$ such that $\lim_{n\to\infty} \rho_{d,u}(f,f_n)=0$. Moreover, and following the proof of Theorem 2, the sequence $\left(f_n(x)\right)_n$ is pointwise convergent to f(x) with respect to the Euclidean norm u^s , for all $x \in X$. Taking into account this fact, it is routine to see that f is a linear function. We conclude that $f \in X^*$ and thus (X^*, d_{p^*}) is D-complete. \square

In the light of Theorem 3 it seems interesting to recall that there exist T_1 (actually Hausdorff) quasi-normed nonnormable linear spaces in abundance (see, for instance, [7]).

The authors are grateful to the referee for comments and suggestions which permitted them to improve the first version of the paper.

References

- C. Alegre, J. Ferrer and V. Gregori, On the Hahn-Banach theorem in certain linear quasi-uniform structures, Acta Math. Hungar., 82 (1999), 325-330.
- [2] D. Doitchinov, On completeness in quasi-metric spaces, Topology Appl., 30 (1988), 127–148.

- [3] P. Fletcher and W. F. Lindgren, *Quasi-Uniform Spaces*, Marcel Dekker (New York, 1982).
- [4] L. M. García-Raffi, S. Romaguera and E. A. Sánchez-Pérez, Sequence spaces and asymmetric norms in the theory of computational complexity, Math. Comput. Model., 36 (2002), 1-11.
- [5] L. M. García-Raffi, S. Romaguera and E. A. Sánchez-Pérez, The supremum asymmetric norm on sequence algebras: a general framework to measure complexity distances, Electronic Notes in Theoretical Computer Science, 74 (2003), 39–50.
- [6] L. M. García-Raffi, S. Romaguera and E. A. Sánchez-Pérez, The dual space of an asymmetric normed linear space, *Quaestiones Math.*, **26** (2003), 83–96.
- [7] L. M. García-Raffi, S. Romaguera and E. A. Sánchez-Pérez, On Hausdorff asymmetric normed linear spaces, *Houston J. Math.*, **29** (2003), 717–728.
- [8] V. Gregori, J. A. Mascarell and A. Sapena, On completion of fuzzy quasi-metric spaces, Topology Appl., 153 (2005), 886-899.
- [9] K. Keimel and W. Roth, Ordered Cones and Approximation, Lecture Notes Mathematics, vol. 1517, Springer (Berlin, 1992).
- [10] H. P. A. Künzi, Nonsymmetric distances and their associated topologies: About the origins of basic ideas in the area of asymmetric topology, in: *Handbook of the History of General Topology* (eds. C. E. Aull and R. Lowen), vol. 3, Hist. Topol. 3, Kluwer Acad. Publ. (Dordrecht, 2001), pp. 853–968.
- [11] C. Mustăta, Extensions of semi-Lipschitz functions on quasi-metric spaces, Ann. Numer. Theory Approx., 30 (2001), 61–67.
- [12] C. Mustăta, On the extremal semi-Lipschitz functions, Ann. Numer. Theory Approx., 31 (2002), 103–108.
- [13] C. Mustăta, A Phelps type theorem for spaces with asymmetric norm, Bul. Ştiinţ. Univ. Baia Mare, Ser. B, Matematică-Informatică, 18 (2002), 275–280.
- [14] J. Rodríguez-López, S. Romaguera and O. Valero, Denotational semantics for programming languages, balanced quasi-metrics and fixed points, *Internat. J. Comput. Math.*, to appear.
- [15] S. Romaguera, E. A. Sánchez-Pérez and O. Valero, Computing complexity distances between algorithms, *Kybernetika*, **36** (2003), 569–582.
- [16] S. Romaguera and M. Sanchis, Semi-Lipschitz functions and best approximation in quasi-metric spaces, *J. Approx. Theory*, **103** (2000), 292–301.
- [17] S. Romaguera and M. Sanchis, Applications of utility functions defined on quasi-metric spaces, J. Math. Anal. Appl., 283 (2003), 219–235.
- [18] S. Romaguera and M. Sanchis, Properties of the normed cone of semi-Lipschitz functions, *Acta Math. Hungar.*, **108** (2005), 55–70.
- [19] S. Romaguera, A. Sapena and O. Valero, Quasi-uniform isomorphisms in fuzzy quasi-metric spaces, bicompletion and D-completion, Acta Math. Hungar., 114 (2007), 49–60.
- [20] S. Romaguera and M. Schellekens, Duality and quasi-normability for complexity spaces, Appl. Gen. Topology, 3 (2002), 91–112.
- [21] J. M. Sánchez-Álvarez, On semi-Lipschitz functions with values in a quasi-normed linear space, Appl. Gen. Topology, 6 (2005), 217–228.
- [22] A. Stojmirovič, Quasi-metric space with measure, Topology Proc., 28 (2004), 655-671.