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Hyperspectral Unmixing on Multicore DSPs:
Trading off Performance for Energy

Maribel Castillo, Juan C. Ferndndez, Francisco D. Igual,
Antonio Plaza, Enrique S. Quintana-Orti, and Alfredo Remén

Abstract—Wider coverage of observation missions will increase
onboard power restrictions while, at the same time, pose higher
demands from the perspective of processing time, thus asking for
the exploration of novel high-performance and low-power pro-
cessing architectures. In this paper, we analyze the acceleration
of spectral unmixing, a key technique to process hyperspectral
images, on multicore architectures. To meet onboard processing
restrictions, we employ a low-power Digital Signal Processor
(DSP), comparing processing time and energy consumption with
those of a representative set of commodity architectures. We
demonstrate that DSPs offer a fair balance between ease of
programming, performance, and energy consumption, resulting
in a highly appealing platform to meet the restrictions of current
missions if onboard processing is required.

Keywords-Digital signal processors, hyperspectral imaging, en-
ergy consumption, high performance computing.

I. INTRODUCTION

Hyperspectral imaging missions collect a large number of
images, corresponding to different wavelength channels, for
the same area on the surface of the Earth [1]. Satellites in
operation recently, like EO-1 Hyperion! (USA), feature
a spatial resolution of a few dozens of meters and a revisit
time between 3 and 16 days. Combined with fine spectral
resolution and extensive earth coverage, this results in vast
amounts of data, justifying the adoption of high-performance
computational resources for onboard remote sensing that can
process this information in near real-time.

Spectral unmixing [2]-[4] is among the most popular tech-
niques to process hyperspectral images, enabling sub-pixel
characterization. Consider the linear mixture model in compact
matrix form [5]:

Y=EA+N, (1)

where Y = [y1,¥s,-.-,¥,,)] € R ™ is the hyperspectral
image consisting of m pixels (columns) each with n bands
(rows), E € R™"*P is the endmember matrix, A € RP*™ con-
tains the endmember abundances for each pixel of the scene,
and N € R™*™ is the noise. Given a number of endmembers p,
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solving the linear mixture model then involves identifying a
collection (matrix) of endmembers E = [e;,eq,...,¢€p], and
subsequently estimating the fractional abundances of the p
endmembers for each pixel in the hyperspectral data set.

Recent spectral unmixing methods for the linear mixture
model are computationally quite costly, being subject to strict
restrictions on the response time for applications like, e.g.,
wild land fire tracking, biological threat detection, and mon-
itoring chemical contamination. To address this problem, a
variety of parallel systems have been leveraged in the quest for
real-time performance, from small clusters of computers and
general-purpose multicore processors to fancier architectures
such as field programmable gate arrays (FPGAs) and graphics
processing units (GPUs); see, e.g., [6]-[14].

In this paper we investigate an alternative architecture,
namely a multicore digital signal processor (DSP) from
Texas Instruments (TI), that blends extremely low power
consumption, fair computational performance, and relatively
easy programming, yielding an appealing choice for airborne
and spaceborne remote sensing. In particular, we elaborate a
thoughtful analysis of the trade-off between performance and
power offered by this architecture, comparing the results with
state-of-the-art commodity multicore processors from Intel and
AMD, as well as low-power multicore challengers, e.g., from
ARM. This type of study is timely and highly relevant to assess
the real possibilities of applying today’s multicore processors,
including DSPs, to efficient hyperspectral image processing in
real remote sensing missions.

The rest of the paper is structured as follows. In Sec-
tion II we briefly review two efficient methods for identifying
the endmembers and estimating their fractional abundances
in hyperspectral images, respectively Orthogonal Subspace
Projection via Gram-Schmidt (OSP-GS) [15] and the Image
Space Reconstruction Algorithm (ISRA) [16]. The reasons
for the selection of these two methods can be summarized as
follows. On the one hand, OSP-GS is a very fast (and regular)
endmember extraction algorithm which provides robust results
and is relatively easy to parallelize. On the other hand, ISRA
provides abundance estimations which are always positive.
This is very important in spectral unmixing applications as the
derivation of negative abundances has no physical meaning.
Also, ISRA does not constraint abundances to sum to one in
each pixel as this can lead to model errors if the endmembers
are not perfectly selected. As a result, ISRA provides a robust
framework for abundance estimation and is also a regular and
easy algorithm to parallelize. In Section III we consider the
programmability issue for the target DSP, describing the paral-



lelization and fine tuning of the methods on this architecture,
while offering a glimpse of the effort needed to program the
same methods on general-purpose multicore architectures. In
Section IV we perform an experimental comparison of the
methods on the candidate architectures from the point of view
of both performance and energy consumption. Finally, we
close the paper in Section V with some remarks and hints
at plausible future research lines.

II. METHODS FOR SPECTRAL UNMIXING
A. Endmember identification

OSP [15] was a method originally conceived to find spec-
trally distinct signatures using orthogonal projections. From
the mathematical point of view, our implementation is a variant
that employs modified GS transforms [17] to compute an
orthonormal p-dimensional basis of the subspace of R™*™
spanned by Y, combined with pivoting. At each step of the or-
thogonalization, such pivoting detects the pixel with maximum
projection value among those of the image. Unfortunately,
this requires that each projector is applied to all m pixels
of the scene, not only to p (the number of endmembers to
be detected), yielding a significant increase in the arithmetic
cost of the algorithm. Given the 3n floating-point arithmetic
operations (flops) required to apply the projector to one pixel,
and the p endmembers that have to be identified, the result is
a total cost for the algorithm of 3mnp flops.

Algorithm 1 describes the procedure in detail. The first
p columns of Y are overwritten with the set of orthogonal
vectors generated by the GS method, forming an orthonormal
set that spans the sought-after subspace. While there exist
numerically more robust alternatives, e.g. based on the QR
factorization with column pivoting [17], we adopt the GS
variant because of its reduced cost and straight-forward imple-
mentation. On the other hand, in the practical implementation
we have applied optimization techniques to further reduce the
computational cost of the algorithm. For example, we avoid the
recomputation of the norms in line 2, accomodating instead a
norm-downdating scheme analogous to that included in routine
dgegpf of LAPACK for the QR factorization with column
pivoting [18].

B. Abundance estimation

Once a collection of p endmembers E has been estimated
using the OSP-GS algorithm (or other alternative identifica-
tion method), an unconstrained p-dimensional estimate of the
endmember abundances for a given pixel in y is simply given
(in least squares sense) by [19]:

a" = (E"E)"'ETy, 2)

where a°¢ = [ai,a2,...,a,] € RP. However, to avoid the
derivation of negative abundances caused, e.g., by spatial
or temporal variations [20], it is possible to introduce the
abundance non-negativity constraint (ANC), enforcing a; > 0
for all j, which results in the following optimization problem:

Mingea {(y—a-E)T (y—a-E)},

3)
subject to: A = {ala; > 0 for all j}.

Algorithm 1 Pseudocode of the OSP-GS algorithm for iden-
tifying p endmembers of a hyperspectral image consisting of
m pixels Y = [y;,¥s, - - -, Y¥,,] and n bands. Upon completion,
the endmembers correspond to the pixels with “coordinates”
stored in vector v.
lifork=1:p R
2 v(k)={k+k—1]Y(k)=max]", [Y(1:n,j)|3}
3 Y(1:m,v(k)) < Y(1:n,k) (swap contents)
4 wik) = [Y(L:n k)]s
50 Y(1:n,k)=Y(1l:nk)/w(k)
6: forj=k+1:m
7
8
9

w(k,7) =Y :n, k)T Y(1:n,j)
Y(1:n,5)=Y(1:n,5) = Y(1:nk)wk,j)
end for
10: end for

Algorithm 2 Pseudocode of ISRA for unmixing a hyperspec-
tral image consisting of m pixels Y = [y;,¥s,-..,¥,,] and n
bands using a set E of p endmembers. Upon completion, the
abundances are returned in matrix A € RP*"™,

1: N=E’Y

2:D=E’E

3: A =rand(p x m) (Generate random matrix)
4: k=0

5: repeat

6: A=DA k=k+1

7: for j=1:m

8: fori=1:p

9: A, j) = A, j) NG, j) /A (i, )
10: end for

11:  end for

12: until convergence or k > max_iter

A non-negative constrained least-squares (NCLS) algo-
rithm [21] can then be used to iteratively obtain a solution
to (3). A successful approach for this purpose in different ap-
plications is ISRA [16], a multiplicative algorithm for solving
NCLS problems. The algorithm is based on the iteration:

i =af e (BTy) o (BB k>0, @

where the operators ® and @ denote, respectively, the elemen-
twise vector product and vector division. The procedure thus
starts with an unconstrained abundance estimation a° = éUC,
which is progressively refined.

Algorithm 2 details a matrix-oriented variant of ISRA for
unmixing an image Y using a set of E endmembers. There,
max_iter is a threshold to avoid stagnation in the convergence
of the iteration, while the initial abundance estimations in
A are randomly generated (line 3). The ISRA procedure
is composed of very simple arithmetic operations, but the
innermost loop, for variables m and p, dominates its arithmetic
cost. In particular, as 2 arithmetic operations are performed
at each iteration of this loop, this yields a total cost for the
algorithm of 2mpk flops.
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Fig. 1. C66x DSP Core Block Diagram.

III. SPECTRAL UNMIXING ON TI DSPs
A. Architecture overview

The C6678 from TI is a high performance, low power DSP
with floating-point capabilities [22]. It contains eight C66x
Very Long Instruction Word (VLIW) cores, running at 1 GHz.

The C66x core, in Figure 1, is the base of the multicore
C6678 DSP architecture. It is implemented as a VLIW archi-
tecture, and targets three different types of concurrency:

1) Instruction-level parallelism: In the core, eight different
functional units are arranged in two independent sides, each
with four processing units, namely L, M, S and D. The M units
are devoted to multiplication operations. The D unit performs
address calculations and load/store instructions. The L and S
units are reserved for additions/subtractions, logical, branch
and bitwise operations. Thus, this 8-way VLIW machine can
issue up to eight instructions per cycle.

2) Data-level parallelism: The C66x instruction set com-
prises Single Instruction Multiple Data (SIMD) instructions
that operate on 128-bit vector registers. More precisely, the M
unit performs 4 single-precision (SP) multiplications per cycle
while the L and S units carry out 2 SP additions per cycle.
Thus, the C66x is ideally able to perform 8 SP multiply-add
(MADD) operations in one cycle. With eight C66x cores, a
C6678 processor running at 1 GHz this yields 128 SP GFLOPS
(1 GFLOPs = 10° floating point operations per second.) All
floating-point operations are IEEE754-compliant.

3) Thread-level parallelism: This can be exploited by run-
ning different threads across the cores of the DSP. In our case,
we will use OpenMP? to benefit from this type of concurrency.

B. Programming the DSP

The C6678 runs a lightweight real-time native operating sys-
tem called SYS/BIOS. The compiler is C89/C++98-compliant,
and virtually any C89 code can be ported with negligible
additional effort. To improve the efficiency of the generated
code, the compiler provides optimization techniques in the
form of #pragmas and intrinsic SIMD instructions to fully
exploit the core architecture, and extract all the potential
performance without resorting to assembly programming.

The compiler supports OpenMP 3.0 to allow rapid porting of
existing multi-threaded codes to multicore DSPs. The OpenMP
runtime performs the appropriate cache control operations to
maintain the consistency of the shared memory when required,

Zhttp://openmp.org

but special caution is due to keep data coherency for shared
variables, as no hardware support for cache coherence across
cores is provided.

C. Implementation details of spectral unmixing methods

Basic codes developed for conventional architectures can be
ported to the TI DSP architecture with minor modifications.
However, the special features of the C66x reviewed in the
previous section ask for a number of optimizations in order to
achieve high performance. Our implementations of the spectral
unmixing algorithms on the TI DSP followed a four-step
refinement procedure that can be applied to port many other
numerically-intensive scientific codes to this architecture. In
order to illustrate this process, we will mostly refer to the
method for aboundance estimation in Algorithm 2. However,
analogous techniques were applied to derive a correct and
efficient implementation of Algorithm 1.

1) Use of optimized libraries: The Basic Linear Algebra
Subprograms (BLAS) specifies a set of linear algebra routines
that appear frequently in scientific applications. Since its
inception, highly tuned implementations of BLAS have been
developed by processor manufacturers or by the scientific
community. These codes are usually designed to extract all
the potential performance of the target architecture. Thus,
their use guarantees high performance while simplifying the
optimization process.

In our case, we identified several numerical operations in the
codes which could be replaced by calls to BLAS. This is the
case, e.g., of the matrix-matrix products in lines 1, 2 and 6 of
Algorithm 2, which were computed via simple invocations to
a highly-tuned implementation of the Level-3 BLAS kernel
sgemm from TI [23], [24]. Internally, this implementation
encapsulates all the necessary optimizations (at instruction,
data and thread levels) to ensure high performance.

The BLAS implementation from TI presents some restric-
tions from the point of view of the matrix operands, as their
dimensions are required to be integer multiples of 32. These
restrictions are mainly enforced to maintain cache coherence
among the cores of the chip, avoiding false sharing among
different local caches. This problem can be solved by padding
all data structures to the next integer multiple of 32. This
implies, for example, that instead of working on an image
Y composed of m pixels with n bands each, our algorithms
operate on an n’ x m' matrix, with n’ and m’ standing
for the closest integer multiples of 32 larger or equal than
the original values. The additional rows/columns (if any) are
simply filled with zeros, and they do not participate in the
arithmetic computations as the algorithms still operate on the
leading n x m submatrix of this data structure. For the images
analyzed in the next section, the storage overhead introduced
by this technique is less than 2.5% and thus clearly affordable.

2) Exploitation of instruction-level parallelism: VLIW ar-
chitectures like the TI DSP usually require the use of sophis-
ticated compilers that generate tuned code to avoid stalls of
the functional units. However, the programmer is welcome
to provide additional information in terms of directives (via
#pragma constructs in the code or reserved keywords) that



help the compiler in the optimization process. Many of these
directives are directly related with loop optimizations (e.g.,
providing safe loop unroll counts), pointer deambiguation, and
data alignment information.

After applying these common optimizations, we found out
that the floating-point arithmetic divisions and square-root
operations present in the codes were a major source of ineffi-
ciency, the reason being twofold. First, this kind of operations
is intrinsically slow on the C66x, easily consuming dozens of
cycles more than the floating-point arithmetic multiplication
or addition. Second, the presence of this type of operations
inside a loop prevents the automatic application of software
pipelining by the compiler, that is key to attaining high
performance. This is the case, e.g., of the loop in lines 7—
11 of Algorithm 2. To avoid this problem, we replaced the
division by an estimate obtained with the _rcpsp intrinsic,
and the square root by the _rsqgrsp intrinsic, which are both
translated into native instructions of the C66x instruction set,
requiring a single cycle to complete. These instructions only
offer an approximate solution of the respective operations. To
regain higher precision, a reduced number of Newton-Raphson
interpolation steps was applied. These steps are cheaper to
compute and are based on multiply-add operations, allowing
the application of software pipelining while offering enough
accuracy for SP data.

3) Exploitation of data-level parallelism: In the next stage,
we applied manual SIMD vectorization to certain fragments
of the codes. Following with Algorithm 2, the loop in lines
7-11 was unrolled with factors 2 and 4, to exploit the 64-bit
and 128-bit arithmetic and load/store units in the C66x cores.

4) Exploitation of thread-level parallelism: Finally, we
applied OpenMP pragmas to distribute the workload among
the 8 cores of the DSP. In the case of the nested loop in lines
7-11 of Algorithm 2, we simply preceded this loop in the
actual implementation by the OpenMP directive #pragma
omp parallel for private (¢). The iteration range
was divided into m/t chunks of consecutive pixels, with
t being the number of CPU threads, and each chunk was
processed by a different thread in parallel.

D. Programability compared with conventional architectures

Ease of programming is a subjective topic. Developing basic
implementations for either specific-purpose architectures like
the TI DSP, or general-purpose processors like the Intel/AMD
x86 or the ARM Cortex A9, does not require significantly
different efforts. From that starting point, the optimization
labor depends on the specific target architecture and the
desired optimization level. However, the techniques to apply
are not that different for both types of architectures. Highly
optimized libraries, e.g. BLAS, are generally available for x86
architectures (e.g., Intel MKL or AMD ACML), ARM pro-
cessors (e.g., ATLAS) or TI DSPs, and ease the optimization
process. Intel/AMD x86 and ARM Cortex, being superscalar
processors, defer the extraction of instruction-level parallelism
till runtime, removing this burden from the compiler. However,
current compilers for VLIW architectures usually facilitate the
optimization process. SIMD instructions (SSE or AVX for

Intel x86, Neon for ARM) are fundamental to fully exploit
the potential of arithmetic units, as well as for the TT DSP.
Finally, the introduction of OpenMP in novel multi-core DSPs
dramatically decreases the difficulty of extracting thread-level
parallelism, levelling the effort with that required for general-
purpose processors. In summary, tuning a basic code for a
TI DSP, while not being an easy process if the last drop of
performance is sought-after, does not significantly differ from
that required for other type of modern multi-core architectures.

IV. EXPERIMENTAL RESULTS

In this section we present the two hyperspectral data sets
used in the evaluation; describe the multicore processors and
power measurement devices; and finally perform a detailed
analysis of performance vs energy consumption.

A. Hyperspectral data sets

We employed two hyperspectral images in the experi-
ments: the Airborne Visible Infra-Red Imaging Spectrom-
eter (AVIRIS) Cuprite data set, a widely used bench-
mark for evaluation of spectral unmixing techniques, and
an image collected over the World Trace Center (WTC)
in New York after the terrorist attacks on September 11.
The portion in the experiments with Cuprite corresponds
to an m=350x350-pixel subset of the sector labeled as
£970619t01p02_02_sc03.a.rfl in the online data’.
This scene presents n=188 spectral bands between 0.4 and
2.5 pum, and has been widely used to validate the performance
of spectral unmixing methods. The WTC data set consists
of m=512x614 pixels and n=224 bands. These dimensions
represent the standard data cube size recorded by AVIRIS.
Independent experimentation led us to set the number of end-
members to p=19 for Cuprite and p=26 for WIC. The (fixed)
number of iterations set for ISRA was 100 in both cases.
Processing these images in real-time requires execution times
below 2.98s for Cuprite and 5.09s for WTC, resulting from
the fact that the AVIRIS instrument requires 8.3 milliseconds
to collect a full line made up of 512 pixel vectors.

B. Multicore processors and power measurement setup

Our experiments were performed on a collection of plat-
forms representative of current multicore technology. We next
list the main components of these platforms and the imple-
mentation of BLAS employed in each case:

o TI C6678 DSP (8 cores) at 1 GHz with 512 Mbytes of
RAM, and a proprietary BLAS implementation from TIL.

e Two Intel Xeon E5504 (8 cores) at 2.0 GHz with 32
Gbytes of RAM, and Intel MKL 10.3.9.

o Intel Atom D510 (2 cores) at 1.66GHz with 2 Gbytes of
RAM, and Intel MKL 10.3.10.

o Two AMD Opteron 6128 (16 cores) at 2.0 GHz with 24
Gbytes of RAM, and Intel MKL 11.1.

o ARM Cortex A9 (2 cores) at 1 GHz (built by TI) with 1
Gbyte of RAM, and ATLAS 3.8.4.

3http://aviris.jpl.nasa.gov/freedata



TABLE 1
PROCESSOR TDP, AND PLATFORM MAXIMUM OBSERVED POWER (WITH
ALL CORES IN USE) AND IDLE POWER.

[ Processor [[ TDP [ Max. power [ System (idle) power |
TI DSP 10.0 22.7 18.1
Intel Xeon 80.0 184.8 67.0
Intel Atom 13.0 29.7 21.6
AMD Opteron 115.0 250.6 101.2
ARM Cortex 0.6 5.5 3.6
This selection of architectures offers a wide sam-

ple of different performance/power ratios, and includes
high-performance/high-power architectures (e.g. Xeon and
Opteron), low-performance/ultra low-power architectures (e.g.
ARM Cortex and Atom), and mid-performance/low-power ar-
chitectures (e.g. TI DSP). This range covers the necessities of a
wide variety of applications or scenarios in which performance
and/or power consumption are the limiting factors.

Power was measured using a WattsUp? Pro .Net powermeter
directly attached to the cable that connects the electric socket
to the PSU (power supply unit) of the target system, thus
measuring external AC for the full platform. The system
power (i.e., power dissipated while the corresponding platform
remained idle; see Table I) was subtracted from all the
measurements so as to obtain comparable values, independent
of the power dissipated by elements other than the processor(s)
and memory. The test (spectral method) was repeated during
3 minutes before power measurements were collected. Then,
samples were collected with the test running 3 more minutes;
and power was averaged over this period and multiplied by the
execution time of one single test to obtain the total energy. In
all cases, execution time is reported in seconds (s), energy in
Joules (J), and power in Watts (W).

C. Performance and power trade-off

Table II reports the execution time and energy consumption
resulting from our complete experimentation, involving the
two data sets, both methods, and the five processor types (with
1, 2, ... up to 16 cores, depending on the architecture). For
each processor, the bold face in the table identifies the optimal
number of cores from the point of view of execution time
and energy. Note that, as the energy depends linearly on the
execution time, a shorter time could be expected to also yield
a lower energy consumption. Interestingly, this is not always
the case. A notable example is the application of OSP-GS to
the WTC scene on the AMD Opteron. The use of 16 cores of
this platform renders and execution time of only 0.75s, but an
energy consumption of 171.25J. On the other hand, when 8
cores are employed, the time grows to 1.01s (increase of 35%)
but the energy is reduced to 149.39J (decrease of 12.76%).

Regarding parallel efficiency, the parallel versions of ISRA
scale better across multiple cores than those from OSP-GS.
The routines invoked by the latter (mainly from levels 1
and 2 BLAS) involve memory-bound computations so that
memory becomes a strong bottleneck as the number of cores
is increased. This effect is less evident in ISRA, where the

underlying operations (from level 3 BLAS, e.g. sgemm) are
not limited by memory bandwidth.

Table III offers a more compact and refined view of the in-
formation extracted from the experimental study, that allows a
direct comparison between the different architectures. Specif-
ically, in this table we report the global execution times and
energy consumptions of the two-stage spectral unmixing chain
(endmember identification+abundance estimation). For each
processor, we offer the optimal (i.e., minimum) execution time
and energy consumption in the two columns labelled as “Best
time”/“Best energy”. The numbers in bold face there identify
the best platform from the viewpoint of the corresponding
magnitude. For instance, in the Cuprite scene, the shortest
time among all platforms is 0.54s, obtained when 16 cores of
the AMD Opteron were employed to apply both OSP-GS and
ISRA (0.20+0.34s). The values inside parenthesis (columns
labelled as “Norm.”) correspond to normalized values w.r.t.
the best result; and the columns with labels “Energy”/“Time”
report those magnitudes for their respective “Best time”/“Best
energy” case. For the sake of clarity, a comparison of nor-
malized values w.r.t. the best architecture in each case is also
reported in Figure 2 for both scenes. Following with the same
example, processing the Cuprite scene in 0.54s on (the 16
cores of) the AMD Opteron required (46.77+82.21=)128.98]J;
but using only 8 cores for OSP-GS and 16 for ISRA decreased
the energy slightly, to (40.95+82.21=)123.16J, and increased
the execution time to (0.27+0.34=)0.61s.

These results show a manifest trade-off between perfor-
mance (in terms of execution time) and energy. If the goal
is high performance, then the clear solution is to use the 16
cores of the AMD Opteron for the two data sets. On the
other hand, the low thermal design power (TDP; see Table I)
of the TI DSP results in this architecture being patently
superior from the energy perspective. The Intel Xeon presents
a behaviour that is similar to that of the AMD Opteron,
with execution times shorter than those of the TI DSP, but
higher consumption of energy for the two images. The Intel
Atom and ARM Cortex, while being low-power general-
purpose architectures, are far from the energy-efficiency and
performance of the TI DSP. A direct comparison between the
two winners, AMD Opteron and TI DSP, reveals that the AMD
Opteron consumes (128.98/12.93=)9.98x more energy than
the TT DSP to process the Cuprite image, in exchange for
being (5.58/0.54=)10.33x faster; and (578.83/36.89=)15.69 x
more energy for WTC while being (15.27/2.54=)6.01x faster in
this case. On the other hand, the TI DSP is (5.58/0.61=)9.15x
and (15.27/2.80=)5.45x slower than the AMD Opteron, for
Cuprite and WTC respectively, but (123.16/12.93=)9.53x
and (556.97/36.89=)15.10x more efficient in terms of energy
consumption.

One interesting question to analyze is the execution time
w.r.t. the real-time performance, in particular, which processors
are below this threshold (or close to it) and how much we
can extend the execution time to reduce energy consumption
while still attaining real time. Given the real-time processing
baselines of 2.98s for Cuprite and 5.09s for WIC, only the
AMD Opteron and the Intel Xeon meet the bounds for both
data sets. The TI DSP is above the required thresholds, by a



TABLE I
EXECUTION TIME AND ENERGY CONSUMPTION REQUIRED BY THE SPECTRAL UNMIXING METHODS.

Time Energy
Data set Method Processor/#cores I [ 2 [ 4 ] 8 [ 16 1 [ 2 [ 4 [ 8 [ 16
Cuprite | OSP-GS | TI DSP 4.29 2.06 1.10 0.64 - 4.33 3.29 2.88 2.85 -
Intel Xeon 0.59 0.45 0.48 0.51 29.84 27.81 36.88 49.73 —
Intel Atom 4.29 3.69 - - - 27.03 26.94 - - -
AMD Opteron 1.17 0.66 0.40 0.27 0.20 94.01 61.73 45.96 40.95 46.77
ARM Cortex 8.04 7.80 — - 9.64 14.04 - - -
ISRA TI DSP 17.11 10.17 6.48 4.94 — 27.37 17.29 11.66 10.08 —
Intel Xeon 2.01 1.25 1.08 0.69 94.88 76.00 85.30 79.41 -
Intel Atom 2473 | 13.27 - - - 153.33 98.20 - - -
AMD Opteron 3.50 2.71 1.55 0.79 0.34 274.05 24390 | 172.67 | 117.24 | 82.21
ARM Cortex 2428 | 15.14 - - 29.14 27.25 - - -
WTC OSP-GS | TI DSP 17.91 8.40 4.33 2.54 - 19.70 13.69 11.47 11.43 -
Intel Xeon 2.22 1.82 1.96 2.09 — 121.03 113.22 146.96 | 203.12 —
Intel Atom 2291 | 20.00 - - - 144.33 144.08 - - -
AMD Opteron 4.59 253 1.57 1.01 0.75 362.47 24030 | 180.16 | 149.39 | 171.25
ARM Cortex 3494 | 34.87 - - - 41.93 72.97 - - -
ISRA TI DSP 4352 | 26.10 | 1643 | 12.73 - 69.63 44.37 29.57 25.46 -
Intel Xeon 7.31 4.50 3.75 2.42 356.58 271.17 307.00 | 280.86 —
Intel Atom 82.90 | 47.27 - - - 513.98 | 349.80 - - -
AMD Opteron 12.95 9.89 5.61 3.01 1.79 1,028.23 | 905.92 | 638.98 | 451.50 | 407.58
ARM Cortex 91.84 | 52.89 — - 110.21 95.20 - - -
TABLE III

COMPARISON OF THE EXECUTION TIME AND ENERGY CONSUMPTION REQUIRED BY THE COMPLETE (TWO-STAGE) SPECTRAL UNMIXING CHAIN.

[ Data set [ Processor [[ Besttime  Norm. [ Energy [[ Best energy  Norm. | Time |
Cuprite | TI DSP 5.58 (10.33) 12.93 12.93 (1.00) 5.58
Intel Xeon 1.14 2.11) 107.22 103.81 (8.03) 1.70
Intel Atom 16.96 (31.41) 125.14 125.14 (9.68) | 16.96
AMD Opteron 0.54 (1.00) 128.98 123.16 (9.53) 0.61
ARM Cortex 22.94 (42.48) 41.29 36.89 (2.85) | 23.18
WTC TI DSP 15.27 (6.01) 36.89 36.89 (1.00) | 15.27
Intel Xeon 4.24 (1.67) | 394.08 384.39 (10.42) 6.32
Intel Atom 62.27 (24.52) | 493.88 493.88 (13.39) | 67.27
AMD Opteron 2.54 (1.00) | 578.83 556.97 (15.10) 2.80
ARM Cortex 87.76 (34.56) 168.17 137.13 (3.72) | 87.83

factor of 1.87x for Cuprite and 3x for WTC; and real-time
is well beyond question for the Intel Atom and ARM Cortex.
With respect to the second question, it is important to note that
on the Intel Xeon and AMD Opteron, the combinations that
offer the optimal energy consumption in the processing of the
Cuprite image (103.81J and 123.16J, respectively) require
execution times that are still well below the baseline (1.70s
and 0.61s, respectively). In the case of the AMD processor,
this also holds for the WTC scene.

On the other hand, on airborne and spaceborne missions,
power and/or energy may pose critical limitations on the
architecture that can be employed, due, e.g., to the capacity of
the PSU to provide a certain wattage or the need to extend
the duration of the mission. In this sense, it is important
to analyze not only the (nominal) TDP of the CPU (see
Table I), but also the maximum power that was observed
during the experiments on each platform (see the column
labelled as “Max. power” in the same table). These results
clearly state the advantage of all the low-power CPUs over
the commodity Intel Xeon and AMD Opteron processors.
Although temperature measurements were not carried out in
our tests, comparative heat dissipation values can be induced
from the power dissipation numbers if temperature is a limiting
factor.

V. CONCLUDING REMARKS AND FUTURE RESEARCH
LINES

We have explored the performance of a multi-core DSP
from TI as a low-power architecture to accelerate spectral
unmixing methods. Furthermore, we have described a number
of techniques to efficiently leverage different forms of hard-
ware concurrency available in this processor, and performed
a detailed performance/energy evaluation for two commonly
used spectral datasets. The study reveals that these DSPs offer
an appealing trade-off between time-to-solution and energy
demand to process hyperspectral data compared with alterna-
tive state-of-the-art general-purpose and low-power multicore
architectures. While, for the test cases considered here, real-
time is lost for the TI DSP, power and budget limitations
in current and future airborne and spaceborne missions can
promote the use of this type of energy-efficient architectures.
In addition, the experimental results obtained for different
types of architectures can serve as a reference of which
architecture is more suitable depending on the time and/or
energy restrictions imposed by the target application. Finally,
we emphasize that it is possible to use the same DSP ar-
chitecture to implement other spectral unmixing algorithms,
since alternative but similar techniques exist for endmember
extraction and abundance estimation. For instance, from the
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Fig. 2. Comparison of the time and energy (normalized w.r.t. the best

architecture in each case) required by the complete spectral unmixing chain.

ISRA implementation it is quite easy to derive other forms of
unconstrained and partially constrained abundance estimators.
Also, the OSP-GS is similar in implementation to other pop-
ular methods for endmember extraction that could be ported
to the present architecture with little effort. Despite the fact
that the selected algorithms have been shown to be robust
in the considered problem, we are currently experimenting
with other spectral unmixing algorithms implementations in
the considered hardware platform.
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