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Three Dimensional Visualization of Long Range
Scenes by Photon Counting Mid-Wave Infrared
Integral Imaging

Pedro Latorre-Carmona, Bahram Javidi, and Daniel LeMaster

Abstract—Integral Imaging under photon counting conditions
has found different three-dimensional (3D) imaging applications,
including 3D image reconstruction and recognition. In this letter,
we present the application of the maximum likelihood (ML)
estimation method for visualization of 3D scenes in photon
starved environments using Mid-Wave Infrared 3D data of real
scenes acquired at distances ranging from 50m to more than 2km.
To the best of our knowledge, this is the first report on Mid-Wave
Infrared 3D photon counting integral imaging of distant scenes.

Index Terms—Computational integral imaging (CII), infrared
imaging, passive 3-D imaging, photon counting.

I. INTRODUCTION

NTEGRAL Imaging is a three-dimensional sensing and
I imaging technique with different applications including TV
broadcasting, 3D display, and 3D visualization in different
types of media [1]-[6]. Photon counting integral imaging has
been proposed to perform 3D image reconstruction [7] and 3D
target recognition [8]—[10] in photon starved conditions. In this
paper we apply the maximum likelihood estimation (MLE)
method for 3D visualization purposes on Mid-Wave Infrared
(MWIR) images where photon starved conditions have been
simulated by applying a photon counting process on the
corresponding elemental images. Reconstruction performance
is given in qualitative and quantitative terms with the Peak
Signal to Noise Ratio (PSNR). Results show that the ML
method provides good visualization capabilities.

II. THREE-DIMENSIONAL IMAGING AND COMPUTATIONAL
RECONSTRUCTION

In Synthetic Aperture Integral Imaging (SAII) [11] (Fig.
1(a)), a single camera is used to acquire the elemental images
from slightly different perspectives. This camera may move
into positions defined by a grid. Figure 1(b) shows the compu-
tational reconstruction methodology. Each elemental image is
projected on the desired reconstruction plane and overlaps with
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Fig. 1. Synthetic aperture Integral Imaging acquisition and processing. (a)
The camera position changes in a grid to acquire images of a scene under
different perspectives. (b) The superposition of the ray cones projected from
the elemental images reconstructs the 3D scene.

all other back-projected elemental images, as follows [12]:
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where I(z,y,z) represents the intensity of the reconstructed
3D image at depth z, x and y are the indexes of the pixel,
E}; represents the intensity of the kth row and I/th column
elemental image, N; x N, is the total number of pixels for
each elemental image, M = ? is the magnification factor,
¢z X ¢y is the physical size of the camera sensor, s is the pitch

of the camera and O(x, y) is the overlapping number matrix.

III. PHOTON-COUNTING MODEL

The integrated irradiance arriving at a camera is proportional
to the mean number of photons incident onto the sensor ( [7],
[13]). On the other hand, it can be shown that the probability
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of the number of photons detected in a time interval follows
a Poisson density function [13]. If we consider [, as the
normalized irradiance at pixel = such that Zival I, 1,
where Ny is the total number of pixels of an image, a Poisson
random number with mean parameter N, I, can be generated
to simulate an image that has N, number of photons in
average. In particular, the Poisson distribution can be described
as:

(Ix)cr . e_Iy:
ol

where C, refers to C' photons at pixel z.

Pr(C,|I,) = C,=0,12... (2

IV. MAXIMUM LIKELIHOOD ESTIMATION FOR
VISUALIZATION

As discussed in Section II, the image of an object pixel at
p = (z,y) appears periodically on the elemental images in the
following positions:

cy M’

Ny - s
M)} 3

It was shown in [7] that the estimation of the irradiance of a
reconstructed scene could be obtained from the photon count-
ing elemental images taking into account that the likelihood
estimation for the hypothesis of the irradiance inference can
be expressed as:

{(P+Apkz)}:{<x—k y—1

Cy
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Considering the logarithmic expression of Eq. 4 and Cy| 10 ~
Poisson(N,1:°), one arrives at:

ZZ —NpI° + Cri(p + Appa) - log(N,1,°) —

log(Ckz(P + App))] )

Therefore, maximizing with respect to [0 gives:

i)

ol(1z°) .
oL _O%Ipo_NDZZCkl (p+ Apr)  (6)
where 1:50 MLE{I}*} and D = 10 . Eq. 6 implies

that the result of the computational reconstrucuon for one
plane of the scene located at a specific distance using photon-
counted elemental images is also the ML irradiance estimate
of the scene at that plane. Therefore, the irradiance of the
three dimensional objects can be reconstructed by use of the
photon counting elemental images. Noise sources may appear
as well but if we assume they are statistically independent
from the Poisson process that generates the photon counting
images (for instance, if noise# f(I;°)) then the probability
term in Eq. 4 would become a product of probabilities. In
that case, the partial derivative in Eq. 6 would cancel out
the terms without dependence on I7° and therefore the ML
estimate would remain the same. This is the assumption we
will consider in our case.

V. WAVELET SHRINKAGE FOR IMAGE DENOISING

Fourier analysis has been successfully applied to periodic,
time-invariant or stationary processes. On the other hand,
wavelet analysis was developed in the framework of local,
transient, time-varying or non-stationary signals. Wavelets
are generated from one single function (basis function) by
dilations (scaling) and translations (shifts) in time (frequency)
domain. Discrete wavelet transforms (DWTs) are typically
associated to Multi-Resolution Analysis (MRA) strategies con-
sisting of the application of low-pass and high-pass filters to
give low level (coarse) and high level (detailed) information of
the input signal. Multi-Resolution Analysis (MRA) involves
the application of two sets of functions, called scaling and
wavelet functions. Real DWTs have a series of known draw-
backs: (a) they are very sensitive to shifts; their coefficients
appear only at three spatial orientations (vertical, horizontal
and diagonal); and (c) phase information is not considered
for processing. The Complex Dual-Tree Discrete Wavelet
Transform appeared to try to solve these drawbacks, i. e. (a)
it is approximately shift invariant; (b) it has good directional
selectivity; (c) phase is taken into account. Consider a complex
scaling function and a complex wavelet. The Dual-Tree Com-
plex Wavelet Transform (DT-CWT) [14] uses two Discrete
Wavelet Transforms in parallel. The first (upper) tree gives the
real part while the second (lower) gives the imaginary part of
the Complex Wavelet Transform (CWT). The two trees are in
fact real and use two different sets of perfect reconstruction
filters. In the particular implementation we used in this paper,
we considered Farras filters [15] for the first decomposition
stage, and Kingsburry’s Q-shift filters [16] for the remaining
stages. Farras filters were designed to have two particular
important properties for the complex wavelet transforms, i. e.,
(1) be orthogonal, and (2) have a subset of exactly symmetric
coefficients (among all). The Kingsburry’s Q-shift filters were
designed to eliminate some problems associated to the parallel
tree transformation approach [16]. Once this transform has
been applied, all high frequency (MRA) coefficients that
appear during this decomposition and that are lower than a
particular threshold, can be converted to zero. The denoised
image is obtained applying the inverse wavelet transform after
this thresholding. The reader is referred to [15]-[17] for further
details.

VI. EXPERIMENTAL RESULTS

The elemental images used in this paper were acquired from
the 12th floor of the AFRL tower located at Wright Patterson
Air Force Base (AFB). They were collected with a Lockheed
Martin Santa Barbara Focal plane AuraSR MWIR imager that
could move in one fixed direction using a high accuracy rail
apparatus. The AuraSR MWIR imager had a StingRay Optics
120mm f/2.3 lens. The pixel size of this camera is 19.5um.
The size of the elemental images is 1024 x 1024 pixels. Two
types of scenes were acquired, one of them consisting of
a road, a group of trees and a vehicle just behind one of
them, and the other scene consisted of a view of the airfield
of Wright AFB. For the case of the car and trees scene, 8
elemental images corresponding to an acquisition in a 1 X 8
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horizontal grid were considered. For the airfield scene, 10
images in a 1 x 10 horizontal grid were acquired (the reader is
referred to [18] for further details). In order to simulate photon
starved conditions during acquisition, we assumed that the
number of photons detected in a specific time interval follows
a Poisson density function. This is also considered as a valid
assumption in the case of Infrared detectors [19]. Three noise
levels (layers) were added to each one of the elemental images
for the two scenes in such a way that the total number of
noise photons added was: Ng. = {104, 10°,10°}, simulating
the existence of dark current (dc) noise. The proposed dark
current noise values are relatively low when compared to
real dark current values obtained in some types of Infrared
detectors, but these levels might be obtained for the case of
some HgCdTe mid-wave infrared detectors cooled to 50 — 80K
(see for instance, Fig. 8 in [20] for details. For example,
an HgCdTe sensor cooled at 80K and a cutoff wavelength
of 5um, and assuming a quantum efficiency of 80%, there
would be 1 photon per pixel per second of dark current).
Figure 2 shows two elemental images corresponding to the
two scenes. In Figure 2(a), the trees in front of the vehicle
are at a distance of approximately z = 210m, and the vehicle
is at a distance of z = 237m. In Figure 2(b) the hangars
are at a distance z = 970m and the deposit at a distance
of around z = 2200m. Figure 3(a) shows the results of the
depth reconstruction for the case of the car and trees scene, for
z = 237m when using the original elemental images. Figure
3(b) shows one of the elemental images of this scene, for
N, = 3.0 x 10° photons (i. e., 0.29 photons/pixel). Figure
3(c) shows the same elemental image, but for N, = 3.0 x 10°
photons, and Ny. = 10° photons (1.24 photons/pixel in total).
Figures 3(d)-(e) show the reconstruction results for z = 237m
when using the elemental images without and with additional
noise, respectively. In order to help improve its visualization,
wavelet shrinkage technique for image denoising as explained
in section V was applied on the depth reconstructed images.
For the car and trees scene, a threshold value of T = 4 was
used. We can see in Figure 3(d) that the car shape can be
clearly distinguished when only photon counting information
is present. The addition of noise (Figure 3(e)) makes it more
difficult its visualization. Figure 4(a)-(b) shows the results
of the depth reconstruction for the case of airfield scene,
for z = 960 and z = 2200m when using the original
elemental images. Figures 4(c)-(d) show the reconstruction
obtained at z = 960 and z = 2200m, respectively, for
N, = 3.0 x 105 photons (i. e., 0.29 photons/pixel). Figures
4(e)-(f) show the reconstruction obtained at z = 960 and
z = 2200m, respectively, for N, = 3.0 x 10° and Ng. = 10°
photons (1.24 photons/pixel in total). Figures 4(c)-(f) were also
post-processed applying the same wavelet shrinkage denoising
technique used for Figure 3 (in this case, the threshold was
set at: T' = 20). The Peak Signal to Noise Ratio (PSNR) can
be used to compare the computational reconstruction using
the original elemental images with the reconstructions using
different levels of photon counting and added noise. PSNR is

(@ (b)

Fig. 2. Elemental images for: (a) the case of the car and trees scene and (b)
for the airfield

defined as:

MSE(I,I)

where MSE(I, I ) is the Mean Square Error which provides
an estimate of the average error per reconstructed pixel of the
3D scene. I is the computational reconstruction made with
the original elemental images, whereas [ is the reconstruction
made by the elemental images with different levels of photon
counts (/Ng4.) and dark current photon counts (Ng.). Ipar 18
the maximum irradiance of the reconstructed scene. Figure 5
shows the PSNR vs [V, results for the reconstruction of the
trees and car scene for a distance of z = 237m (distance where
the car is in focus), for the case where no additional noise is
added, and when Ny. = {10%, 10°,10°} photons are added
to the elemental images. In [7] it was also shown that, for
the case where only photon counting counts were considered,
a dependence of the type PSNR o log(N,) followed.
Figure 5 also shows the theoretical log(/NV,) dependence of
PSNR, for the case where no additional noise is added, for
comparison purposes. This Figure shows, on the one hand,
that as [V, increases, the MSE error decreases and as a result
PSNR increases. On the other hand, it also shows that PSNR
decreases as we increase the Ng4. noise in the elemental
images, as expected.

VII. CONCLUSION

In this paper, we have presented the results of the appli-
cation of the maximum likelihood (ML) estimation method
for visualization of 3D scenes in photon starved environments
corresponding to Mid-Wave Infrared 3D data of real scenes.
We have shown that visualization improves using multi-
perspective photon-counted images, in relation to the infor-
mation provided by each photon-counted elemental image.
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Fig. 3. Reconstruction results for the car and trees scene. (a) Depth reconstruction for z = 237m when using the original elemental images. (b) Elemental
image, for Np = 3.0 x 10° photons (i. e., 0.29 photons/pixel), without addition of dark current noise. (c) Elemental image, for N, = 3.0 x 10 photons,
where Ng. = 106 photons have also been added (1.24 photons/pixel in total). (d)-(e) Reconstruction results for z = 237m when using the elemental images
without and with additional noise, respectively. Wavelet shrinkage technique for image denoising was applied on Figures (d)-(e) for visualization purposes.

Threshold value for the wavelet shrinkage technique: 7' = 4.

REFERENCES

[1] A. Stern, B. Javidi, 3D image sensing, visualization, and processing using
integral imaging, Proc. IEEE , vol. 94, pp. 591-607, 2006.

[2] B. Javidi, F. Okano, and J. Y. Son, Three-Dimensional Imaging, Visual-
ization, and Display, Springer, 2009.

[3] R. Martinez-Cuenca, G. Saavedra, M. Martinez-Corral, B. Javidi,
Progress in 3-D multiperspective display by integral imaging, Proc. IEEE
vol. 97, pp. 1067-1077, 2009.

[4] M. Cho, B. Javidi, Three-dimensional visualization of objects in turbid
water using integral imaging, Journal of Display Technology, vol. 6, vol.
10, pp. 544-547, 2010.

[5] J. Arai, E. Okano, M. Kawakita, M. Okui, Y. Haino, M. Yohimura,
M. Furuya, M. Sato, Integral three-dimensional television using a 33-
megapixel imaging system, Journal of Display Technology, vol. 6, no. 10,
pp. 422-430, 2010.

[6] F. Okano, J. Arai, K. Mitani, M. Okui, Real-time integral imaging based
on extremely high resolution video system, Proceedings of the IEEE, vol.
94, no. 3, pp. 490-501, 2006.

[7] B. Tavakoli, B. Javidi, and E. Watson, Three-dimensional visualization
by photon counting computational Integral Imaging, Optics Express, vol.
16, no. 7, pp. 4426-4436, 2008.

[8] S. Yeom, B. Javidi, and E. Watson, Photon counting passive 3D image
sensing for automatic target recognition, Opt. Express vol.13, pp. 9310—
9330, 2005.

[9] S. Yeom, B. Javidi, E. Watson, Three-dimensional distortion-tolerant
object recognition using photon-counting integral imaging, Opt. Express
vol. 15, pp. 1513-1533, 2007.

[10] M. DaneshPanah, B. Javidi, E. A. Watson, Three dimensional object
recognition with photon counting imagery in the presence of noise, Opt.
Express vol. 18, pp. 26450-26460, 2010.

[11] J. S. Jang, B. Javidi, Three-dimensional synthetic aperture integral
imaging, Optics Letters vol. 27, pp. 1144-1146, 2002.

[12] S. H. Hong, J. S. Jang, B. Javidi, Three-dimensional volumetric object
reconstruction using computational integral imaging, Optics Express vol.
3, pp. 483-491, 2004.

[13] J. W. Goodman, Statistical Optics, John Wiley and Sons, 1985.

[14] N. G. Kingsbury: The dual-tree complex wavelet transform: a new
efficient tool for image restoration and enhancement, Proc. European
Signal Processing Conference (EUSIPCO), pp. 319-322, 1998.

[15] E. Abdelnour, I.W. Selesnick, Design of 2-band orthogonal near sym-
metric CQF, IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), Salt Lake City, 6, pp. 3693-3696, 2001.

[16] N. Kingsbury, A dual-tree complex wavelet transform with improved
orthogonality and symmetry properties,, Proc. IEEE International Con-
ference on Image Processing, ICIP, 2, pp. 375-378, 2000.

[17] M. Vetterli, J. Kovacevic, Wavelets and subband coding,, Prentice Hall,
1995.

[18] D. LeMaster, B. Karch, B. Javidi, Mid-Wave Infrared 3D Integral
Imaging at Long Range, Journal of Display Technology, vol. 9, no. 7,
pp. 545-551, 2013.

[19] E. L. Dereniak, G. L. Boreman, Infrared detectors and systems, Wiley
Series in Pure and Applied Optics, 1996.

[20] J. W. Beletic, R. Blank, D. Gulbransen, D. Lee, M. Loose, E. C. Piquette,
T. Spratke, W. E. Tennant, M. Zandian, J. Zino, Teledyne Imaging
Sensors: infrared imaging technologies for astronomy and civil space,
Proc. SPIE 7021, High Energy, Optical, and Infrared Detectors for
Astronomy III, 70210H, 2008.

1551-319X (c) 2013 |IEEE. Personal useis permitted, but republication/redistribution requires | EEE permission. See
http://www.ieee.org/publications_standards/publicationg/rights/index.html for more information.



This article has been accepted for publication in afuture issue of thisjournal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/JDT.2014.2384478, Journal of Display Technology

IEEE JOURNAL OF DISPLAY TECHNOLOGY, VOL. X, NO. XX, MONTH YYYY 5

PSNR

—e—N, =0

- Iog(NF) theoretical dependence for Ndc=0
—=— N, =1.0x10*
ic

——N, =1.0x10°
c

- 6
Ndc—1.0x10
1 | L I | |
0 1 2 3 4 5 6
Number of photon counting counts (NP) x 10°

Fig. 5. PSNR vs N, results for the reconstruction of the trees and car scene
(2 = 237m), for Ng. = {0,10%,10%,106} dark current photons added to
the elemental images.

(e) ®

Fig. 4. Reconstruction results for the airfield scene.(a)-(b) Depth recon-
struction for z = 960 and z = 2200m when using the original elemental
images. (c)-(d) Reconstruction at z = 960 and z = 2200m, respectively, for
Np = 3.0 x 10° photons (i. e., 0.29 photons/pixel), without addition of dark
current noise. (e)-(f) Reconstruction obtained at z = 960 and z = 2200m,
respectively, for N, = 3.0 x 10° photons, where Ny, = 105 photons have
also been added (1.24 photons/pixel in total). Wavelet shrinkage technique
for image denoising was applied on Figures (c)-(f) for visualization purposes.
Threshold value for the wavelet shrinkage technique: 7" = 20.
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