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Abstract

The comparison of homologous proteins from different species is a first step
towards a function assignment and a reconstruction of the species evolution.
Though local alignment is mostly used for this purpose, global alignment is im-
portant for constructing multiple alignments or phylogenetic trees. However,
statistical significance of global alignments is not completely clear, lacking a
specific statistical model to describe alignments or depending on computation-
ally expensive methods like Z-score. Recently we presented a normalized global
alignment, defined as the best compromise between global alignment cost and
length, and showed that this new technique led to better classification results

than Z-score at a much lower computational cost. However, it is necessary to

ITo whom correspondence should be addresed.

Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801

Page 2 of 48



Page 3 of 48 Journal of Computational Biology

analyze the statistical significance of the normalized global alignment in order to
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be considered a completely functional algorithm for protein alignment.

11 Experiments with unrelated proteins extracted from the SCOP ASTRAL
database showed that normalized global alignment scores can be fitted to a log-
Normal distribution. This fact, obtained without any theoretical support, can
be used to derive statistical significance of normalized global alignments. Results
are summarized in a table with fitted parameters for different scoring schemes.
20 Software used to compute normalized global alignments is available from

22 http://www3.uji.es/~peris/nga.

25 Key words: Global alignment, normalization, fractional programming, database

search, homologous proteins.
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1 Introduction

Sequence alignment lies at the heart of many bioinformatics algorithms, helping with
the inference of protein function and structure, homology relationships, and building
of evolutionary trees. With the advent of next-generation sequencing machines (see,
for example, (baker10)), protein sequence databases are expected to grow faster, but
structural and functional properties, experimentally derived from spectrometric and
chemical analysis, are more difficult to be confirmed, in spite of recent advances in
crystallography techniques ((barty12)). Sequence comparison with previously charac-
terized proteins can help to assign a function to a newly obtained protein.

Pairwise alignments can be divided into two types: global and local. Global align-
ment (GA) methods compare sequences that are supposed to be similar along their
whole length. These methods are used in some multiple alignment algorithms and
for building evolutionary trees of sequences with similar lengths. Needleman-Wunsch
algorithm ((needleman)) is the most popular GA method, though some heuristic algo-
rithms for long sequences have been presented recently ((brayll)). On the other side,
local alignment methods (LA) are used to find similar regions in the strings compared
(for example, similar protein domains), and include the rigorous Smith-Waterman
algorithm ((smith81)) and other heuristic methods like BLAST ((altschul97)) and
FASTA ((fasta88)), more popular for their speed and efficiency. In both cases, an
alignment score can be considered as a measure of the shared amount of information
(SAI) between a protein and its antecesor ((bastien08)).

Raw scores, obtained with either local or global alignment, depend on sequences
length and composition, therefore a high score does not imply a high quality of the

alignment and a further study is needed to assess homology of a protein pair. Two

3
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major methods for evaluating statistical significance have been proposed. The first
method is based on obtaining, either theoretically or experimentally, the scores prob-
ability distribution. (karlin90) derived an estimation of the probability of finding a
local ungapped alignment between two random sequences a and b with a score S(a, b)

greater than s using an Extreme Value Distribution (EVD) or Gumbel distribution

type I:

P(S(a,b) >s)=1—exp(—K -m-n-e™) (1)

where m and n are the sequence lengths (a and b, respectively) and K and A are
constants that depend on the average sequence composition and scoring matrix. This
model was theoretically proven for ungapped alignments, though further studies have
shown that it is also valid for local gapped alignment statistics ((mott00; altschul01)).
Though less attention has been paid to global alignment statistics, (pang05) found
that global scores for random protein sequences of similar length could be fitted to a
three-parameter Gamma distribution. This distribution was the best fit for real but
unrelated sequences of similar length, though in some cases no probability distribution
agreed perfectly well to real score distribution.

The second method used for evaluating statistical significance is Z-score ((fasta85)),

defined as:

S(a,b) —

g

Z'(a,b) = (2)

Sequence a is shuffled and aligned with sequence b a large number of times (usually,

100-1000 shufflings), and from the resulting scores the mean p and standard deviation

o are obtained. Z’'(a,b) is not a symmetrical score, as it depends on the sequence being

4
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shuffled, so (comet99) redefined it as:

Z(a,b) = min [Z'(a,b), Z' (b, a)] (3)

The empirical rule that Z(a,b) > 8 corresponds to significant alignments was the-
oretically proven by (bastien04a), though a Z-score probability distribution is needed
to assure statistical relevance, particularly for high values in the distribution tail.
(comet99) studied Z-score for local alignments and found that quasi-real sequences
(shuffled versions of real proteins) followed EVD model, but real proteins showed a de-
viation in the distribution tail. (webber01) studied global alignment Z-scores obtained
from unrelated protein sequences and concluded that the best fit was given by the
three-parameter gamma distribution. Parameters obtained for different scoring matri-
ces and length independent gap penalties (gap extension equal to zero) were provided,
so that P-values can be obtained for these scoring schemes. These results are based
on experimentally fitted distributions alignment scores, using either real proteins, or
quasi-real or random sequences, but with no theoretical justification. However, some
studies ((bastien08; bastien08b)) derive the EVD distribution for local and global align-
ment score, based on the assumption of basic processes guiding biological evolution of
proteins.

Recently we proposed a normalized global alignment (NGA) score that corrected
the length dependence of a raw global score ((perisll)). NGA score was shown to be
linearly related to Z-score, and computational cost was sensibly lower, allowing for
a faster detection of homologous proteins. In this work, NGA statistical significance
is studied, and applied to obtain P-values of normalized global alignments of protein

pairs.

)
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2 Approach

For an arbitrary global alignment E between two biological sequences a and b (of
lengths m and n, respectively), we can compute its score S(F) using a substitution
matrix o (that assigns a value to every residue pair) and an affine function that penal-
izes gaps (with g, for opening a new gap, and g, for each additional gap extension).
Considering the set of all possible alignments &£,,, the normalized global alignment is
defined as ((perisll))

S(E)

NGA(a,b) = B m, (4)

where L(E) is the alignment length.

This optimization problem cannot be solved using a traditional dynamic program-
ming technique. Solution of problem (4) involves optimizing the ratio of two linear
functions, and this question was solved by Dinkelbach ((dinkel67)) applying the so-
called fractional programming technique. This algorithm has been previously used to
compute normalized edit distances ((vidal95; marzal93; peris09)). Following Dinkel-
bach’s solution, the alignment that maximizes the ratio of alignment score and length

can be obtained by solving the parametrized equation:

~

d(p) = max (S(F) — pL(E)) L(E) > 0,VE € Ey. (5)

Ec&y
where p is the parameter to be found. This equation is iteratively solved by starting
with an initial guess for p and obtaining the alignment that maximizes cZ(p) This

alignment is used to compute a new approximation for p, and the procedure is repeated

6
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until p converges to NGA score,
S(E:)
it1 = ; 6
where F; represents the best alignment optimized in Equation (5) using p;.
Though different starting values for py can be used, we take the standard global
alignment Fg, score divided by the alignment length, the so-called post-normalized
global alignment (PNGA),
S (EG A)

Po = —L(EGA) (7)

Maximization problem (5) can be posed in terms of the classical global alignment

problem:

gé%ii(S(E) — pL(E)) = gé%ﬁ(s(E) — plm+n—ny))

= éne%ﬁ(S(E) + png) — p(m +n)) (8)

where ng is the number of aligned letter-pairs in F.

Solution to problem (5) can now be related to global alignment, just adding pa-
rameter p to every value in the scoring matrix in every iteration or, equivalently,
modifying the diagonal terms in the programming dynamic matrix adding p, so that a

parametrized global alignment GA,(a,b) is obtained,

max (S(E) — pL(E)) = GA,(a,b) — p(m +n) 9)

Ee&q

Computational cost of NGA algorithm is O(smn), depending on the number of
iterations s. In previous studies with either normalized edit distance ((peris09)) or

NGA ((perisll)), convergence was reached with an average of 2.5 iterations, never

7
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exceeding a value of 5. Anyway, Dinkelbach’s algorithm is guaranteed to converge

©CoO~NOUTA,WNPE

given a finite set of alignments &, ((dinkel67)).

11 Properties of NGA scores were extensively studied in ((perisll)) for a set of pro-
13 teins extracted from ASTRAL database ((astral)). It was found a linear relationship
15 between NGA score and Z-score (see Fig. 1), so that all protein pairs with a NGA
17 score over some threshold were homologous and with a high Z-score value. This lin-
19 earity held even for proteins with a biased amino acid composition, such as those of
21 Plasmodium falciparum. Furthermore, NGA improves Z-score performance on homol-
23 ogous detection in a database (Fig. 2). It was shown that NGA leads to suboptimal

25 alignments with a better overlap between the proteins compared.
[Figure 1 about here.]
32 [Figure 2 about here.|

35 However, obtaining a high NGA score does not ascertain that the two proteins are
37 homologous. In order to decide if a high score may be obtained by chance or it points to
39 a relationship between proteins, the score probability distribution of unrelated protein

41 pairs must be studied.

60 8
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3 Methods

3.1 Software

NGA algorithm was implemented in C++ in (perisll). Basically, it is a modification of
Needleman-Wunsch algorithm ((needleman)), changing diagonal contributions in edit
graph to include p value in Eq. (9). The alignments were not penalized on ending
gaps. Z-score was also implemented in the same package, with a standard number of

100 shufflings for each sequence.

3.2 Databases

In this work, a protein subset from ASTRAL database version 1.75 ((astral)) was used.
This database is assembled from SCOP database ((hubbard97)), that contains protein
domains manually classified according to its hierarchical evolutionary relationships
into classes, folds, superfamily and family. Protein domains with similar structures,
functions and sequences are arranged in the same family. Members of different families
but a common evolutionary relationship are classified into the same superfamily, so they
are considered homologous. A fold is comprised of different superfamilies that share
common secondary structures, so domains included in different folds are supposed to be
non homologous. Homology of sequence pairs in the same fold and different superfamily
is not clear, so they are not considered in our experiments.

ASTRAL SCOP database is used as a benchmark to evaluate the ability of algo-
rithms to detect remote homologous, because the protein domains are filtered so that
every pair does not exceed a predefined sequence identity percentage. In this work 40%

filtered set (astrald0) was used and it was further divided into training and test sets.

9
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To obtain domain sets of similar sizes, the training set contains the odd numbered folds
in classes a, ¢, e and ¢, and the even numbered folds in classes b, d and f, while the
rest of the protein domains were included in the test set ((price05)). The test set was
used in (perisll) for classification experiments. The training set was further filtered
selecting randomly one sequence from each fold (592 sequences), so that all protein

pairs are non homologous.

3.3 Scoring schemes

For experiments we used classical scoring matrices from BLOSUM series (BLOSUMS50
and BLOSUMG62 — (blosum)) and PAM series (PAM120 and PAM250 — (dayhof78)).
BLOSUM matrices are widely used in database search, while PAM matrices were chosen
because they represent different evolutionary time. Though only length independent
gap penalties were used in the previous paper ((perisll)), general affine gap penalty

functions were used in this study, with several matrix/gap penalty combinations (see

Table 1).

3.4 Statistics

All the curve fitting to different distributions was computed with the R statistical
package ((R)).

10
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4 Results

NGA scores and Z-scores obtained for every scoring scheme were fitted to several
positive skewed density distributions (Weibull, log-Normal, Extreme Value Distribution
and three-parameter Gamma), and the Kolmogorov-Smirnov test was performed for
each fitted distribution.

Our results for Z-score agree with (webber01), who pointed out that Z-score fitted
well to several distributions, including log-Normal and three-parameter Gamma distri-
bution, though the last one was chosen based only on statistical fitting. As stated by
Firth ((firth88)), analyzing log-Normal data assuming a gamma distribution is more
efficient than analyzing gamma data assuming log-normality.

The three-parameter Gamma distribution, or Pearson type III distribution, is given

by the equation:

fla) = S (10)

where £ is the location parameter (0 < (z — &) < 00), « is the shape parameter
(> 0) and X is the scale parameter (A > 0).

Log-Normal distribution is given by the equation:

. (n(559)")
f(z) = meﬁp S S (11)

where parameters have the same meaning as in Eq. (10). It is convenient to write

Eq. (11) as:

IR SR N N Ot A
= T — o0 plz( z >] .

11
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where 1 and o are the mean and standard deviation of In(z — ).

For NGA scores we find similar trends, that is, log-Normal and Gamma are the best
fitting distributions according to Kolmogorov-Smirnov and y-squared tests. However,
in this case log-Normal outperforms Gamma distribution, with a lower Kolmogorov-
Smirnov mean value. Furthermore, distribution tail fits better to log-Normal equation,
as shown in Fig. 3, and Q-Q plots confirm this fact (Fig. 4 and 5). So, we use log-Normal
distribution to model NGA data, though this is based only in goodness of fit and with no
theoretical support. Furthermore, it must be stated that no scores have been obtained
for the high distribution tail (with P-values around 1x 1078), which is a real interesting
area for database searching. Though some techniques are available to obtain such a
high scores using randomly generated proteins ((bundschuh02; sheetlin05)), there are
no such algorithms for real proteins. This problem become worse due to the fact that

a normalized score is upper bounded.
[Figure 3 about here.]
[Figure 4 about here.]
[Figure 5 about here.]

In Table 1 the probability density function (PDF) parameters of log-Normal distri-
bution obtained for every scoring scheme are shown. Fig. 6-9 show the fitted distribu-
tions for the different substitution matrices used, and different gap penalty schemes.
In the insets the upper tails of the distributions are highlighted because in this area is
more difficult to distinguish between homologous and non homologous protein pairs.
It can be seen there is a good agreement between experimental and fitted distribution

in this twilight region.
[Figure 6 about here.]

12
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[Figure 7 about here.]

[Figure 8 about here.]

[Figure 9 about here.|

NGA scores needed to obtain a predetermined P-values of 1 x 107° and 1 x 10 8are

shown in the last columns of Table 1.

[Table 1 about here.]
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5 Discussion

In a previous paper we introduced the definition of normalized global alignment, based
on the normalized edit distance, as a way to correct the length dependence of a global
alignment score. It was shown that NGA allows the selection of a suboptimal global
alignment with a better overlap between the proteins compared, which is consistent
with the fact that structurally accurate alignments are often suboptimal ((zuker91)).
Comparing NGA scores with Z-scores, it was found a linear relationship between both
scores. This relationship allows to detect homologous with a high NGA value at a
lower computational cost than Z-score. Furthermore, NGA score improves homologous
detection on a database search versus global aligment score and Z-score.

In this paper we have studied statistical significance of NGA scores, finding that
these scores can be fitted experimentally to a three-parameter log-Normal distribution.
This distribution allows a good fitting in the right tail of the distribution, an important
area to decide if a protein pair is homologous or not. We have obtained the PDF
parameters for several scoring schemes. Considering all, we consider that NGA is a
good and cheap algorithm to detect homologous protein pairs, or as a first filter to more
elaborate and expensive algorithms. Anyway, we must remember that distributions
have been obtained considering only goodness of fit and with no theoretical support.

Furthermore, it was no possible to obtain high scores with P-values around 1 x 1078,

14
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Figure 1: Classification experiments with scoring matrix BLOSUM50 and gap penalties
Jo = 12 and ¢, = 0, using astral40 training data set. Z-score vs. NGA plot is shown, where

black crosses represent homologous protein pairs, and grey circles non homologous pairs.
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Figure 2: Classification experiments with scoring matrix BLOSUM50 and gap penalties
go = 12 and g, = 0, using astral40 training data set. Error per query wvs. coverage plot is

shown using global alignhment, Z-score and normalized global alignment.
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Figure 3: Distribution of NGA scores for astral40 training set, using as a scoring scheme
BLOSUM50 and 11/2 for gap penalty. Fitted log-Normal distribution (dotted line) and

gamma distribution (solid line) are shown.

Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801

Page 30 of 48



Page 31 of 48 Journal of Computational Biology

i

©CoO~NOUTA,WNPE

1 Guillermo Perist and Andrés Marzal
18 Department de Llenguatges 1 Sistemes
22 Informatics

2 Universitat Jaume I, 12071, Castell6 (Spain)

an {peris,amarzal } Quji.es

¥ Figure 3 (of 9)

Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801



©CoO~NOUTA,WNPE

Journal of Computational Biology

BLOSUMS50 (go=11, g e=2) — logNormal

O
[e0]
Q@
@ —_
o
%)
2
€
©
]
o
2 <
Q.
£ o
@©
n
AN
N
o
2
I I I I I I
0.0 0.2 0.4 0.6 0.8 1.0

Theoretical Quantiles

Figure 4: Q-Q plot for log-Normal distribution using the scoring scheme BLOSUM50, 11/2.
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Figure 5: Q-Q plot for log-Normal distribution using the scoring scheme PAM250, 16/1.
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Figure 6: Distribution of NGA scores for astral40 training set, fitted to log-Normal distri-

bution and scoring scheme BLOSUM50, 11/2.
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Figure 7: Distribution of NGA scores for astral40 training set, fitted to log-Normal distri-

bution and scoring scheme BLOSUM62, 12/1.
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Figure 8: Distribution of NGA scores for astral40 training set, fitted to log-Normal distri-

bution and scoring scheme PAM120, 13/0.
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Figure 9: Distribution of NGA scores for astral40 training set, fitted to log-Normal distri-

bution and scoring scheme PAM250, 16/1.
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Table 1: log-Normal fitted parameters for NGA scores
and different scoring schemes. In the last column, NGA

©CoO~NOUTA,WNPE

scores needed to obtain P-values of 1 x 107° and 1 x 108

are shown.
Scoring matrix g, g, log-Normal parameters P-value

19 14 o 1075 1078
BLOSUM50 11 0 -2.0671 0.8671 0.0380 0.73 0.89
BLOSUMS0 11 1 -0.0228 -1.9700 0.4422 0.90 1.65
BLOSUM50 11 2 -0.0091 -2.4850 0.5801 0.98 2.15
BLOSUM50 12 0 -0.7521 0.0263 0.0806 0.70 0.86
BLOSUM50 12 1 -0.0130 -2.2376 0.5069 0.91 1.82
BLOSUMS50 12 2 -0.0069 -2.6881 0.6276 0.98 2.30
BLOSUMS0 13 0 -0.3765 -0.4820 0.1228 0.67 0.85
BLOSUM50 13 1 -0.0091 -2.4604 0.5616 0.93 1.99
BLOSUM50 13 2 -0.0054 -2.8536 0.6637 0.97 2.38
BLOSUM50 14 0 -0.2112 -0.8600 0.1648 0.64 0.86
BLOSUM50 14 1 -0.0072 -2.6488 0.6068 0.93 2.12
BLOSUM50 14 2 -0.0044 -2.9820 0.6883 0.95 2.41
BLOSUM50 15 0 -0.1254 -1.1646 0.2059 0.63 0.87
BLOSUM50 15 1 -0.0059 -2.8085 0.6434 0.93 2.22
BLOSUM50 15 2 -0.0039 -3.0800 0.7046 0.92 2.39
BLOSUM50 16 0 -0.0759 -1.4251 0.2469 0.61 0.89
BLOSUM50 16 1 -0.0049 -2.9394 0.6712 0.92 2.28
BLOSUMS0 16 2 -0.0035 -3.1533 0.7147 0.90 2.35
BLOSUMG62 8 0 -5.8333 1.8062 0.0118 0.57 0.64
BLOSUMG62 8 1 -0.0145 -2.4431 0.5014 0.72 1.78
BLOSUMG62 8 2 -0.0068 -2.9841 0.6421 0.78 1.84
BLOSUMG62 9 0 -0.7026 -0.0896 0.0693 0.53 0.64
BLOSUMG62 9 1 -0.0088 -2.8010 0.5882 0.74 1.80
BLOSUMG62 9 2 -0.0048 -3.2379 0.6917 0.75 1.73
BLOSUM62 10 0 -0.2692 -0.8072 0.1264 0.50 0.66
BLOSUM62 10 1 -0.0060 -3.0867 0.6532 0.73 1.75
BLOSUM62 10 2 -0.0040 -3.4028 0.7152 0.70 1.62
BLOSUM62 11 0 -0.1277 -1.2890 0.1827 0.47 0.68
BLOSUM62 11 1 -0.0047 -3.2929 0.6924 0.71 1.66
BLOSUM62 11 2 -0.0038 -3.5051 0.7227 0.65 1.53
BLOSUM62 12 0 -0.0652 -1.6663 0.2388 0.46 0.72
BLOSUM62 12 1 -0.0041 -3.4307 0.7112 0.67 1.57
BLOSUM62 12 2 -0.0038 -3.5679 0.7224 0.61 1.46

Continued on next page ‘
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1

2

3

4

5

? Table 1 — continued from previous page

g Scoring matrix g, g, log-Normal parameters P-value
10 i3 L o 1075 1078
11 BLOSUM62 13 0 -0.0344 -1.9789 02937 0.45 0.67
ig BLOSUM62 13 1 -0.0040 -3.5183 0.7173 0.63 1.43
14 BLOSUM62 13 2 -0.0039 -3.6082 0.7193 0.58 1.85
15 BLOSUM62 14 0 -0.0185 -2.2455 0.3464 0.45 0.65
16 BLOSUM62 14 1 -0.0039 -3.5756 0.7179 0.59 1.64
g BLOSUM62 14 2 -0.0040 -3.6340 0.7155 0.55 1.90
19 PAM120 10 0 -0.5370 -0.3508 0.0787 0.45 0.56
0 PAM120 10 1 -0.0079 -3.4940 0.6835 0.55 1.40
21 PAM120 10 2 -0.0084 -3.6531 0.6665 0.44 1.08
22 PAM120 11 0 -0.2311 -1.0030 0.1324 0.41 0.54
” PAM120 11 1 -0.0081 -3.6074 0.6749 047 1.19
5 PAM120 11 2 -0.0089 -3.6860 0.6509 0.39 0.96
26 PAM120 12 0 -0.1182 -1.4777 0.1869 0.39 0.53
27 PAM120 12 1 -0.0085 -3.6638 0.6605 0.42 1.04
gg PAMI120 12 2 -0.0092 -3.7035 0.6387 0.37 0.88
30 PAM120 13 0 -0.0664 -1.8605 0.2411 0.37 0.54
31 PAM120 13 1 -0.0089 -3.6928 0.6472 0.38 0.93
32 PAM120 13 2 -0.0095 -3.7136 0.6297 0.35 0.83
gj PAM120 14 0 -0.0397 -2.1867 0.2948 0.36 0.55
3c PAM120 14 1 -0.0093 -3.7080 0.6366 0.36 0.86
36 PAM120 14 2 -0.0097 -3.7203 0.6236 0.34 0.79
37 PAM120 15 0 -0.0254 -2.4691 0.3467 0.35 0.57
gg PAM120 15 1 -0.0095 -3.7170 0.6287 0.35 0.82
20 PAM120 15 2 -0.0099 -3.7244 0.6191 0.33 0.77
M PAM120 16 0 -0.0174 -2.7159 0.3962 0.34 0.59
42 PAM120 16 1 -0.0097 -3.7231 0.6231 0.33 0.79
ji PAM120 16 2 -0.0100 -3.7273 0.6159 0.32 0.75
P PAM?250 12 0 -1.7981 0.7209 0.0422 0.66 0.81
46 PAM250 12 1 -0.0410 -1.8517 0.3948 0.80 1.40
47 PAM250 12 2 -0.0177 -2.2641 0.5033 0.87 1.73
48 PAM250 13 0 -0.8419 0.0705 0.0750 0.64 0.79
B PAM250 13 1 -0.0263 -2.0695 0.4458 0.82 1.51
51 PAM250 13 2 -0.0133 -2.4196 0.5404 0.88 1.83
52 PAM250 14 0 -04822 -0.3717 0.1085 0.61 0.79
53 PAM250 14 1 -0.0183 -2.2496 0.4895 0.83 1.63
gg PAM250 14 2 -0.0106 -2.5488 0.5708 0.88 1.91
56 PAM250 15 0 -0.3002 -0.7203 0.1432 0.60 0.79
57 ‘ Continued on next page ‘
58

59

60
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. . log-Normal parameters P-value
Scoring matrix g, ge

i3 L o 1075 1078
PAM250 15 1 -0.0137 -2.3995 0.5264 0.84 1.73
PAM250 15 2 -0.0087 -2.6550 0.5949 0.88 1.97
PAM250 16 0 -0.1960 -1.0105 0.1788 0.58 0.80
PAM250 16 1 -0.0109 -2.5245 0.5568 0.85 1.81
PAM250 16 2 -0.0073 -2.7423 0.6139 0.88 2.01
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