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Modeling and rendering realistic ocean scenes have been thoroughly investigated for many years. Its appearance has been studied
and it is possible to find very detailed simulations where a high degree of realism is achieved. Nevertheless, among the solutions
to ocean rendering, real-time management of the huge heightmaps that are necessary for rendering an ocean scene is still not
solved.We propose a new technique for simulating the ocean surface on GPU.This technique is capable of offering view-dependent
approximations of the mesh while maintaining coherence among the extracted approximations. This feature is very important
as most solutions previously presented must retessellate from the initial mesh. Our solution is able to use the latest extracted
approximation when refining or coarsening the mesh.

1. Introduction

Describing ocean waves is a very complicated challenge, as
oceans are composed of different elements that form a very
complex system. It is possible to find very complex mathe-
matical models that simulate the behaviour of ocean waves,
some of them are based on the direct observation of the sea
[1, 2]. Nevertheless, the game industry usually prefers to lose
physical realism due to the high demand for real-time sim-
ulation. Thus, real-time applications usually used simplified
models that still offer physical realism but guarantee high
frame rates.

Whitted was among the firsts to attempt the simulation of
water [3]. In his simulation, the ripples were created by bump
mapping the surface, perturbing the surface normal accord-
ing to a single sinusoidal function, and ray tracing was used
to obtain reflections.

The approaches to simulate oceans that were based on
bump mapping techniques [3, 4] cannot interact realis-
tically with other surfaces or cast shadows on them. To
avoid these shortcomings, Max [5] used a heightfield to

render wave surfaces for his film “Carla’s Island.” This
approach is still followed and, therefore, oceans are usu-
ally simulated as unbounded water surfaces that are rep-
resented in the gaming environment as heightmaps. Other
complex phenomena, such as foam, spray, or splashes,
are usually modeled and rendered using particle systems
[6–8]. In these simulations, the height of each vertex
is modified in real time to offer the sensation of wave
movement. It can be seen as the use of a displacement
map to alter the position of each vertex [9]. Figure 1
depicts a snapshot of a mesh simulating ocean movement
in a given instant of the animation.

Managing the geometry of the mesh representing the
ocean still poses a limitation in simulating ocean. Kryachko
[10] proposed the use of a static radial grid instead of a
squared one. On that account, by centring this radial grid at
the camera position we can have more points in those areas
that are closer to the viewer. Although this solution is
capable of offering more details in the areas closer to the
viewer, it poses severe restrictions and does not assure a
high performance. A more general technique that several
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Figure 1: An ocean can be seen as an animated heightmap.

authors propose is the tessellation of a squared heightmap.
The tessellation process is capable of dividing a polygon in a
set of smaller ones, thus enabling the application to alter the
granularity of the initial mesh.

In this paper we propose a new ocean simulation using a
GPU-based tessellation process. The main characteristics of
the proposed ocean model are as follows.

(i) The ocean surface is refined on the GPU by means of
a new view-dependent tessellation algorithm.

(ii) Geometry shader capabilities are exploited to reuse
extracted approximations.

(iii) Wave movements are simulated with Perlin noise [4]
on GPU.

The basic ideas of the solution presented in this paper
were initially presented in a two-paged portfolio paper [11].
Due to the space restrictions, in that paper, the authorsmerely
proposed the tessellation technique for ocean rendering.
Thus, in the paper that we are now presenting, we thoroughly
describe the tessellating and animating technique and we
offer as well a complete study of the performance of our
proposal.

This paper has the following structure. Section 2 presents
related work for oceans simulation and also for tessellation
techniques. Section 3 describes in detail the tessellation tech-
nique that we present. Section 4 presents the oceans simula-
tion process, which combines the tessellation technique with
other processes to offer a realistic impression on GPU.
Section 5 presents the results obtained from a comprehensive
study of the presented technique. Lastly, Section 6 concludes
the developed techniques and offers future lines of work.

2. Related Work

In this state-of-the-art, we will firstly present the techniques
that have been developed to offer a realistic visualization of
the mesh simulating the ocean.We do not review here papers
dedicated to running water or rivers such as [12], or the
interaction of objects with ocean surfaces [13]. Nevertheless,
a more general state-of-the-art report can be found in [14].
Later, we will describe the tessellation techniques that have
been developed for ocean scenes.

2.1. Ocean Simulation. In this section we present a taxonomy
of ocean simulation frameworks by following the type of

animation of the oceans, as this is a key aspect for offering
a realistic visualization. Following this classification we can
distinguish between five sets of models for modeling ocean
surfaces.

2.1.1. Based on Parametrical Models. Parametric approaches
represent the ocean surface as a sum of periodic functions
which describe waves as a motion of particles. The physicist
Gerstner presented the first theory in 1802 to approximate the
solution to fluid dynamics by describing the surface in terms
of motion of individual points on the surface [15]. Gerstner
showed that the motion of each water particle is a circle of
radius 𝑟 around a fixed point, giving a wave profile that can be
described by a mathematical function called trochoid.

One of the first descriptions of water waves in computer
graphics was presented by Fournier and Reeves [16] using
Gerstner waves. In the same year, Peachey proposed the
generation of the heightfield by computing the superposition
of several long-crested waveforms [17]. This author used par-
ticle systems to model the foam produced by wave breaking
or colliding with obstacles. Later, [18] improved the wave
simulation offered by the work of Fournier and Reeves. Tsó
and Barsky [19] proposed a more precise way to solve the
propagation (wave tracing) by approximating the resulting
ocean surface with a Beta-spline surface, which the authors
claimed to offer advantages over a polygonal representation.
More recently, Cieutat et al. [20] extended the works based
on fast Fourier transforms (FFTs) to manage correctly shore
simulations. To sumup,we could say that all these approaches
are very efficient although the scenes generated are not very
realistic. We must note that noise is generally used in all the
previous models to avoid visual regularity.

2.1.2. Based on Physical Models. TheNavier-Stokes equations
offer a set of partial derivative equations which describe fluid
movements. Kass and Miller [12] used simplified numerical
methods to solve the Navier-Stokes equations for animation
ofwaterwaves. Stam andFiume [21] adopted FFTs to simulate
the waves. More recently, Thürey et al. [22] proposed a sim-
plification of the Navier-Stokes equations to offer real-time
simulation of shallowwater under some restrictions. Physical
simulation approaches have a good quality of waves, but
the implementation of these theories is usually difficult and
simulating a large scene entails long computational times.

2.1.3. Based on Spectral Models. This family of approaches,
also known as statistical methods, is based on oceanographic
measures, synthesized by spectral analysis. Spectral analysis
assumes that the sea state can be considered as a combination
or superposition of a large number of regular sinusoidal wave
components with different frequencies, heights, and direc-
tions. As an example of these oceanographic measures, in
1964 Pierson and Moskowitz [23] developed a model for the
spectrum of fully developed wind seas on 460 ship-recorded
waves.

Mathematically, spectral analysis is based on the Fourier
transform of the sea surface. Hence, these methods represent
the ocean surface as a heightfield computed from a sum of
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sinusoids of various amplitudes and phases; small-scalewaves
and ripples aremodeled directly by adding noise perturbation
[24, 25]. Spectral solutions were firstly introduced by Mastin
et al. [1]. The basic idea is to produce a heightfield having
the same spectrum as the ocean surface. The main benefits
of this approach were that many different waves are simul-
taneously simulated, with visually pleasing results. Premoze
andAshikhmin [26] combined physicalmodels and oceanog-
raphy models, but the obtained solution was only adequate
for calm sea.

Tessendorf [25] showed that dispersive propagation can
be managed and that the resulting field can be modified
to yield trochoid waves. More recently, Mitchell from ATI
[27] introduced a Fourier-basedGPU-synthesized height and
normal maps. From a different perspective, Gonzato et al. [2]
proposed a semiautomatic method to reconstruct the surface
of the ocean from a video containing a real ocean scene.
Finally, Nielsen et al. [28] proposed recently a method to
allow artists to quickly sketch the waves appearance and
automatically approximate and animate them.

Summarizing, these approaches ensure high realism, but
they are not easily controllable. Moreover, since the mathe-
matic model and the related computations are very complex,
these methods are more adequate for animation than for
real-time rendering.

2.1.4. Based on Time-Varying Fractals. Fractals can be an
adequate solution for simulating open sea, although they
would not be capable of simulating how waves break on the
seashore. A very general procedural technique for the sim-
ulation of water surfaces by means of stochastic fractals was
proposed in [29]. Perlin [4] used a noise synthesis approach
to simulate the appearance of the ocean surface seen from
distance. It could be considered as a particular kind of
stochastic fractal that is generated as an addition of several
copies of a continuous noise function. Johanson [30] adopted
this approach to simulate a small ocean surface. In paper
[31], the authors showed that vertex shaders can be exploited
to interactively generate nonstationary stochastic fractals to
simulate the dynamics of water. Later, in Yang et al. [32],
the authors used Perlin noise to generate the heightfield of
an unbounded ocean surface. Although it has been shown
that this particular kind of simulation is only well suited for
a limited kind of wave phenomena, its ease, efficiency in
implementation, and the possibility to use this process to sim-
ulate other phenomena make it a very appealing alternative.

2.1.5. Hybrid Approaches. To overcome the problems of each
family of solutions, hybrid proceduralmodels were proposed.
Thon and Ghazanfarpour [33] used a hybrid approach where
the spectrum synthesized using a spectral approach was used
to control the trochoids. This was only applicable in the
calm sea case. Fréchot [34] presented a new hybrid approach
where the effort was focused on wave animation and not in
other effects like Fresnel reflectivity or foam.The authors used
classical oceanographic parametric wave spectra to fit real-
world measurements, applying Gerstner parametric equa-
tions and Fourier transform. More recently, Darles et al. [35]

integrated a wave model defined as an amount of trochoids
waves into a unique data structure. This data structure
allowed them to consider spatial and temporal coherence as
well as reducing aliasing effects.

2.2. Tessellation Techniques for Ocean Rendering. Terrain
tessellation has been researched for a long time (see [36] for a
complete survey), and many of the developed techniques can
be applied to ocean simulation. Nevertheless, there have been
specific attempts to generate real-time ocean surfaces on
graphics hardware. Some authors have developed specific
solutions to generate real-time ocean surfaces on graphics
hardware. Schneider and Westermann [31] entirely per-
formed visual simulation on the GPU at interactive rates.
They used OpenGL evaluators and NURB surfaces to tessel-
late the geometry on GPU. Moreover, they also used vertex
shaders to generate the noise function that animates water
simulation. Presenting a simple LODmanagement, the work
described in [37] offered a solution where the wave geometry
is represented as a dynamic displacement map for close areas
(near patch) and a dynamic bump map for farther areas
(far patch). The nearest patch could change its resolution
according to the height of the viewpoint, while the far patch is
precalculated and relocated during simulation.They used the
spectral method of Tessendorf [25] to animate the ocean
surface. Later, Cieutat et al. [20] proposed a view-dependent
level-of-detail solutionwhere cracks are avoided thanks to the
use of a textured plan placed under the sea surface.

Recently, adaptive schemes have successfully been used
for efficient modeling, rendering, or animation of complex
objects.The idea is to minimize the sampling of the geometry
according to criteria such as the distance from the viewpoint.
Since the adaptive sampling is done on the fly for each
frame, this fits well with procedural surface displacement,
which can easily be animated. Hinsinger et al. [38] relied on
an adaptive sampling of the ocean surface, dictated by the
camera position. Moreover, their animation model was also
adaptive, since they filtered thewaves that cannot be observed
from the current viewpoint. The tessellation and waveform
superposition were performed on the CPU and uploaded
to the GPU each frame, which was the bottleneck of their
approach. Later, Johanson [30] presented the projected grid
concept, where the vertices of a grid were even spaced in
postperspective camera space. The authors described how to
develop a fully GPU implementation, although it was not
performed.

In paper [32], the authors offered adaptive GPU-based
ocean surface tessellation by using a previous adaptive
scheme for terrain rendering. Their tessellation scheme
avoided the loading of vertex attributes from CPU to GPU
at each frame. Their main limitation was the fact that their
tessellation scheme used a restricted quad-tree where two
neighbouring areas with different resolutions could only vary
to a limited extent. Also, in [39], authors presented an ocean
simulation which was adaptively tessellated and driven by
both per-vertex waves and per-pixel waves, using the Gerst-
ner wave model for animating the ocean due to its simplicity
and nonperiodicity. The tessellation occurred in eye space,
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Table 1: Characterization of ocean models.

Authors GPU usage Tessellation Animation technique Reflection/refraction Others

Tessendorf [25] Vertex, pixel No Spectral Yes/yes Fresnel, caustics,
Godrays

Schneider and
Westermann [31] Vertex Yes Fractals (Perlin) Yes/yes Fresnel

Hinsinger et al. [38] Vertex buffers Yes Parametrical
(Gerstner) Yes/no Avoid unnecessary

animation, fresnel
Johanson [30] Vertex, pixel Yes Fractals (Perlin) Yes/yes Fresnel, sunlight

Mitchell [27] Vertex, pixel No Spectral (FFT) Yes/no Interactions with
objects, wedge

Demers [39] Vertex, pixel Yes Parametrical
(Gerstner) Yes/no Fresnel, foam, physics

Yang et al. [32] Vertex, pixel Yes Fractal (Perlin) No/no Shallow water

Chiu and Chang [40] Vertex, pixel — Spectral (Tessendorf) Yes/yes
Fresnel, spray dynamics,
depth-dependent water

color
Fréchot [34] — No Hybrid No/no
Hu et al. [37] Vertex, pixel Yes Spectral (Tessendorf) Yes/yes Fresnel
Darles et al. [35] — Yes Hybrid (Tessendorf) Yes/yes Fresnel, glare, foam

Thürey et al. [22] — No Physical
(Navier-Stokes) Yes/no Shallow water, foam,

interactions with objects,

Bruneton et al. [48] Vertex, pixel
geometry No Parametrical

(Gerstner) Yes/yes BRDF, fresnel, wedge

Our proposal Vertex, pixel
geometry Yes Fractals (Perlin) Yes/no Fresnel

mapping a regular grid to the intersection of the ocean plane
and the camera viewport.This allowed them to only simulate
and render geometry that is seen and tessellates more finely
in the foreground than in the background. Lastly, Chiu and
Chang [40] offered an adaptive GPU-based ocean surface
tessellation, where the refinement took place in screen space.
Moreover, they also provided optical effects for shallow water
and spray dynamics by means of particle systems.

2.3. Characterization of Ocean Models. Table 1 presents a
summary of a comparison of the most recent methods from
those that have been presented in this section. Among the
columns that this Table presents, it is worth mentioning that
the column labeled as Others includes different additional
features that can be considered in the different models.These
additional featuresmainly refer to physical properties like the
Kelvin wedge, which refers to the specific pattern of waves
produced by moving ships on open water [41] or optical
effects like the bidirectional reflectance distribution function
(BRDF), which considers how light is reflected at a surface
depending on its properties and on the camera position.

3. Our GPU-Based Tessellation Scheme

As we have mentioned in the previous section, tessellation
is a widely used technique in ocean simulation. Adaptive
approaches are much more interesting, as they can refine
those areas that need more details, while those areas which
are less interesting can be coarsened. Nevertheless, there is

Figure 2: Example of crack after a tessellation step. Correct
tessellation to avoid crack is also shown.

no ocean tessellation technique which considers the use of
the latest features of graphics hardware. It is our objective to
exploit these features in order to improve the performance of
previous adaptive tessellation techniques.

Many of the tessellation algorithms presented in the state-
of-the-art section modify the details of the triangles follow-
ing some criteria applied to the triangle. The calculations
involved could consider the distance of the triangle to the
camera or its position on screen. Nevertheless, applying the
level-of-detail criterion in a triangle basis implies a limitation
for adaptive solutions. As an example, Figure 2 presents a
tessellation step where the bottom-left triangle has to be
refined, while its neighbour does not have to. Later, if we
apply some modifications to the position of the vertices we
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Figure 3: Tessellation patterns from Ulrich [43], where the red colour indicates the edges that need refinement. Patterns surrounded by a
red-dotted line include T-vertices, while those surrounded by a green-dotted line offer tessellations without T-vertices [44].

can obtain a noticeable crack, a hole in the mesh, as shown in
the top-right image. These cracks are due to the introduction
of T-vertices in the input mesh. T-vertices appear commonly
in tessellation algorithms when a vertex is positioned on the
edge of another triangle [42], resulting in two edge junctions
making a T-shape. An example of this problem can be seen in
Figure 2, where the vertex added in the tessellation step
represents a T-vertex.

In order to avoid crack problems, some authors apply
the refinement criterion only to the edges of the triangle.
Therefore, if an edge needed refinement, then both triangles
sharing the edge would act accordingly. In this case, following
the example presented before in Figure 2, both adjacent trian-
gles would perform the appropriate tessellation tasks to create
new triangles with the same new vertices, assuring that no
crack is generated (see the bottom-left image in Figure 2).

3.1. Tessellation Patterns. Guided by the idea of developing an
edge-based tessellation algorithm that avoids cracks, Ulrich
described some edge-based patterns for tessellating triangles
[43]. Figure 3 presents, on the left side, an initial rectangular
triangle where its hypotenuse and catheti (more commonly
known as legs) are depicted anticlockwise as 𝐻, 𝐶

1
, and 𝐶

2
.

Next, the seven tessellation patterns introduced by Ulrich are
presented (labeled from 1 to 7), where the edges of the original

triangle that need refinement are in red. As we stated before,
the work that we are proposing is based on using a refinement
criterion based on the edges and not on the complete triangle.
As a result, each pattern shows the tessellation that would be
necessary depending on the combination of edges that need
refinement. For example, in the bottom-left case the
hypotenuse needed refinement and a new vertex has been
added to create two new triangles. The main problem with
Ulrich’s proposal was that some of his patterns were based on
the use of T-vertices (those surrounded by a red-dotted line in
Figure 3). To avoid cracks, Ulrich proposed propagating the
tessellation to neighboring triangles. Nevertheless, this prop-
agation is not necessarily limited to a local neighborhood and,
thus, his scheme is difficult to parallelize on the GPU.

In order to avoid this limitation, the work presented in
[44] modified the previous patterns that included T-vertices.
In Figure 3 the three modifications for patterns 2, 4, and 6 are
shown surrounded by a green-dotted line, where it can be
seen how no T-vertex is added.

In our case, we will use the patterns presented in [44], as
they can assure that the continuity of the mesh is maintained
without resorting to complex neighborhood analysis. These
patterns produce more elongated triangles if compared with
Ulrich’s patterns, which could result inmore complex lighting
or texturizing. Nevertheless, our algorithm will calculate
these values from the vertices of its parent triangle.
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if T.NeedsRefinement() then
𝑡𝑒𝑠𝑠𝑒𝑙𝑙𝑎𝑡𝑖𝑜𝑛𝑇𝑦𝑝𝑒 = T.calculateRefinementType()
T.RefineTriangle(𝑡𝑒𝑠𝑠𝑒𝑙𝑙𝑎𝑡𝑖𝑜𝑛𝑇𝑦𝑝𝑒) //Process Patterns

else if T.NeedsCoarsement() then
T.CoarsenTriangle() //Restore original triangle and discard the rest

else
T.Emit() //Triangle remains unaffected

end if

Algorithm 1: Pseudocode of the main geometry shader.

3.2. Our Proposed Algorithm. As we are processing the mesh
in a geometry shader, each triangle is processed separately.
For this reason, we have developed a technique which can
alter the geometry of two triangles that share an edge without
any communication among them. With this approach we
will be able to exploit the parallelism of graphics hardware.
Algorithm 1 offers some pseudocode of the main tessellation
process which is performed in the geometry shader unit.

3.2.1. Adding Details to the Mesh. When refining the mesh,
the algorithm checks the edges of each triangle to see whether
they need refinement. Depending on the edges that need
more detail, the algorithm selects a pattern for tessellating the
input triangle (see Figure 3). Each of these generated triangles
stores the spatial coordinates, the texture information, and
any other information needed for rendering. Moreover, it
is necessary to output for each new triangle two pieces of
information that enable our solution a number that uniquely
identifies the triangle and a number that codes the patterns
applied.

The identification value 𝐼 and the patterns information
𝑃 of the triangles generated at each tessellation step can be
calculated using (1) and (2), respectively, where

𝐼 = 𝐼 ∗ 𝛿 + 𝛾 + 𝑐, (1)

𝑃 = 𝑃 ∗ 𝛼 + 𝑝 (2)

(i) 𝛿 refers to the maximum number of triangles that can
be output from all the tessellation patterns;

(ii) 𝛾 is the initial number of triangles of the ocean mesh;
(iii) 𝑐 is a value in the range [0, 𝛿−1]which enables the tes-

sellation algorithm to assign a different identification
value to each triangle belonging to the same parent.
Thus, when tessellating a triangle, each child will be
assigned a different 𝑐 value and, therefore, will have a
different 𝐼 value;

(iv) 𝛼 refers to the number of different patterns available;
(v) 𝑝 is a value in the range [1, 𝛼], as it indicates the

pattern that was applied when tessellating the current
triangle.

As we can see, each 𝐼 value will be different for each
triangle, while all the triangles belonging to the same parent

will have the same 𝑃 value.These two values are the elements
that enable our algorithm to recover less detailed approx-
imations without having to start again from the coarsest
approximation. It is important to underline that this is one
of the main features of the method that we propose.

In Figure 4 we present an example of this process. In this
example, the 𝛿 value is equal to 4 as this is the number of
triangles that are generated when all the edges need refine-
ment (see pattern number 1 in Figure 3), while 𝛼 is equal to 7
as this is the number of patterns available (see Figure 3). The
𝛾 value is equal to 2, as the initial mesh of our example (see
Figure 4(a)) is composed of two triangles. Note that, initially,
the 𝐼 values of the triangles are given sequentially (starting
from 0) and all the 𝑃 values are equal to 0. The dotted line in
blue of these figures divides the mesh in two areas, so that the
area below the line is supposed to need refining.

Following on with this example, each of the two initial
triangles go through the extraction process of the algorithm
that we are presenting. In the specific case of the triangle
number 1, the algorithm detects that none of its edges needs
refinement and, as a consequence, no change will be made.
Nevertheless, the algorithm detects that triangle with I 0
needs refinement because the center points of the two legs of
the triangle are below the dotted line. Then, we choose from
the patterns the one that reflects this combination and we
apply it, so that we obtain the three new triangles shown in
Figure 4(b). It can be seen how the 𝐼 values of the new trian-
gles are calculated following the formula (1), assuring that no
repeated 𝐼 is given. Followingwith the refinement process, the
next tessellation step shows that different patterns have been
applied to triangles 2, 3, and 4, as they represent different
types of tessellation.

Figure 5 presents the tree of triangles that can be obtained
in the example that we are presenting. For each node we
present, on the left and in blue color, the 𝐼 of the triangles and
on the right and in red color the𝑃 value of each triangle. Both
sets of values are calculated following the formulas presented
in (1) and (2). It is important to mention that the number
of children of each node will depend on the pattern applied,
as they output a different number of triangles. By using the
previously proposed tessellation patterns in Figure 3, we can
refine one triangle and obtain 2, 3, or 4 new triangles.

3.2.2. Removing Detail from the Mesh. Our proposed tessel-
lation algorithm has been devised to offer a very efficient
coarsening of the surface mesh, as we can reuse the latest



The Scientific World Journal 7

0

1

(a) Initial mesh

3

2

1

4

(b) First tessellation step

11

1

10

14

15

12 13

16

17

18

19

(c) Second tessellation step

Figure 4: Tessellation example with the 𝐼 value of each triangle.

2 3

10 11 14 15

4

12 13 16 17 18 19

0

6

0

6 6

44 444343434343 43 4343

Figure 5: Tessellation tree. Each node presents the 𝐼 and the 𝑃 values of each triangle.

approximation without having to start from the initial mesh.
Thus, following with the previous example, if we wanted to
reduce the detail and return to the state shown in Figure 4(b),
each of the triangles located under the dotted line would exe-
cute the same coarsening process. The basic idea is that, for
all the triangles belonging to the same parent, only one should
be kept and its coordinates should be modified to recover the
parent.

The 𝐼 and 𝑃 values of the mesh enable us to return to the
previous tessellation status by means of the following equa-
tions:

𝑐 = mod ((𝐼 − 𝛾) , 𝛿) , (3)

𝑝 = mod (𝑝, 𝛼) , (4)

𝐼 =

𝐼 − 𝛾

𝛿

, (5)

𝑃 =

𝑃

𝛼

. (6)

We must remember that, in the refining process, each
triangle generated from the same parent had a different 𝐼
value thanks to the 𝑐 value. For coarsening the triangles, this
valuewill be useful to differentiate between the child triangles
and decide which one should be kept.More precisely, in those
cases where this value is equal to 0, the algorithm assumes
that this triangle is in charge of recovering the geometry of
the parent triangle.

Oncewe knowwhich triangle is responsible for becoming
the parent triangle, we must know which tessellation pattern
was used to generate it. In this case, the 𝑝 value can be
calculated with (4) so that we can know which pattern was
applied and how to modify the coordinates of the vertices.

At this point, the only task that remains is to calculate the
new 𝐼 and 𝑃 values using the appropriate equations. In this
sense, the triangle that has been chosen to recover the parent
will have its coordinates and the same set of 𝐼 and 𝑃 values.
In this way, we could continue coarsening the mesh without
obtaining any crack or artifact as our algorithm can process
the triangles in an independent manner.

Following on with the example presented in Figure 4, if
we wanted to coarsen the geometry each triangle would go
through a coarsening process. Let us suppose that we are
processing the triangle with I 10. If we calculate its 𝑐 value,
we obtain a 0 value, indicating that triangle with 𝐼 equal to 10
is the one that must become the parent triangle, whose 𝐼 can
be retrieved with (4). In this case, the 𝑝 would indicate that
pattern 1 was applied and we would calculate the spatial coor-
dinates of the parent triangle accordingly. Nevertheless, as
triangles 11, 12, and 13 have a 𝑐 different from 0, they would
be discarded.

3.3. Camera Movement. In the previous section we have
described the tessellation process but we have considered that
the conditions used to decide which triangles to tessellate are
notmodified. In this way, in the example presented above (see
Figure 4), we have considered that the location of the plane
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Figure 6: Example of retessellation when the refinement criterion is changed (old criterion in red and the new in blue).

remains unaltered. Nevertheless, in a real case, the conditions
of the criterion that guides the tessellation algorithm are
modified continuously as they are usually related to the
camera position.

Figure 6 is based on the second tessellation step shown in
Figure 4(c). It presents a case where the position of the dotted
line is modified, altering the criterion used to decide which
triangles we have to refine. In these cases, a slightly different
process is applied to correct the appropriate triangles. This
algorithm checks each triangle to see whether, with the
new criterion, their parent triangle would need a different
tessellation. For example, triangles with 𝐼 number 1 or num-
ber 10 would not require any change as their parent would
experience the same tessellation (or refinement) with both
positions of the dotted line. Nevertheless, the parent of the
triangle with 𝐼 value equal to 18 had two legs below the dotted
line and now both of them are above this line. In this case,
the algorithm would coarse the triangle and refine it again.
Similarly, triangle 19 (sibling of triangle 18) would also detect
that its parent would have been affected by the criterion
change.

Following with triangles 18 and 19, we would coarse them
eliminating one of them, while the other becomes triangle
4 again. Then, we apply the adequate pattern to refine again
the triangle. Similarly, triangles 14, 15, 16, and 17 are affected
and three of them are eliminated, while the remaining one
becomes triangle 3 and is refined again, creating new triangles
with 𝐼 values equal to 14 and 15.These coarsening and refining
processes are performed following the methods presented
above.

It is important to underline that both processes (coarsen-
ing and refining again) are executed at the same time, so that
we can coarsen the triangle in more than one level of detail
and refine it again. The 𝐼 values have been calculated so that

we can know at any point if the triangle we are processing
was useful in any of the previous levels of detail. Moreover,
although this process seems tedious, only a small portion of
the triangles in the mesh will go through this process.

4. Ocean Simulation

The previous technique is capable of modifying the details of
the mesh in real time to offer a fast rendering of the ocean.
It is important to mention that the geometry obtained in this
pass will be output and stored in GPUmemory, so that it can
be used in the following frames for further tessellations or for
maintaining the current tessellation if necessary.

Nevertheless, in addition to the geometrymanagement of
the mesh simulating the ocean, we must perform other tasks
in order to obtain a visually satisfying ocean simulation. In
this section we will briefly describe the different techniques
used to enhance the realism of the simulation.

4.1. Animating Ocean Waves. One of the first features that
we must consider is the algorithm applied to simulate the
ocean waves. In the state-of-the-art we have presented many
techniques that have been developed tomodel ocean surfaces.
Among them, we have selected the Perlin noise [4], as it has
been used in many applications and its implementation in
current hardware is available [45, 46]. Moreover, Perlin noise
is faster than other methods and it is easily ported to GPU
shaders, in contrast to other algorithms like the FFT ones
which are slower due to the complex calculation process, as
previous informal studies showed [47]. In addition, coding
the FFT-based animation on the GPU is also quite difficult, as
it is necessary to perform several GPU passes to update the
texture containing the heightfield at each frame [27, 48].
Other authors proposed precalculating several displacement
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(a) First tessellation step (598 triangles) (b) Second tessellation step (1,264 triangles)

(c) Third tessellation step (2,546 triangles) (d) Fourth tessellation step (5,002 triangles)

(e) Fourth tessellation step with surface animation

Figure 7: Sample tessellation guided by a simulated frustum (in red).

maps to combine them [10] or select the most suitable one
according to the animation time [37]. Nevertheless, in the
results section, we have performed a comparison of both
animation schemes to analyze their performance within our
ocean simulation framework.

In our implementation, the shader in charge of updating
the Perlin-based animation of the ocean will calculate the
appropriate height according to the position of the vertex
within the mesh and to the time of the animation. For
enabling the Perlin noise calculation on GPU, we initially
upload a texture containing some noise information that is
necessary for the real-time noise update.

4.2. Rendering Enhancements. In addition to animating the
waves, we must also consider other interactions of the ocean,
such as refraction, reflection, and foam. Reflection can be
obtained by applying environmental mapping on GPU. This
technique consists in using 3D texture coordinates to access
a cubemap storing the precalculated reflex. The Fresnel term
is commonly computed by calculating, for each pixel, the dot
product between the normal and the eye vector. This value
is used to access a one-dimensional texture which stores
different reflections for different fresnel values [49]. In the
simulation that we prepared, we only considered reflection
and fresnel factor, although we could apply any of the tech-
niques that are available in the literature. These two effects
are simple to code and sufficient to offer a realistic impression.

5. Results

To analyze the performance and visual results of our ocean
simulation, we integrated our approach in an application
which controls the tessellation and the final rendering quality.
This application was programmed with GLSL and C++ on
Windows 7, and the results included in this section have been
obtained with a Pentium D 2.8GHz. with 2GB. RAM and an
nVidia GeForce 8800GT graphics card.

Before describing the results obtained, it is worth noting
that in these tests the distance to the camera has been used
as the criterion to guide the tessellation process, indicating
which areas need more details. Moreover, screenspace error
has been used to limit the tessellation, so that triangles
smaller than an indicated size are not further tessellated.

As an example of how this application works, Figure 7
presents a tessellation example where an initial mesh com-
posed of 256 triangles is refined. In this example, the view
frustum of the user (depicted in red) is also used as a
tessellation criterion.Then, considering both the frustum and
the distance to the viewer, the application decides which areas
of the ocean surface to tessellate. Consequently, in the more
refined meshes that this Figure presents, it is possible to see
how the tessellation is not uniform, as those areas of themesh
which are closer to the observer are more tessellated than
those that are farther. In addition, the last image of this figure
presents themost detailed surface animatedwith Perlin noise,
where only those triangles within the frustum are animated.
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Table 2: Comparison of time (inmilliseconds) required for animat-
ing ocean surfaces with different polygonal complexities with Perlin
noise and a FFT-based solution.

Number of triangles Perlin noise FFT
4,096 2.45 4.89
16,384 3.14 6.45
65,536 4.18 7.22
262,144 5.69 10.23
562,500 13.25 18.65

5.1. Performance Analysis. To test the performance of our
ocean simulation, we present a study of the temporal cost
of the whole system. Nevertheless, we would like to start by
analyzing why we have decided to use Perlin noise to animate
the water surface. In order to test the performance of this
displacement technique, we have compared Perlin noise and
FFT.

Table 2 offers the performance obtainedwith our solution
when animating ocean meshes of different complexities
with both approaches. These results show how the FFT
calculations are costlier, as each frame requires two initial
rendering passes to prepare two textures as well as some
complex calculations when actually adjusting the height of
each vertex of the ocean mesh.

Figure 8 analyzes the performance of our solution when
rendering, animating, and tessellating the surface mesh. In
this test, the polygonal complexity of the mesh is equal to
2
𝑛 triangles, being 𝑛 the tessellation step. From the results
obtained we can conclude that rendering the ocean mesh
is very fast, as although including complex visual effects
we can obtain 140 FPS when visualizing more than 500,000
triangles.Updating the animation of the ocean surface entails,
in themore detailed approximations, increasing the temporal
cost in 70%, while the tessellation represents, on average, an
increment of 60%. We must note that, while animating the
surface is compulsory for maintaining the visual impression,
the application does not require tessellating the surface at
each frame. Moreover, in this test, we have considered a
very large number of triangles that, in a real application, will
not be necessary. We must remember that our tessellation
algorithm is view dependent, so that only those areas of
the mesh that requires detail area are tessellated (as seen in
Figure 7).The reader can find a video showing how the view-
dependent tessellation works depending on the field-of-view.
In addition, the video also includes the animation of the
ocean (see Supplementary video in supplementary material
available online at http://dx.doi.org/10.1155/2014/979418).

5.1.1. Performance Comparison. We consider it interesting
to compare our solution against the two previously existing
ocean simulation frameworks presented by Kryachko [10]
and Bruneton et al. [48]. In order to make a fair comparison,
the different solutions have been modified so that those
features that cannot be compared (e.g., the BRDF calculations
of [48]) have been eliminated. In this sense, the test consists
in animating a scene with a similar amount of triangles and
includes fresnel and some lighting calculations.
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Figure 8: Performance obtained when completely tessellating the
mesh.

Table 3: Comparison of time (in milliseconds) required for visu-
alizing ocean surfaces with similar polygonal complexities using
different solutions.

Solution Number of triangles FPS
Kryachko [10] 293,470 139
Bruneton et al. [48] 226,200 137
Our solution 250,000 225

The results in Table 3 prove how the performance
obtained with our framework is higher. Thus, we can con-
clude that the implementation of the Perlin noise and the
lighting calculations presented above are adequate. Nev-
ertheless, in this test, we have not been able to compare
the tessellation as the other approaches do not consider
geometry management. Finally, it is worth mentioning that
our framework could be easily extended to manage advanced
effects as those presented in [48].

5.2. Ocean Simulation. Finally, Figure 9 presents a snapshot
of the ocean simulation that we have proposed. As we
mentioned before, the system includes reflections and the
fresnel factor to give realism to the scene.

6. Conclusions

Ocean simulation has been addressed by many researchers
to offer realistic visualization, although some of them were
not aimed for real-time animation. In this sense, we have
reviewed many related papers in order to choose the main
features that affect the realism of the surface of the sea,
although only some of them have proposed improvements on
the management of the underlying geometry.

We have presented a method for simulating ocean in real
time. The presented approach is based on the use of a new
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Figure 9: Simulation integrated into the final application.

adaptive tessellation schemewhich exploits coherence among
extracted approximations. Accordingly, by storing some
information, we are capable of reusing the latest extracted
meshwhen refining and coarsening the surface. In this frame-
work, the final simulation includes reflection and considers
the fresnel term to offer realistic approximations, although
our main objective was the development of a new tessellation
scheme.

For future work we are focused on the inclusion of more
effects like refraction or the interaction of objects with the
surface. In this sense, we must perform further research to
combine the use of fractal noise with the interactions of
objects with the ocean.

From a different perspective, it is worth mentioning that
this tessellation algorithm could be also applied to terrain
rendering. In this sense, there have previously been ocean
techniques applied to terrain rendering, like the projected
grid method [30] which was later applied for efficiently visu-
alizing terrain [50]. Moreover, there have also been terrain
solutions applied to ocean rendering, like the ocean method
presented by Yang et al. [32] which was based on a previously
existingGPU-based terrain solution [51]. As a consequence, it
is our interest to analyze the possibilities offered by our GPU-
based tessellation technique to terrain visualization.

Moreover, the latest graphics API from Microsoft
(Direct3D 11) suppose, among other features, the estab-
lishment of tessellation as a compulsory feature in real-time
applications [52]. This feature could be directly used for
view-dependent tessellations of ocean surfaces and, thus,
we believe that this unit will be key in the future. We would
like to test the performance of our approach moving the
tessellation task, now performed in the geometry shader, to
the Tessellation units while maintaining the operations of
culling and discarding geometry in the geometry shaders.
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[34] J. Fréchot, “Realistic simulation of ocean surface using wave
spectra,” in Proceedings of the 1st International Conference on
Computer Graphics Theory and Applications (GRAPP ’06), pp.
76–83, February 2006.

[35] E. Darles, B. Crespin, and D. Ghazanfarpour, “Accelerating and
enhancing rendering of realistic ocean scenes,” in Proceedings of
the 15th International Conference in Central Europe onComputer
Graphics (WSCG ’07), pp. 287–294, 2007.

[36] R. Pajarola and E. Gobbetti, “Survey of semi-regular mul-
tiresolution models for interactive terrain rendering,” Visual
Computer, vol. 23, no. 8, pp. 583–605, 2007.

[37] Y. Hu, L. Velho, X. Tong, B. Guo, and H. Shum, “Realistic, real-
time rendering of ocean waves,” Computer Animation and Vir-
tual Worlds, vol. 17, no. 1, pp. 59–67, 2006.

[38] D. Hinsinger, F. Neyret, and M.-P. Cani, “Interactive animation
of ocean waves,” in Proceedings of the ASM SIGGRAPH Sympo-
sium on Computer Animation (SCA ’02), pp. 161–166, July 2002.

[39] J. Demers, “The making of clear sailing,” 2005, http://www
.nzone.com/object/nzone clearsailing makingof1.html.

[40] Y.-F. Chiu and C.-F. Chang, “GPU-based ocean rendering,” in
Proceedings of the IEEE International Conference onMultimedia
and Expo (ICME ’06), pp. 2125–2128, July 2006.

[41] C. E. Aguiar and A. R. Souza, “Google Earth physics,” Physics
Education, vol. 44, no. 6, pp. 624–626, 2009.

[42] J. McConnell, Computer Graphics: Theory Into Practice, Jones
and Bartlett Publishers, 2006.

[43] T. Ulrich, “Continuous LOD terrain meshing using adaptive
quadtrees,”2000,http://www.gamasutra.com/features/20000228/
ulrich 01.htm.

[44] T. Schmiade, Adaptive GPU-based terrain rendering [M.S. the-
sis], Computer Graphics Group, University of Siegen, 2008.

[45] A. Tatarinov, “Perlin fire, nvidia whitepaper,” 2007, http://
developer.download.nvidia.com/whitepapers/2007/SDK10/Per-
linFire.pdf.

[46] W. J. van der Laan, S. Green, and M. Sainz, “Screen space
fluid rendering with curvature flow,” in Proceedings of the ACM
SIGGRAPH Symposium on Interactive 3D Graphics and Games
(I3D ’09), pp. 91–98, March 2009.

[47] S. Aunér, Real-time procedural ocean surface, Final Project,
Linkoping University, 2009.

[48] E. Bruneton, F. Neyret, and N. Holzschuch, “Real-time realistic
ocean lighting using seamless transitions from geometry to
BRDF,” Computer Graphics Forum, vol. 29, no. 2, pp. 487–496,
2010.

[49] A. V. J. R. Isidoro and C. Brennan, “Rendering ocean water,”
in Direct3D ShaderX: Vertex and Pixel Shader Tips and Tricks,
2002.

[50] J. Schneider, T. Boldte, and R. Westermann, “Real-time editing,
synthesis, and rendering of infinite landscapes on GPUs,” in
Vision, Modeling and Visualization 2006, pp. 145–152, 2006.

[51] D. Wagner, “Terrain geomorphing in the vertex shader,” in
ShaderX2: Shader Programming Tips & Tricks With DirectX 9,
Wordware, 2004.

[52] K. Gee, “Direct3D 11 tessellation,” 2008, http://www.microsoft
.com/downloads/details.aspx?FamilyID=2d5bc492-0e5c-4317-
8170-e952dca10d46.



Submit your manuscripts at
http://www.hindawi.com

Computer Games 
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed 
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied 
Computational 
Intelligence and Soft 
Computing

 Advances in 

Artificial 
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Journal of

Computer Networks 
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in 

Multimedia

 International Journal of 

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational 
Intelligence and 
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014


