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Universidad Jaume I de Castellón, 12071 Castellón, Spain
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This paper aimed to address the study of a new family of anomalies, called natural anomalies, defined as a one-parameter convex
linear combination of the true and secondary anomalies, measured from the primary and the secondary focus of the ellipse, and
its use in the study of analytical and numerical solutions of perturbed two-body problem. We take two approaches: first, the study
of the analytical development of the basic quantities of the two-body problem to be used in the analytical theories of the planetary
motion and second, the study of the minimization of the errors in the numerical integration by an appropriate choice of parameters
in our family for each value of the eccentricity. The use of an appropriate value of the parameter can improve the length of the
developments in the analytical theories and reduce the errors in the case of the numerical integration.

1. Introduction

One of the main problems in celestial mechanics is the
study of the motion in the solar system. In this regard, it is
interesting to study the planetary theories and the motion of
an artificial satellite around the Earth.

To construct a planetary theory, we can follow two main
ways: one, the use of a numerical integrator, and two, the use
of analytical methods to integrate the problem [1–4]. This
paper is focused on planetary theories in the second sense.
The analytical and semianalytical planetary theories involve
the management of very long Poisson series developments
[5] using, as temporal variables, the mean longitudes of
the planets. In this sense, the study of a change of the
temporal variable in order to obtain developments that are
more compact than the ones obtained if the mean longitudes
(or mean anomalies) are used [6–9] can be interesting. To
construct an analytical or semianalytical planetary theory,
it is necessary to obtain a set of developments for the two-
body problem, and from that, we can evaluate the inverse
of the distance between the two planets and so to develop

the second member of the differential equations of motion.
Obtaining precise developments of the inverse of the distance
is one of most important problems to construct the analytical
theories.

To study the motion of an artificial satellite, it is more
convenient to use a numerical integration method. An
excellent overview on numerical integrators can be seen in
[10] containing a theory of symplectic and symmetric inte-
grator, including Runge-Kutta (composition, splitting, . . .)
and multistep and specially designed integrators, also their
construction and practical merits are discussed. However,
the history of modern numerical integrators begins long ago.
Adams introduced amultistepmethod to study the perturbed
motion of the couple Jupiter-Saturn, Kutta introduced at
the beginning of the 20th century the well known family
of Runge-Kutta integrators, Bulirsch and Stoer developed
extrapolation methods that were used by the Institute of
Applied Astronomy of St. Petersburg to obtain the minor
planet ephemerides, and so forth.

Numerical integrators are appropriate to study the plan-
etary theories and the satellite motion. In the first case,
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it is very important for the errors of the methods to be
bounded for a very large time span and for this purpose,
symplectic integrators can be adequate. One of the most
important problems in the study of a satellite motion is
the case of very high eccentricities. The main problem with
using the mean anomaly in this case is the non uniformity
on the point distribution on the ellipse due to the second
Kepler law; this, for a constant step size, implies a minor
concentration of points in the perigee and so larger errors
in this region. In this case, it can be convenient to use a
technique known as analytical regularization of step size.
This technique involves a change of the temporal variable
in order to have,for the new variable, a point distribution
containing a major density of points in the orbital regions,
where the velocity is higher. In this context, Sundman [11]
introduces a new temporal variable 𝜏 related to the time 𝑡
through 𝑑𝑡 = 𝐶𝑟𝑑𝜏. Nacozy [12], Janin and Bond [13, 14], and
Velez and Hilinski [15] extend this technique defining a new
one-parameter family of transformations𝛼 called generalized
Sundman transformations:

𝑑𝑡 = 𝑄 (𝑟, 𝛼) 𝑑𝜏
𝛼
, (1)

where𝑄(𝑟, 𝛼) = 𝐶
𝛼
𝑟

𝛼 is the called partition function. Amore
complicated transformation was introduced by Ferrándiz
et al. [16] 𝑄(𝑟) = 𝑟

2/3

(𝑎
0
+ 𝑎
1
𝑟)

−1/2 and Brumberg [17] who
proposed the use of the regularized length of arc:

𝑄 (𝑟) =

1

√2𝐺𝑀

√𝑟

√1 − 𝑟/2𝑎

, (2)

where 𝐺𝑀 is the spaceflight constant of the Earth and 𝑎 the
major semiaxe of the osculating elliptic orbit of the satellite.

In this paper, we follow this technique. In particular, we
propose a new one-parametric family of anomalies, called
natural anomalies, defined by a convex linear combination
Ψ
𝛼
= 𝛼𝑓 + (1 − 𝛼)𝑓

󸀠, where 𝑓 is the true anomaly and 𝑓󸀠 the
polar angle referred to the secondary focus called secondary
true anomaly.

The rest of this article is organized as follows.
In Section 2, we introduce the general background. This

section contains the equations of the perturbed motion in
two ways: first, to study the analytical planetary theories and
second, to use appropriate numerical methods.

In Section 3, the properties of natural family of anomalies
are also described. These properties include the connection
between the quantities 𝑟 and 𝑟

󸀠 with 𝑓

󸀠, the connection
between the natural anomaly Ψ

𝛼
and the eccentric anomaly

𝐸, and the study of the partition function denoted by 𝑄
𝛼
(𝑟)

for this case.
In Section 4, the analytical developments according to

the natural anomaly are studied. This study contains the
developments of 𝐸, sin𝐸, cos𝐸, and 1/𝑟 with respect to the
natural anomaly. So, an appropriate use of them is enough
to obtain the development of the mean anomaly according
to the natural anomaly, that is the Kepler equation. In this
section, we show the length of the analytical development of
the inverse of the distance for the couple Jupiter-Saturn using
several values of the 𝛼.

In Section 5, we obtain the differential equations of
motion using an arbitrary anomaly from the natural family.
A set of numerical examples about the two-body problem
are analyzed. We carry out a perturbed problem in order to
analyze the robustness of the method.

In Section 6, the main conclusions and remarks of this
paper are exposed.

2. Basic Equations

The analytical methods are based on the solution of the two-
body problem (Sun planet) through a set of orbital elements,
for example, the third set of Brouwer and Clemence [18]
(𝑎, 𝑒, 𝑖, Ω, 𝜔,𝑀), where 𝑀 = 𝑀

0
+ 𝑛(𝑡 − 𝑡

0
), 𝑛 is the mean

motion, and 𝑡
0
is the initial epoch being (𝑎, 𝑒, 𝑖, Ω, 𝜔, 𝑛) con-

stants in the unperturbed two-body problem. This solution
can be used as a first approximation of the perturbed problem
andwe can use the Lagrangemethod of variation of constants
to replace the first elements by the osculating ones given by
the Lagrange planetary equations [19]:

𝑑𝑎

𝑑𝑡

=

2

𝑛𝑎

𝜕𝑅

𝜕𝜎

,

𝑑𝑒

𝑑𝑡

= −

√
1 − 𝑒

2

𝑛𝑎

2
𝑒

𝜕𝑅

𝜕𝜔

+

1 − 𝑒

2

𝑛𝑎

2
𝑒

𝜕𝑅

𝜕𝜎

,

𝑑𝑖

𝑑𝑡

= −

1

𝑛𝑎

2
√
1 − 𝑒

2 sin 𝑖
𝜕𝑅

𝜕Ω

+

ctg 𝑖
𝑛𝑎

2
√
1 − 𝑒

2

𝜕𝑅

𝜕𝜔

,

𝑑Ω

𝑑𝑡

=

1

𝑛𝑎

2
√
1 − 𝑒

2 sin 𝑖
𝜕𝑅

𝜕𝑖

,

𝑑𝜔

𝑑𝑡

=

√
1 − 𝑒

2

𝑛𝑎

2
𝑒

𝜕𝑅

𝜕𝑒

−

cos 𝑖
𝑛𝑎

2
√
1 − 𝑒

2 sin 𝑖
𝜕𝑅

𝜕𝑖

,

𝑑𝜎

𝑑𝑡

= −

2

𝑛𝑎

𝜕𝑅

𝜕𝑎

−

1 − 𝑒

2

𝑛𝑎

2
𝑒

𝜕𝑅

𝜕𝑒

,

(3)

where 𝜎 is a new variable defined by the equation:

𝑀 = 𝜎 + ∫

𝑡

𝑡0

𝑛 𝑑𝑡 (4)

and it coincides with 𝑀
0
in the case of the unperturbed

motion. 𝑅 is the disturbing potential 𝑅 = ∑

𝑁

𝑘=1
𝑅
𝑖
due to the

disturbing bodies 𝑖 = 1, . . . , 𝑁. It is defined as [19]

𝑅 =

𝑁

∑

𝑘=1

𝐺𝑚
𝑘
[(

1

Δ
𝑘

) −

𝑥 ⋅ 𝑥
𝑘
+ 𝑦 ⋅ 𝑦

𝑘
+ 𝑧 ⋅ 𝑧

𝑘

𝑟

3

𝑘

] , (5)

where ⃗𝑟 = (𝑥, 𝑦, 𝑧) and ⃗𝑟
𝑘
= (𝑥
𝑘
, 𝑦
𝑘
, 𝑧
𝑘
) are the heliocentric

vector position of the secondary body and the 𝑘th disturbing
body, respectively, Δ

𝑘
is the distance between the secondary

body and the disturbing body, and 𝑚
𝑘
is the mass of the

disturbing body.
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In order to integrate the Lagrange planetary equations
through analytical methods, it is necessary to develop the
second member of the Lagrange planetary equations as
truncated Fourier series, which is a classical problem in
celestial mechanics [4, 5, 18, 20, 21]. The analytical methods
are appropriated to study planetary motion because the
eccentricities of the planetary orbits are small. Despite this,
analytical methods provide very long series solution and it is
convenient to obtain more compact developments using as
temporal variable an appropriate anomaly [6, 7].

To obtain the developments with respect to an anomaly
Ψ
𝑖
, it is necessary to obtain for each planet 𝑖 the developments

of the coordinates and the inverse of the radius in Fourier
series of Ψ

𝑖
. Then, the integration of the Lagrange planetary

equations with respect to the Ψ
𝑖
anomalies requires to obtain

solution of the corresponding Kepler equation𝑀
𝑖
= 𝑀
𝑖
(Ψ
𝑖
),

for each planet.
To use numerical integration methods it is more appro-

priate to consider the equation of motion in the form
of the second Newton law. To study the efficiency of the
numerical integration methods using an anomaly Ψ as
temporal variable, we select the problem of the motion of an
artificial satellite around the Earth.The relative motion of the
secondary with respect to the Earth is defined by the second
order differential equations

𝑑

2

⃗𝑟

𝑑𝑡

2
= −𝐺𝑀

⃗𝑟

𝑟

3
−

⃗
∇𝑈 −

⃗
𝐹,

(6)

where ⃗𝑟 is the radius vector of the satellite, 𝑈 the potential
from which the perturbative conservative forces are derived,
and ⃗

𝐹 includes the nonconservative forces. To integrate
system (6), it is necessary to know the initial values of the
radius vector ⃗𝑟

0
and velocity V⃗

0
.

In order to uniformize the truncation errors when a
numerical integrator is used, there are three main ways: the
use of a very small stepsize, the use of a adaptive stepsize
method, and the use of a change in the temporal variable to
get an appropriate distribution of the points in the orbit so
that the points are mostly concentrated in the regions where
the speed and curvature are maxima. In this paper, we follow
the third way, as previously stated.

3. Natural Anomalies

In this section, a new family of anomalies depending on a
parameter is defined. Let us represent in Figure 1 the elliptic
orbit corresponding to the motion of the two-body problem.
This ellipse is defined by its major semiaxis 𝑎 = 𝑂𝑄 and
its eccentricity 𝑒 = 𝑐/𝑎, 0 ≤ 𝑒 < 1, where 𝑐 is the focal
semidistance 𝑐 = 𝐹𝐹󸀠/2, and the minor semiaxis 𝑏 is defined
as 𝑏 = 𝑎

√
1 − 𝑒

2. Let 𝑂 be the center of the ellipse, let 𝐹
be the primary focus, let 𝐹󸀠 be the secondary focus (also
called equality point), let 𝑄 be the pericenter, and let 𝑃 be
the position of the secondary in the orbit. Let us define the
coordinates (𝜉, 𝜂) referred to the primary focus and let 𝑟
and 𝑟

󸀠 be the distance between the secondary 𝑃 and the
primary focus and the secondary focus,𝐹 and𝐹󸀠, respectively.

P

QFO 𝜉

𝜂

f
f
󳰀

→

r

F
󳰀

→

r

󳰀

Figure 1: Elliptic motion.

The angle 𝑓 is called the true anomaly and for the angle 𝑓󸀠,
we propose the name “secondary true anomaly”.

The quantities 𝑟 and 𝑟󸀠 satisfy

𝑟 + 𝑟

󸀠

= 2𝑎, 𝑟 =

𝑎

2

(1 − 𝑒

2

)

1 + 𝑒 cos𝑓
, 𝑟

󸀠

=

𝑎

2

(1 − 𝑒

2

)

1 − 𝑒 cos𝑓󸀠
.

(7)

On the other hand, the coordinates of the secondary with
respect to the primary, in the orbital plane, are

𝜉 = 𝑟 sin𝑓 = 𝑟󸀠 sin𝑓󸀠 = 𝑎 (𝑒 − cos𝐸) ,

𝜂 = 𝑟 cos𝑓 = 𝑟󸀠 cos𝑓󸀠 − 2𝑎𝑒 = 𝑎√1 − 𝑒2 sin𝐸.
(8)

The spatial orbital coordinates ⃗𝑟 = (𝑥, 𝑦, 𝑥)

𝑡 are related to
the orbital coordinates (𝜉, 𝜂, 0)𝑡 by means of

⃗𝑟 = 𝐴 ⃗𝑟orb, (9)

where 𝐴 = 𝑅
1
(−Ω)𝑅

3
(−𝑖)𝑅
1
(−𝜔). 𝑅

𝑖
defines a rotation

around the 𝑖-axis.
From (7) we have

𝑑𝑟 + 𝑑𝑟

󸀠

= 0, 𝑑𝑟 = −

𝑎

2

(1 − 𝑒

2

) sin𝑓𝑑𝑓

(1 + 𝑒 cos𝑓)2
,

𝑑𝑓

󸀠

=

𝑎

2

(1 − 𝑒

2

) sin𝑓󸀠𝑑𝑓󸀠

(1 − 𝑒 cos𝑓󸀠)2

(10)

and from (10), it is easy to obtain 𝑟2 sin𝑓𝑑𝑓 = 𝑟

󸀠2 sin𝑓󸀠𝑑𝑓󸀠.
Taking into account (8), we obtain

𝑟𝑑𝑓 = 𝑟

󸀠

𝑑𝑓

󸀠

. (11)

The radii 𝑟 and 𝑟󸀠 are related to the eccentric anomaly 𝐸
through

𝑟 = 𝑎 (1 − 𝑒 cos𝐸) , 𝑟

󸀠

= 𝑎 (1 + 𝑒 cos𝐸) . (12)

The anomalies 𝑓 and 𝑓󸀠 are related to the eccentric anomaly
𝐸 by

tan
𝑓

2

=
√

1 + 𝑒

1 − 𝑒

tan 𝐸
2

, tan
𝑓

󸀠

2

=
√

1 − 𝑒

1 + 𝑒

tan 𝐸
2

.
(13)
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To relate the anomaly 𝑓󸀠 to the mean anomaly𝑀 we use the
integral of areas 𝑑𝑓 = (𝑎2√1 − 𝑒2/𝑟2)𝑑𝑀, and after replacing
in (11), we get

𝑑𝑓

󸀠

=

𝑎

2
√
1 − 𝑒

2

𝑟𝑟

󸀠
𝑑𝑀 =

√
1 − 𝑒

2

1 − 𝑒

2cos2𝐸
𝑑𝑀.

(14)

To compare 𝑓󸀠 and𝑀 up to second order in 𝑒 we have

𝑓

󸀠

= 𝑀 +

𝑒

2

4

sin 2𝑀 + 𝑂(𝑒

3

)
(15)

and so, for small values of eccentricity, the anomaly𝑓󸀠 is near
𝑀.

Let us define the natural family of anomalies Ψ
𝛼
as

Ψ
𝛼
= 𝛼𝑓 + (1 − 𝛼) 𝑓

󸀠

, 0 ≤ 𝛼 ≤ 1 (16)

this family includes, for 𝛼 = 0, the secondary true anomaly𝑓󸀠
and, for 𝛼 = 1, the true anomaly 𝑓. The anomalyΨ

𝛼
is related

to the mean anomaly by

𝑑𝑀 = 𝑄
𝛼
(𝑟) 𝑑Ψ

𝛼
, (17)

where the function 𝑄
𝛼
(𝑟) is defined as

𝑄
𝛼
(𝑟) =

1

𝑎

2
√
1 − 𝑒

2

𝑟[

𝛼

𝑟

+

1 − 𝛼

2𝑎 − 𝑟

]

−1

. (18)

4. Analytical Developments

To integrate the planetary Lagrange equations, it is necessary
to develop the second member of the Lagrange planetary
equations as Fourier series with respect to the selected
anomalies for each couple of planets. For this task, it is neces-
sary to obtain for each planet the developments according to
the selected anomaly of the orbital coordinates 𝜉, and 𝜂, the
inverse of the radius 1/𝑟 and the mean anomaly𝑀.

For this purpose, first of all, we obtain the development
of an arbitrary anomalyΨ(𝛼) in the natural anomalies family.
In the future, we will denote Ψ(𝛼) as Ψ, if it does not lead to
confusion. The developments of the orbital coordinates 𝜉, 𝜂
(8) are completely determined by the ones of sin𝐸 and cos𝐸.
To obtain these developments, it is necessary first to expand
Ψ with respect to 𝐸 [22].

To relate the natural anomaly to the eccentric anomaly,
it is convenient to obtain the development of the natural
anomaly as Fourier series of eccentric anomaly. To this aim,
it is convenient to use the classic formula [4]

tan
𝑓

2

=
√

1 + 𝑒

1 − 𝑒

tan 𝐸
2

=

1 + 𝑞

1 − 𝑞

tan 𝐸
2

, (19)

where 𝑞 = tan(𝜙/2), 𝑒 = sin𝜙 and so

𝑓 = 𝐸 +

∞

∑

𝑘=1

2

𝑘

𝑞

𝑘 sin 𝑘𝐸. (20)

The secondary true anomaly verifies

tan
𝑓

󸀠

2

=
√

1 − 𝑒

1 + 𝑒

tan 𝐸
2

=

1 − 𝑞

1 + 𝑞

tan 𝐸
2

(21)

and consequently

𝑓

󸀠

= 𝐸 +

∞

∑

𝑘=1

(−1)

𝑘
2

𝑘

𝑞

𝑘 sin 𝑘𝐸. (22)

Replacing (20) and (22) in (16) we obtain

Ψ = 𝐸 +

∞

∑

𝑘=1

[1 + (−1 + (−1)

𝑘

) 𝑞

𝑘

𝛼]

2

𝑘

sin 𝑘𝐸. (23)

From this development, we can obtain up to an arbitrary
order 𝑘 in the developments, with respect to Ψ, of 𝐸 and an
arbitrary analytical function 𝑓(𝐸) using the Deprit inversion
algorithm [23]. As an example, up to fourth order in 𝑞, we
have

𝐸 = Ψ + {2 (1 − 2𝛼) 𝑞 + (8𝛼

3

− 12𝛼

2

+ 4𝛼) 𝑞

3

} sinΨ

+ {(8𝛼

2

− 8𝛼 + 1) 𝑞

2

+(−

128

3

𝛼

4

+

256𝛼

3

3

−

160𝛼

2

3

+

32𝛼

3

) 𝑞

4

}

× sin 2Ψ

+ {−24𝛼

3

+ 36𝛼

2

−

40𝛼

3

+

2

3

} 𝑞

3 sin 3Ψ

+ {

256𝛼

4

3

−

512𝛼

3

3

+

320𝛼

2

3

−

64𝛼

3

+

1

2

} 𝑞

4

× sin 4Ψ
(24)

sin𝐸 = {1 + (−2𝛼2 + 2𝛼 − 1) 𝑞2

+(

4𝛼

4

3

−

8𝛼

3

3

+

8𝛼

2

3

−

4𝛼

3

) 𝑞

4

} sinΨ

+ { (1 − 2𝛼) 𝑞

+ (

32𝛼

3

3

− 16𝛼

2

+

22𝛼

3

− 1) 𝑞

3

} sin 2Ψ

+ {(6𝛼

2

− 6𝛼 + 1) 𝑞

2

+ (−54𝛼

4

+ 108𝛼

3

− 72𝛼

2

+ 18𝛼 − 1) 𝑞

4

}

× sin 3Ψ
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+ {−

64

3

𝛼

3

+ 32𝛼

2

−

38𝛼

3

+ 1} 𝑞

3 sin 4Ψ

+ {

250𝛼

4

3

−

500𝛼

3

3

+

320𝛼

2

3

−

70𝛼

3

+ 1} 𝑞

4

× sin 5Ψ
(25)

cos𝐸 = (1 − 2𝛼) 𝑞

+ {1 + (−1 + 6𝛼 − 6𝛼

2

) 𝑞

2

+(

20𝛼

4

3

−

40𝛼

3

3

+

28𝛼

2

3

−

8

3

) 𝑞

4

} cosΨ

+ {𝑞 + (

64𝛼

3

3

− 32𝛼

2

+

38𝛼

3

− 2𝛼𝑞 − 1) 𝑞

3

}

× cos 2Ψ

+ {(1 − 6𝛼 + 6𝛼

2

) 𝑞

+ (−90𝛼

4

+ 180𝛼

3

− 116𝛼

2

+ 26𝛼 − 1) 𝑞

4

}

× cos 3Ψ

+ {−

64

3

𝛼

3

+ 32𝛼

2

−

38𝛼

3

+ 1} 𝑞

3 cos (4Ψ)

+ {

250𝛼

4

3

−

500𝛼

3

3

+

320𝛼

2

3

−

70𝛼

3

+ 1} 𝑞

4

× cos (5Ψ) .
(26)

The mean anomaly𝑀 is related to the eccentric anomaly
through the Kepler equation𝑀 = 𝐸 − 𝑒 sin𝐸. Replacing (24)
and (25) in the Kepler equation we obtain

𝑀 = Ψ + {−4𝛼𝑞 + (8𝛼

3

− 8𝛼

2

+ 4) 𝑞

3

} sinΨ

+ { (8𝛼

2

− 4𝛼 − 1) 𝑞

+(−

128

3

𝛼

4

+ 64𝛼

3

−

64𝛼

2

3

8𝛼 + 4) 𝑞

4

} sin 2Ψ

+ {−24𝛼

3

+ 24𝛼

2

−

4𝛼

3

−

4

3

} 𝑞

3 sin 3Ψ

+ {

256𝛼

4

3

− 128𝛼

3

+

128𝛼

2

3

+ 4𝛼 −

3

2

} 𝑞

4 sin 4Ψ.

(27)

This is the Kepler equation for the natural anomalyΨ and
it is necessary to integrate the second member of planetary
equation of Lagrange [8, 24].

The parameter 𝑞 is related to 𝑒 by 𝑞 = (1 − √1 − 𝑒2)/𝑒 an
so, 𝑞 can be developed as

𝑞 =

∞

∑

𝑘=1

(2𝑘 − 1)!!

2

𝑘
𝑘!

𝑒

2𝑘−1

, (28)

the value of 𝑞 verifies 0 ≤ 𝑞 = 𝑒/(1 + √1 − 𝑒2) ≤ 𝑒.

To develop 𝑎/𝑟with respect toΨ, it is more convenient to
use (7) and then we have

𝑎

𝑟

=

1 + 𝑒 cos𝑓
1 − 𝑒

2
. (29)

It is easy to see from (19) and (21) that

tan
𝑓

󸀠

2

=

1 − 𝑒

1 + 𝑒

tan
𝑓

2

(30)

and so

𝑓

󸀠

= 𝑓 +

∞

∑

𝑘=1

(−1)

𝑘
2

𝑘

𝑒

𝑘 sin 𝑘𝑓. (31)

Consequently,

Ψ = 𝑓 +

∞

∑

𝑘=1

(−1)

𝑘

(1 − 𝛼)

2

𝑘

𝑞

𝑘 sin 𝑘𝑓. (32)

Applying Deprit algorithm [23], we obtain the develop-
ment of cos𝑓 up to an arbitrary order in 𝑒. As an example, up
to fourth order in 𝑒, we have
cos𝑓 = (𝛼 − 1) 𝑒

+ {1 + (

5𝛼

2

−

3𝛼

2

2

+ 1) 𝑒

2

+(

5𝛼

4

12

−

7𝛼

3

6

+

13𝛼

2

12

−

𝛼

3

) 𝑒

4

} cosΨ

+ {(1 − 𝛼) 𝑒 + (

8𝛼

3

3

− 6𝛼

2

+

13𝛼

3

− 1) 𝑒

3

} cos 2Ψ

+ {(

3𝛼

2

2

−

5𝛼

2

+) 𝑒

2

+(−

45

8

𝛼

4

+

63𝛼

3

4

−

127𝛼

2

8

+

27𝛼

4

− 1) 𝑒

4

}

× cos 3Ψ

+ {−

8

3

𝛼

3

+ 6𝛼

2

−

13𝛼

3

+ 1} 𝑒

3 cos 4Ψ

+ {

125𝛼

4

24

−

175𝛼

3

12

+

355𝛼

2

24

−

77𝛼

12

+ 1} 𝑒

4 cos 5Ψ.

(33)

Replacing (33) in (29) finally we obtain
𝑎

𝑟

= 1 + 𝛼𝑒

4

+ 𝛼𝑒

2

+ {𝑒 + (−

3

2

𝛼

2

+

5𝛼

2

) 𝑒

3

} cosΨ

+ {(1 − 𝛼) 𝑒

2

+ (

8𝛼

3

3

− 6𝛼

2

+

10𝛼

3

) 𝑒

4

} cos 2Ψ

+ {

3𝛼

2

2

−

5𝛼

2

+ 1} 𝑒

3 cos 3Ψ

+ {−

8

3

𝛼

3

+ 6𝛼

2

−

13𝛼

3

+ 1} 𝑒

4 cos 4Ψ.

(34)
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Table 1: Length of the 1/Δ using𝑀,Ψ
0
, Ψ
0.25
, Ψ
0.5
, Ψ
0.75

, and Ψ
1.0
.

Number of iteration 𝑀 𝛼 = 0.0 𝛼 = 0.25 𝛼 = 0.50 𝛼 = 0.75 𝛼 = 1.0 err
0 2197 1597 1438 1298 1095 419
1 2518 1882 1717 1570 1379 1172 1.01 ⋅ 10

−2

2 2728 2144 1988 1855 1728 1707 1.36 ⋅ 10

−3

3 2841 2294 2182 2102 2028 2056 3.67 ⋅ 10

−5

4 2613 2052 1988 1957 1924 1912 3.50 ⋅ 10

−8

5 2627 2112 2036 2007 1940 1952 6.27 ⋅ 10

−14

(a) 𝛼 = 0.0 (b) 𝛼 = 0.5

(c) 𝛼 = 0.75 (d) 𝛼 = 1.0

Figure 2: Points distribution for 𝑒 = 0.7, 𝛼 = 0.0, 0.5, 0.75, 1.0.

0.2 0.4 0.6 0.8

0.75

0.80

0.85

0.90

0.95

Figure 3: Optimal value of 𝛼 for each value of 𝑒 ∈ [0, 0.95].

The convergence of these developments is poor when
the eccentricity is near to one. Fortunately, in the case of
the planetary motion, the eccentricity values are small and
the convergence rate is appropriate. On the other hand, for

intermediate values of eccentricity, the length of the series
using an appropriate anomaly Ψ

𝛼
is lower than if the mean

anomaly is used as temporal variable.
The main problem to develop the second member of

the Lagrange planetary equations is to develop the inverse
of the distance. This development can be obtained using
the Kovalevsky algorithm [25]. Table 1 shows, for the couple
Jupiter-Saturn, the performance of the algorithm. This table
contains the length of the expansion of the inverse of the
distance using themean anomaly𝑀 and the natural anomaly
for 𝛼 = 0, 0.25, 0.50, 0.75, 1.0, and the estimated error in
astronomical units for each iteration.The planetary elements
are taken from [26].

5. Numerical Examples

In general, the perturbative forces are small, for this reason,
it is convenient to test the methods by applying them to
the well known two-body problem, referred to the orbital
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Figure 4: Local integration errors distribution 𝑒 = 0.7, 𝛼 = 0.0.
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Figure 5: Local integration errors distribution 𝑒 = 0.7, 𝛼 = 0.5.
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Figure 6: Local integration errors distribution 𝑒 = 0.7, 𝛼 = 0.75.
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Figure 7: Distribution of the local integration errors 𝑒 = 0.7, 𝛼 = 1.0.
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coordinate system (𝑥, 𝑦, 0), to select an appropriate new
temporal variable in order to minimize the distribution of
the truncation errors in the orbit. Let us define a generic
family Ψ

𝛼
of anomalies depending on a parameter 𝛼 as 𝑑𝑡 =

𝑄
𝛼
(𝑟)𝑑Ψ

𝛼
. For each 𝛼 we have

𝑑

𝑑𝑡

= 𝑛

𝑑

𝑑𝑀

= 𝑛

𝑑

𝑑Ψ
𝛼

𝑑Ψ
𝛼

𝑑𝑀

=

𝑛

𝑄
𝛼
(𝑟)

𝑑

𝑑Ψ
𝛼

. (35)

So,

𝑑𝑥

𝑑Ψ
𝛼

=

𝑄
𝛼
(𝑟)

𝑛

V
𝑥
,

𝑑V
𝑥

𝑑Ψ
𝛼

= −

𝑄
𝛼
(𝑟)

𝑛

[𝐺𝑀

𝑥

𝑟

3
+

𝜕𝑉

𝜕𝑥

− 𝐹
𝑥
] ,

𝑑𝑦

𝑑Ψ
𝛼

=

𝑄
𝛼
(𝑟)

𝑛

V
𝑦
,

𝑑V
𝑦

𝑑Ψ
𝛼

= −

𝑄
𝛼
(𝑟)

𝑛

[𝐺𝑀

𝑦

𝑟

3
+

𝜕𝑉

𝜕𝑦

− 𝐹
𝑦
] .

(36)

In order to test the performance of this method, we use
a fictitious artificial satellite with the same elements than
HEOS II used by Brumberg [17] (𝑎 = 118363.47Km,
𝑒 = 0.942572319, 𝑖 = 28

o
.16096, Ω = 185

o
.07554, 𝜔 =

270

o
.07151, 𝑀

0
= 0

o), except for its eccentricity, that it is
changed to study the optimum value of 𝛼 depending on the
value of the eccentricity 𝑒. In Figure 2, we show a sample of
twenty points forΨ

𝛼
with homogeneous distribution over the

orbit.
Table 2 shows the values of the different 𝛼, where the

minimum of the errors for this fictitious satellite with the
same (𝑎, 𝑖, Ω, 𝜔,𝑀) elements than HEOSII and different
values of eccentricity (𝑒 = 0.0, 0.05, . . . , 0.95) is reached.
This table has been carried out using a classic Runge Kutta
integrator of fourth order with 1000 uniform steps. In this
table, we can see that the value of 𝛼, where the errors in
position reach their minimum, depends on the eccentricity.

A least square analytical approach to the optimal value of
𝛼 can be written as

𝛼 = 2.10826𝑒

5

− 4.77809𝑒

4

+ 3.92513𝑒

3

−1.71554𝑒

2

+ 0.71606𝑒 + 0.72724 .

(37)

Figure 3 shows the value of 𝛼, where the error |Δ ⃗𝑟| reaches
its minimum for each value of 𝑒 ∈ [0, 0.95] and its analytical
approximation.

Figures 4, 5, 6 and 7 show the local integration errors, in
position and velocity, for a satellite with 𝑎 = 118363.47Km
and 𝑒 = 0.7 for the values of 𝛼 = 0, 0.5, 0.75, 1.0. These
errors have been obtained solving for each value of Ψ

𝛼
the

equationΨ
𝛼
= Ψ
𝛼
(𝐸). From the value of𝐸, we compute, using

the two-body equations, the exact solution for the position
and velocity vectors. These values are the initial conditions
for the numerical integrator. The local truncation errors are
exactly evaluated by comparing the values obtained through
integration in the next step with the corresponding ones
evaluated solving the equation Ψ

𝛼
+ ℎ = Ψ

𝛼
(𝐸).

The solution of the equation Ψ
𝛼
= Ψ
𝛼
(𝐸) is obtained

solving, for each value of Ψ
𝛼
= 𝑖 ∗ ℎ, (16) and (13).

To test the robustness of the method, we will study a
perturbed case included in the planar restricted three-body

problem, this problem includes the Earth, the Moon, and
an artificial satellite with the same semiaxe that Heos II and
eccentricity 0.95.The problem uses the following approach to
the motion of the satellite perturbed by the Moon.

(1) The satellite is in the orbital plane of the Moon.
(2) The Moon motion is approached through a circular

motion around the Earth with a sidereal period of 27
days 4 h 43m 11.5 s, orbital radius of the Moon 𝑅

𝐿
=

384.400Km, andmass 0, 01231 in units of Earthmass.
(3) The couple Earth-Moon is not perturbed by the

satellite motion.

Table 3 shows the number of steps necessary to provide
an accuracy of 10−4 Km in position in an integration over
100 days using as integrator a classic Runge-Kutta of fourth
order and a Runge-Kutta of order eight [27]. To evaluate the
global error, we have compared the position results using 𝑁
and 1.1𝑁 steps. In this table, we can see that the integration
can be improved by the use of an appropriate choice of𝛼 in the
natural family of anomalies given by 𝛼(𝑒) (37). It is important
to emphasize that all the anomalies of this family improve the
values obtained by the use of the mean anomaly.

6. Concluding Remarks

In this paper, a new one-parametric family of anomalies,
called natural anomalies, has been defined.

This family of anomalies is adequate to be used in the
construction of the analytical theories of planetary motion.
In this sense, we have described a method to obtain the ana-
lytical development as Fourier series of the natural anomaly
up an arbitrary order in eccentricity of the most common
quantities (25), (26), and (29) of the two-body problem, and
from these developments, we can obtain the development of
the second member of the Lagrange planetary equation.

To test the efficiency of the use of the variables Ψ
𝛼
as

independent variables in the analytical developments, we
show the performance of the Kovalevsky algorithm to obtain
the inverse of the distance for the couple Jupiter-Saturn,
obtaining more compact developments for values of 𝛼 near
to values given by (37). To integrate the Lagrange planetary
equations by analytical methods using a generalized anomaly
as temporal variable, it is necessary to use the generalized
Kepler equation (27).

The natural anomalies conform to a parametric family of
anomalies that includes the true anomaly. For 𝛼 = 0, we have
the secondary true anomaly, its value being near to the mean
anomaly for small values of the eccentricity and, in the case of
an eccentricity that is not small, the spatial points distribution
over the orbit is the most appropriate, if the mean anomaly is
used.

In the symmetrical case, Ψ
1/2

defines a point distribution
over the orbit with a major concentration in the perigee than
if the eccentric anomaly 𝐸 is used.

The two-body problem has been used to test the per-
formance of the numerical integrators. In this study, the
local and global errors depend on the value of 𝛼. The global
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Table 2: Optimal 𝛼 for 𝑒|Δ ⃗𝑟| in 10−5 Km |ΔV⃗| in 10−8 Km/s.

𝑒 𝛼 |Δ ⃗𝑟| |ΔV⃗| 𝑒 𝛼 |Δ ⃗𝑟| |ΔV⃗|
0.00 0.7284 3.730 ⋅ 10

−2

2.893 ⋅ 10

−4 0.50 0.9127 2.357 ⋅ 10

−2

8.684 ⋅ 10

−2

0.05 0.7581 3.555 ⋅ 10

−2

3.426 ⋅ 10

−3 0.55 0.9225 2.111 ⋅ 10

−2

9.858 ⋅ 10

−2

0.10 0.7839 3.451 ⋅ 10

−2

8.409 ⋅ 10

−3 0.60 0.9310 1.852 ⋅ 10

−2

1.091 ⋅ 10

−1

0.15 0.8066 3.374 ⋅ 10

−2

1.483 ⋅ 10

−2 0.65 0.9381 1.643 ⋅ 10

−2

1.170 ⋅ 10

−1

0.20 0.8268 3.303 ⋅ 10

−2

2.253 ⋅ 10

−2 0.70 0.9435 1.479 ⋅ 10

−2

1.199 ⋅ 10

−1

0.25 0.8450 3.229 ⋅ 10

−2

3.143 ⋅ 10

−2 0.75 0.9463 1.353 ⋅ 10

−2

1.094 ⋅ 10

−1

0.30 0.8613 3.116 ⋅ 10

−2

4.118 ⋅ 10

−2 0.80 0.9461 1.264 ⋅ 10

−2

6.894 ⋅ 10

−2

0.35 0.8761 2.980 ⋅ 10

−2

5.179 ⋅ 10

−2 0.85 0.9454 6.821 ⋅ 10

−3

4.313 ⋅ 10

−2

0.40 0.8896 2.810 ⋅ 10

−2

6.319 ⋅ 10

−2 0.90 0.9512 6.064 ⋅ 10

−2

3.600 ⋅ 10

−1

0.45 0.9017 2.599 ⋅ 10

−2

7.483 ⋅ 10

−2 0.95 0.9661 1.121 ⋅ 10

0

2.185 ⋅ 10

0

Table 3: Number of steps to get a precision of |Δ ⃗𝑟| < 10

−4 Km.

𝑁 𝛼 = 0 𝛼 = 0.25 𝛼 = 0.5 𝛼 = 0.75 𝛼 = 1.0 𝛼(𝑒)

RK4 7084079 3292627 401504 251229 190193 158367 146393
RK8 305033 94362 14303 10833 9025 6840 6630

integration errors in a revolution depend on 𝛼. This value
increases with the eccentricity, and it is near 0.72 for lower
eccentricities and 0.9661 for higher ones (𝑒 = 0.95).

To test the robustness of the method, a simplified prob-
lem, included in the restricted three-body problem, has been
analyzed. In this problem, we study the number of steps that
is necessary to get a precision of 1 ⋅ 10−4 Km in |Δ ⃗𝑟| using a
classicalmethod of Runge-Kutta of fourth order and a Runge-
Kutta of eighth order.The number of steps is minimumwhen
we take for each step the value of 𝛼 that minimizes the
error in the osculating two-body problem (37). The result is
similar using a classic RK4 method and using a RK8method,
obviously with a minor number of steps in the last case.
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