This website uses its own as well as third-party cookies to enhance your browsing experience and provide you with a better service. By continuing to browse this website, we understand that you agree to the Universitat Jaume I cookie policy.  More information
Close

Repositori Universitat Jaume I

    • valencià
    • español
    • english
  • english 
    • valencià
    • español
    • english
  • Login
View Item 
  •   Repositori UJI
  • UJI: Investigación
  • Tesis Doctorals UJI
  • Programa de Doctorat en Informàtica
  • View Item
  •   Repositori UJI
  • UJI: Investigación
  • Tesis Doctorals UJI
  • Programa de Doctorat en Informàtica
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Perception-Based Learning for Fine Motion Planning in Robot Manipulation

Thumbnail
Impact
Google Scholar Scholar | Other documents of the author: Cervera Mateu, EnricMicrosoft Academico
Share
Show METS | MarcXML
Export to
Export to MendeleyExport to Mendeley
Metadata
Show full item record

comunitat-uji-handle:10234/9

comunitat-uji-handle2:10234/29747

comunitat-uji-handle3:10234/162753

TESIS

Metadata

Title
Perception-Based Learning for Fine Motion Planning in Robot Manipulation
Author (s)
Cervera Mateu, Enric
Director
Pobil, Àngel Pasqual del
Department
Universitat Jaume I. Departament d'Enginyeria i Ciència dels Computadors
Date of defense
1997-10-17
ISBN
9788469152539
URI
http://www.tdx.cat/TDX-0619108-131157
http://hdl.handle.net/10803/10377
Publisher
Universitat Jaume I
Keywords
Ciència de la Computació i Intel·ligència Artificial
Abstract
Robots must successfully execute tasks in the presence of uncertainty. <br/>The main sources of uncertainty are modeling, sensing, and control. Fine motion problems involve a small-scale space and contact between ... [+]
Robots must successfully execute tasks in the presence of uncertainty. <br/>The main sources of uncertainty are modeling, sensing, and control. Fine motion problems involve a small-scale space and contact between objects.<br/>Though modern manipulators are very precise and repetitive, complex tasks may be difficult --or even impossible-- to model at the desired degree of exactitude; moreover, in real-world situations, the environment is not known a-priori and visual sensing does not provide enough accuracy. <br/>In order to develop successful strategies, it is necessary to understand what can be perceived, what action can be learnt --associated-- according to the perception, and how can the robot optimize its actions with regard to defined criteria.<br/>The thesis describes a robot programming architecture for learning fine motion tasks.<br/>Learning is an autonomous process of experience repetition, and the target is to achieve the goal in the minimum number of steps. Uncertainty in the location is assumed, and the robot is guided mainly by the sensory information acquired by a force sensor.<br/>The sensor space is analyzed by an unsupervised process which extracts features related with the probability distribution of the input samples. Such features are used to build a discrete state of the task to which an optimal action is associated, according to the past experience. The thesis also includes simulations of different sensory-based tasks to illustrate some aspects of the learning processes. <br/>The learning architecture is implemented on a real robot arm with force sensing capabilities. The task is a peg-in-hole insertion with both cylindrical and non-cylindrical workpieces. [-]
Rights
ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs.
info:eu-repo/semantics/openAccess
This item appears in the folowing collection(s)
  • Programa de Doctorat en Informàtica [61]

entitlement


Our content is published in:

HispanaEuropeanaRePEc: Research Papers in EconomicsTesis Doctorals en XarxaGoogle ScholarRecolectaOpenDOARRevistes Catalanes d'Accés ObertOpenAIREMaterials Docents en Xarxa

Ministerio This project has received a grant from the Dirección General del Libro, Archivos y Bibliotecas of the Spanish Ministry of Culture.
DSpace
Metadata subject to:Public Domain | Information and queries:biblioteca@uji.es | Security and privacy center | Legal Advice
Universitat Jaume I - Av. de Vicent Sos Baynat, s/n 12071 Castelló de la Plana, Spain - Phone: +34 964 72 87 61 Fax: +34 964 72 87 78
 

 

Repositori UJIAbout Repositori UJIHelpContact us

NewsFacebookBlogTwitterSlideSharePinterest

Browse

All of Repositori UJICommunities & CollectionsBy Issue DateAuthorsTitlesKeywordsThis CollectionBy Issue DateAuthorsTitlesKeywords

My Account

LoginRegister

Statistics

View Usage Statistics
Tweets por BibliotecaUJI

Our content is published in:

HispanaEuropeanaRePEc: Research Papers in EconomicsTesis Doctorals en XarxaGoogle ScholarRecolectaOpenDOARRevistes Catalanes d'Accés ObertOpenAIREMaterials Docents en Xarxa

Ministerio This project has received a grant from the Dirección General del Libro, Archivos y Bibliotecas of the Spanish Ministry of Culture.
DSpace
Metadata subject to:Public Domain | Information and queries:biblioteca@uji.es | Security and privacy center | Legal Advice
Universitat Jaume I - Av. de Vicent Sos Baynat, s/n 12071 Castelló de la Plana, Spain - Phone: +34 964 72 87 61 Fax: +34 964 72 87 78