Show simple item record

dc.contributor.authorEsteve Siscar, Antonio
dc.contributor.authorPalmer Andreu, Vicente
dc.date.accessioned2014-03-27T11:25:42Z
dc.date.available2014-03-27T11:25:42Z
dc.date.issued2014
dc.identifier.issn0004-2080
dc.identifier.urihttp://hdl.handle.net/10234/88730
dc.description.abstractWe state and prove a Chern–Osserman-type inequality in terms of the volume growth for minimal surfaces S which have finite total extrinsic curvature and are properly immersed in a Cartan–Hadamard manifold N with sectional curvatures bounded from above by a negative quantity K N ≤b<0 and such that they are not too curved (on average) with respect to the hyperbolic space with constant sectional curvature given by the upper bound b. We also prove the same Chern–Osserman-type inequality for minimal surfaces with finite total extrinsic curvature and properly immersed in an asymptotically hyperbolic Cartan–Hadamard manifold N with sectional curvatures bounded from above by a negative quantity K N ≤b<0.ca_CA
dc.format.extent23 p.ca_CA
dc.format.mimetypeapplication/pdfca_CA
dc.language.isoengca_CA
dc.publisherSpringer Netherlandsca_CA
dc.relation.isPartOfArkiv för Matematik, 52, 1, p. 61-92ca_CA
dc.subjectCartan–Hadamard manifoldca_CA
dc.subjectvolume growthca_CA
dc.subjectChern-Osserman inequalityca_CA
dc.titleThe Chern–Osserman inequality for minimal surfaces in a Cartan–Hadamard manifold with strictly negative sectional curvaturesca_CA
dc.typeinfo:eu-repo/semantics/articleca_CA
dc.identifier.doihttp://dx.doi.org/10.1007/s11512-013-0182-3
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca_CA
dc.relation.publisherVersionhttp://link.springer.com/article/10.1007/s11512-013-0182-3ca_CA


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record