Colecciones

Envíos recientes

  • The cone of curves and the Cox ring of rational surfaces given by divisorial valuations 

    Galindo Pastor, Carlos; Monserrat Delpalillo, Francisco José (Elsevier, 2016-02)
    We consider surfaces X defined by plane divisorial valuations ν of the quo- tient field of the local ring R at a closed point p of the projective plane P 2 over an arbitrary algebraically closed field k and ...
  • Hilbert regularity of Z-graded modules over polynomial rings 

    Bruns, Winfried; Moyano Fernández, Julio José; Uliczka, Jan (Rocky Mountain Mathematics Consortium, 2017-06)
    Let M be a finitely generated Z-graded module over the standard graded polynomial ring R=K[X1,…,Xd] with K a field, and let HM(t)=QM(t)/(1−t)d be the Hilbert series of~M. We introduce the Hilbert regularity of~M as the ...
  • On the score sheets of a round-robin football tournament 

    Ichim, Bogdan; Moyano Fernández, Julio José (Elsevier, 2017-10)
    The set of (ordered) score sheets of a round-robin football tournament played between n teams together with the pointwise addition has the structure of an affine monoid. In this paper we study (using both theoretical and ...
  • LCM Lattices and Stanley Depth: A First Computational Approach 

    Ichim, Bogdan; Katthän, Lukas; Moyano Fernández, Julio José (Taylor & Francis, 2015-10)
    Let K be a field, and let S D K [X1, . . . ,Xn] be the polynomial ring. Let / be a monomial ideal of S with up to 5 generators. In this paper, we present a computational experiment which allows us to prove that depthS ...
  • Stanley depth and the lcm-lattice 

    Ichim, Bogdan; Katthän, Lukas; Moyano Fernández, Julio José (Elsevier, 2017-08)
    In this paper we show that the Stanley depth, as well as the usual depth, are essentially determined by the lcm-lattice. More precisely, we show that for quotients of monomial ideals , both invariants behave monotonic with ...

Más


Ministerio Este proyecto ha recibido una ayuda de la Dirección General del Libro, Archivos y Bibliotecas del Ministerio de Cultura.
DSpace
Metadatos sujetos a :Public Domain | Información y consultas:biblioteca@uji.es | Política general de seguridad de la información | Nota legal
Universitat Jaume I - Av. de Vicent Sos Baynat, s/n 12071 Castelló de la Plana, España - Tel.: +34 964 72 87 61 Fax: +34 964 72 87 78