Show simple item record

dc.contributor.authorHernando Carrillo, Fernando Javier
dc.contributor.authorMcGuire, Gary
dc.date.accessioned2013-05-30T17:56:22Z
dc.date.available2013-05-30T17:56:22Z
dc.date.issued2012-02
dc.identifier.issn0925-1022
dc.identifier.issn1573-7586
dc.identifier.urihttp://hdl.handle.net/10234/65295
dc.description.abstractThe existence of certain monomial hyperovals D(xk) in the finite Desarguesian projective plane PG(2, q), q even, is related to the existence of points on certain projective plane curves gk(x, y, z). Segre showed that some values of k (k = 6 and 2i) give rise to hyperovals in PG(2, q) for infinitely many q. Segre and Bartocci conjectured that these are the only values of k with this property. We prove this conjecture through the absolute irreducibility of the curves gk.ca_CA
dc.format.extent15 p.ca_CA
dc.format.mimetypeapplication/pdfca_CA
dc.language.isoengca_CA
dc.publisherSpringer USca_CA
dc.relation.isPartOfDesigns, Codes and Cryptography. December 2012, Volume 65, Issue 3ca_CA
dc.rights© Springer, Part of Springer Science+Business Mediaca_CA
dc.subjectOvalca_CA
dc.subjectAbsolutely irreducibleca_CA
dc.subjectMonomial hyperovalca_CA
dc.subjectBezoutca_CA
dc.titleProof of a conjecture of Segre and Bartocci on monomial hyperovals in projective planesca_CA
dc.typeinfo:eu-repo/semantics/articleca_CA
dc.identifier.doihttp://dx.doi.org/10.1007/s10623-012-9624-3
dc.rights.accessRightsinfo:eu-repo/semantics/restrictedAccessca_CA
dc.relation.publisherVersionhttp://link.springer.com/article/10.1007/s10623-012-9624-3ca_CA


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record