Mostrar el registro sencillo del ítem

dc.contributor.authorBeltran, Armando
dc.contributor.authorStroppa, Daniel G.
dc.contributor.authorMontoro, Luciano A.
dc.contributor.authorConti, Tiago G.
dc.contributor.authorDa Silva, Rafael O.
dc.contributor.authorAndres, Juan
dc.contributor.authorLeite, Edson R.
dc.contributor.authorRamírez, Antonio J.
dc.date.accessioned2012-10-19T12:33:51Z
dc.date.available2012-10-19T12:33:51Z
dc.date.issued2011-08-26
dc.identifier.citationChem. Eur. J. (2011), 17, 11515 – 11519ca_CA
dc.identifier.urihttp://hdl.handle.net/10234/49374
dc.description.abstractThe development of reliable nanostructured devices is intrinsically dependent on the description and manipulation of materials properties at the atomic scale. Consequently, several technological advances are dependent on improvements in the characterization techniques and in the models used to describe the properties of nanosized materials as a function of the synthesis parameters. The evaluation of doping element distributions in nanocrystals is directly linked to fundamental aspects that define the properties of the material, such as surface-energy distribution, nanoparticle shape, and crystal growth mechanism. However, this is still one of the most challenging tasks in the characterization of materials because of the required spatial resolution and other various restrictions from quantitative characterization techniques, such as sample degradation and signal-to-noise ratio. This paper addresses the dopant segregation characterization for two antimony-doped tin oxide (Sb:SnO2 ) systems, with different Sb doping levels, by the combined use of experimental and simulated highresolution transmission electron microscopy (HRTEM) images and surface-energy ab initio calculations. The applied methodology provided threedimensional models with geometrical and compositional information that were demonstrated to be self-consistent and correspond to the systems mean properties. The results evidence that the dopant distribution configuration is dependent on the system composition and that dopant atom redistribution may be an active mechanism for the overall surface-energy minimization.ca_CA
dc.format.extent5 p.ca_CA
dc.language.isoengca_CA
dc.publisherWileyca_CA
dc.rights.urihttp://rightsstatements.org/vocab/CNE/1.0/*
dc.subjectAntimonyca_CA
dc.subjectDopingca_CA
dc.subjectMolecular modelingca_CA
dc.subjectNanostructuresca_CA
dc.subjectSurface chemistryca_CA
dc.subjectTinca_CA
dc.subject.lcshAntimonyca_CA
dc.subject.lcshNanostructuresca_CA
dc.subject.lcshSurface chemistryca_CA
dc.subject.lcshTinca_CA
dc.subject.otherEstanyca_CA
dc.subject.otherAntimonica_CA
dc.subject.otherNanoestructuresca_CA
dc.subject.otherSuperfície químicaca_CA
dc.titleDopant segregation analysis on Sb:SnO2 nanocrystalsca_CA
dc.typeinfo:eu-repo/semantics/articleca_CA
dc.identifier.doihttp://dx.doi.org/10.1002/chem.201100972
dc.rights.accessRightsinfo:eu-repo/semantics/restrictedAccessca_CA
dc.relation.publisherVersionhttp://onlinelibrary.wiley.com/store/10.1002/chem.201100972/asset/11515_ftp.pdf?v=1&t=h8h8st7r&s=f189b98752f1120f788a2f7eb92d0469f1ef0b1cca_CA
dc.type.versioninfo:eu-repo/semantics/publishedVersion


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem